

True σ -Porisity for Alternating Projeciton Orders

Daylen Thimm

University of Innsbruck

19.03.2025

Supported by the Doctoral Scholarship of the University of Innsbruck Supported by the Tyrolean Funding for Young Researchers (TNF)

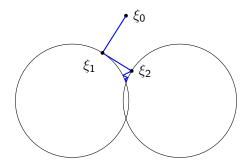
 $C_1, C_2 \subseteq H$ closed, convex subsets of Hilbert space Goal: Find $p \in C_1 \cap C_2 \neq \emptyset$

 $C_1, C_2 \subseteq H$ closed, convex subsets of Hilbert space Goal: Find $p \in C_1 \cap C_2 \neq \emptyset$

Idea: Alternating projections

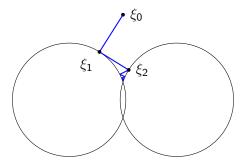
 $C_1, C_2 \subseteq H \quad closed, \ convex \ subsets \ of \ Hilbert \ space$ Goal: Find $p \in C_1 \cap C_2 \neq \emptyset$

Idea: Alternating projections P_1 and P_2 nearest point projections onto C_1 and C_2 .

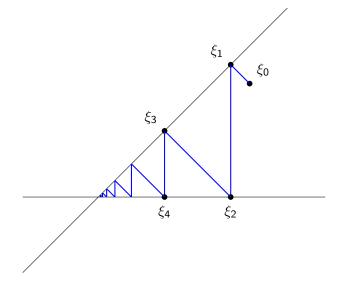


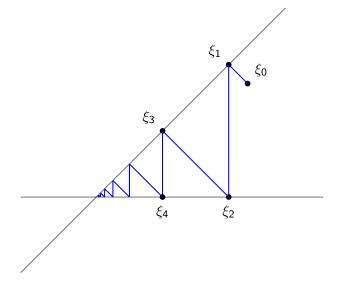
 $C_1, C_2 \subseteq H \quad closed, \ convex \ subsets \ of \ Hilbert \ space$ Goal: Find $p \in C_1 \cap C_2 \neq \emptyset$

Idea: Alternating projections P_1 and P_2 nearest point projections onto C_1 and C_2 .



Hope that $(\xi_n)_{n\in\mathbb{N}}$ converges to some $p \in C_1 \cap C_2$. Does it work?





Theorem (von Neumann, '49)

 C_1, C_2 linear subspaces \implies alternating projections work. In fact: $\lim_{n\to\infty} \xi_n = P_{C_1 \cap C_2}(\xi_0)$

alternating \longrightarrow some order $x = (1, 2, 1, 3, 2, \dots)$

$$\xi_n = P_{x_n}(\xi_{n-1})$$

alternating
$$\longrightarrow$$
 some order $x = (1, 2, 1, 3, 2, ...)$

$$\xi_n = P_{x_n}(\xi_{n-1})$$

Does this work?

alternating \longrightarrow some order $x = (1, 2, 1, 3, 2, \dots)$

$$\xi_n = P_{x_n}(\xi_{n-1})$$

Does this work?

Theorem (Halperin, '62)

x periodic \implies alternating projections work. Again: $\lim_{n\to\infty} \xi_n = P_{C_1 \cap \dots \cap C_N}(\xi_0)$

alternating \longrightarrow some order $x = (1, 2, 1, 3, 2, \dots)$

$$\xi_n = P_{x_n}(\xi_{n-1})$$

Does this work?

Theorem (Halperin, '62)

x periodic \implies alternating projections work. Again: $\lim_{n\to\infty} \xi_n = P_{C_1 \cap \dots \cap C_N}(\xi_0)$

Only periodic?

$$\{x_k, x_{k+1}, \ldots, x_{k+m-1}\} = \{1, \ldots, N\}$$

$$\{x_k, x_{k+1}, \dots, x_{k+m-1}\} = \{1, \dots, N\}$$

$$x = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

A sequence $x \in \{1, ..., N\}^{\mathbb{N}}$ is quasi-periodic iff $\exists m \in \mathbb{N}$ (the quasi period) $\forall k \in \mathbb{N}$ $\{x_k, x_{k+1}, ..., x_{k+m-1}\} = \{1, ..., N\}$

$$x = (\underbrace{x_1, x_2, x_3, x_4, x_5}_{\text{length } m}, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

