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Problem (Convex Feasibility Problem)

C1,C2 ⊆ H closed, convex subsets of Hilbert space

Goal: Find p ∈ C1 ∩ C2 ̸= ∅

Idea: Alternating projections
P1 and P2 nearest point projections onto C1 and C2.
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Hope that (ξn)n∈N converges to some p ∈ C1 ∩ C2.
Does it work?
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What if we have C1,C2, . . . ,CN?

alternating −→ some order x = (1, 2, 1, 3, 2, . . . )

ξn = Pxn(ξn−1)
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Definition (quasi-periodic)

A sequence x ∈ {1, . . . ,N}N is quasi-periodic iff
∃m ∈ N (the quasi period)
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– Yes, but no
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leads to a non-convergent projection series ξn.
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Topological: (K , T ), dense Gδ-set

Definition (Measure on K )

Equip I = {1, . . . ,N} with Bernoulli measure

PI ({1}) = · · · = PI ({N}) = 1
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P-almost all orders x ∈ K lead to (ξn)n∈N being strongly convergent
(under some constraints).
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Definition (quasi-normal sequences)

x ∈ K quasinormal ⇐⇒

∃L ≥ N : ∧

{
greedy L-partition (rk)k∈N exists∑

k∈N
1
rk

= ∞
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Definition (Metric on K )

On I choose discrete metric d0.
On K choose

d(x , y) := max{2−jd0(xj , yj) : j ∈ N}
= 2−(first index where xj ̸=yj ).

Note that

B(x , 2−j) = {(x1, . . . , xj , ?, ?, ?, ?, . . . )}.
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p

porous holes scale linear
ϕ-porous holes scale to given function
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Complement is large, co-(· · · )-porous =⇒ dense Gδ.
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How large is the set of sequences x ∈ K for which
(ξn)n∈N is strongly convergent?

(in a metric sense)
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Theorem (T., ’25)

N



Lemma

∑
k∈N

1
rk

= ∞ ⇐⇒ ∀s ∈ N :
∞∑
k=s

1
rk − (rs + 1)

= ∞

x =
( = I

L
= I
L

= I
L

S1 R1 S2 R2 S3 R3 · · ·
|
r1

|
r2

|
r3

)



Definition

x quasi-normal ⇐⇒

∃L ≥ N : ∧

{∑
k∈N

1
rk

= ∞ (a)
greedy L-partition (rk)k∈N exists (b)

Show that complement K \ N is small, σ-ϕ-porous.
AL = {

∑ 1
rk

< ∞}=
⋃

M∈N{
∑ 1

rk
< M}

(x1, x2, x3, x4, x5,R,R,R,R,R, . . . ,R︸ ︷︷ ︸
enough to make

∑
>M

, . . . )

BL = {∄ greedy L-part.}=
⋃

k∈N{g. L-p. only up to block Rk}

(S1,R1, . . . ,Sk ,Rk ,Rk+1, . . . )



Definition

x quasi-normal ⇐⇒

∃L ≥ N : ∧

{∑
k∈N

1
rk

= ∞ (a)
greedy L-partition (rk)k∈N exists (b)

Show that complement K \ N is small, σ-ϕ-porous.

x /∈ N ⇐⇒ ∀L ≥ N : ¬(a) ∨ ¬(b)

AL = {
∑ 1

rk
< ∞}=

⋃
M∈N{

∑ 1
rk

< M}

(x1, x2, x3, x4, x5,R,R,R,R,R, . . . ,R︸ ︷︷ ︸
enough to make

∑
>M

, . . . )

BL = {∄ greedy L-part.}=
⋃

k∈N{g. L-p. only up to block Rk}

(S1,R1, . . . ,Sk ,Rk ,Rk+1, . . . )



Definition

x quasi-normal ⇐⇒

∃L ≥ N : ∧

{∑
k∈N

1
rk

= ∞ (a)
greedy L-partition (rk)k∈N exists (b)

Show that complement K \ N is small, σ-ϕ-porous.

x /∈ N ⇐⇒ ∀L ≥ N : ¬(a) ∨ ¬(b)

x ∈ K \ N ⇐⇒ x ∈
⋂
L≥N

(AL ∪ BL︸ ︷︷ ︸
small

)

AL = {
∑ 1

rk
< ∞}

=
⋃

M∈N{
∑ 1

rk
< M}

(x1, x2, x3, x4, x5,R,R,R,R,R, . . . ,R︸ ︷︷ ︸
enough to make

∑
>M

, . . . )

BL = {∄ greedy L-part.}=
⋃

k∈N{g. L-p. only up to block Rk}

(S1,R1, . . . ,Sk ,Rk ,Rk+1, . . . )



Definition

x quasi-normal ⇐⇒

∃L ≥ N : ∧

{∑
k∈N

1
rk

= ∞ (a)
greedy L-partition (rk)k∈N exists (b)

Show that complement K \ N is small, σ-ϕ-porous.

x /∈ N ⇐⇒ ∀L ≥ N : ¬(a) ∨ ¬(b)

x ∈ K \ N ⇐⇒ x ∈
⋂
L≥N

(AL ∪ BL︸ ︷︷ ︸
small

)

AL = {
∑ 1

rk
< ∞}=

⋃
M∈N{

∑ 1
rk

< M}

(x1, x2, x3, x4, x5,R,R,R,R,R, . . . ,R︸ ︷︷ ︸
enough to make

∑
>M

, . . . )

BL = {∄ greedy L-part.}=
⋃

k∈N{g. L-p. only up to block Rk}

(S1,R1, . . . ,Sk ,Rk ,Rk+1, . . . )



Definition

x quasi-normal ⇐⇒

∃L ≥ N : ∧

{∑
k∈N

1
rk

= ∞ (a)
greedy L-partition (rk)k∈N exists (b)

Show that complement K \ N is small, σ-ϕ-porous.

x /∈ N ⇐⇒ ∀L ≥ N : ¬(a) ∨ ¬(b)

x ∈ K \ N ⇐⇒ x ∈
⋂
L≥N

(AL ∪ BL︸ ︷︷ ︸
small

)

AL = {
∑ 1

rk
< ∞}=

⋃
M∈N{

∑ 1
rk

< M}

(x1, x2, x3, x4, x5,R,R,R,R,R, . . . ,R︸ ︷︷ ︸
enough to make

∑
>M

, . . . )

BL = {∄ greedy L-part.}=
⋃

k∈N{g. L-p. only up to block Rk}

(S1,R1, . . . ,Sk ,Rk ,Rk+1, . . . )



Definition

x quasi-normal ⇐⇒

∃L ≥ N : ∧

{∑
k∈N

1
rk

= ∞ (a)
greedy L-partition (rk)k∈N exists (b)

Show that complement K \ N is small, σ-ϕ-porous.

x /∈ N ⇐⇒ ∀L ≥ N : ¬(a) ∨ ¬(b)

x ∈ K \ N ⇐⇒ x ∈
⋂
L≥N

(AL ∪ BL︸ ︷︷ ︸
small

)

AL = {
∑ 1

rk
< ∞}=

⋃
M∈N{

∑ 1
rk

< M}

(x1, x2, x3, x4, x5,R,R,R,R,R, . . . ,R︸ ︷︷ ︸
enough to make

∑
>M

, . . . )

BL = {∄ greedy L-part.}

=
⋃

k∈N{g. L-p. only up to block Rk}

(S1,R1, . . . ,Sk ,Rk ,Rk+1, . . . )



Definition

x quasi-normal ⇐⇒

∃L ≥ N : ∧

{∑
k∈N

1
rk

= ∞ (a)
greedy L-partition (rk)k∈N exists (b)

Show that complement K \ N is small, σ-ϕ-porous.

x /∈ N ⇐⇒ ∀L ≥ N : ¬(a) ∨ ¬(b)

x ∈ K \ N ⇐⇒ x ∈
⋂
L≥N

(AL ∪ BL︸ ︷︷ ︸
small

)

AL = {
∑ 1

rk
< ∞}=

⋃
M∈N{

∑ 1
rk

< M}

(x1, x2, x3, x4, x5,R,R,R,R,R, . . . ,R︸ ︷︷ ︸
enough to make

∑
>M

, . . . )

BL = {∄ greedy L-part.}=
⋃

k∈N{g. L-p. only up to block Rk}

(S1,R1, . . . ,Sk ,Rk ,Rk+1, . . . )



Definition

x quasi-normal ⇐⇒

∃L ≥ N : ∧

{∑
k∈N

1
rk

= ∞ (a)
greedy L-partition (rk)k∈N exists (b)

Show that complement K \ N is small, σ-ϕ-porous.

x /∈ N ⇐⇒ ∀L ≥ N : ¬(a) ∨ ¬(b)

x ∈ K \ N ⇐⇒ x ∈
⋂
L≥N

(AL ∪ BL︸ ︷︷ ︸
small

)

AL = {
∑ 1

rk
< ∞}=

⋃
M∈N{

∑ 1
rk

< M}

(x1, x2, x3, x4, x5,R,R,R,R,R, . . . ,R︸ ︷︷ ︸
enough to make

∑
>M

, . . . )

BL = {∄ greedy L-part.}=
⋃

k∈N{g. L-p. only up to block Rk}

(S1,R1, . . . ,Sk ,Rk ,Rk+1, . . . )



Amemiya, I., Ando, T. Convergence of random products of
contractions in Hilbert space. Acta Sci. Math.(Szeged),
26(3-4), 239–244 (1965)

Halperin, I. The product of projection operators. Acta Sci.
Math.(Szeged). 23, 96-99 (1962)

Kopecká, E. & Müller, V. A product of three projections.
Studia Mathematica. 223, pp. 175-186 (2014)

Kopecká, E. & Paszkiewicz, A. Strange products of projections.
Israel Journal Of Mathematics. 219 pp. 271-286 (2017)
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