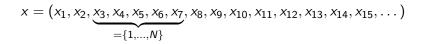
$$\{x_k, x_{k+1}, \ldots, x_{k+m-1}\} = \{1, \ldots, N\}$$

$$x = (\underbrace{x_1, x_2, x_3, x_4, x_5}_{=\{1, \dots, N\}}, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

$$\{x_k, x_{k+1}, \ldots, x_{k+m-1}\} = \{1, \ldots, N\}$$

$$x = (x_1, \underbrace{x_2, x_3, x_4, x_5, x_6}_{=\{1, \dots, N\}}, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

$${x_k, x_{k+1}, \ldots, x_{k+m-1}} = {1, \ldots, N}$$



$$\{x_k, x_{k+1}, \dots, x_{k+m-1}\} = \{1, \dots, N\}$$

$$x = (x_1, x_2, x_3, \underbrace{x_4, x_5, x_6, x_7, x_8}_{=\{1, \dots, N\}}, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

A sequence $x \in \{1, ..., N\}^{\mathbb{N}}$ is quasi-periodic iff $\exists m \in \mathbb{N}$ (the quasi period) $\forall k \in \mathbb{N}$ $\{x_k, x_{k+1}, ..., x_{k+m-1}\} = \{1, ..., N\}$

$$x = (x_1, x_2, x_3, \underbrace{x_4, x_5, x_6, x_7, x_8}_{=\{1, \dots, N\}}, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

Idea: Don't let occurrences spread out too much.

A sequence $x \in \{1, ..., N\}^{\mathbb{N}}$ is quasi-periodic iff $\exists m \in \mathbb{N}$ (the quasi period) $\forall k \in \mathbb{N}$ $\{x_k, x_{k+1}, ..., x_{k+m-1}\} = \{1, ..., N\}$

$$x = (x_1, x_2, x_3, \underbrace{x_4, x_5, x_6, x_7, x_8}_{=\{1, \dots, N\}}, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

Theorem (Sakai, '95)

x quasi-periodic \implies alternating projections work. Again: $\lim_{n\to\infty} \xi_n = P_{C_1 \cap \cdots \cap C_N}(\xi_0)$

A sequence $x \in \{1, ..., N\}^{\mathbb{N}}$ is quasi-periodic iff $\exists m \in \mathbb{N}$ (the quasi period) $\forall k \in \mathbb{N}$ $\{x_k, x_{k+1}, ..., x_{k+m-1}\} = \{1, ..., N\}$

$$x = (x_1, x_2, x_3, \underbrace{x_4, x_5, x_6, x_7, x_8}_{=\{1, \dots, N\}}, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

Theorem (Sakai, '95)

x quasi-periodic \implies alternating projections work. Again: $\lim_{n\to\infty} \xi_n = P_{C_1 \cap \cdots \cap C_N}(\xi_0)$

More than periodic?

All reasonable projection orders?

Theorem (Prager, '60)

H finite-dimensional \implies alternating projections work

Theorem (Prager, '60)

H finite-dimensional \implies alternating projections work

Theorem (Amemiya, Ando, '65)

H infinite-dimensional \implies Only weak convergence of ξ_n .

Theorem (Prager, '60)

H finite-dimensional \implies alternating projections work

Theorem (Amemiya, Ando, '65)

H infinite-dimensional \implies Only weak convergence of ξ_n .

In general: No

Theorem (Prager, '60)

H finite-dimensional \implies alternating projections work

Theorem (Amemiya, Ando, '65)

H infinite-dimensional \implies Only weak convergence of ξ_n .

In general: No

Theorem (Kopecká, Müller, Paszkiewicz, '14, '17)

H infinite-dimensional \exists special choice of C_1, C_2, C_3 linear subspaces such that $\forall 0 \neq \xi_0 \in H \exists$ projection order x that leads to a non-convergent projection series ξ_n . How large is the set of sequences $x \in \{1, ..., N\}^{\mathbb{N}}$ for which $(\xi_n)_{n \in \mathbb{N}}$ is strongly convergent? How large is the set of sequences $x \in \{1, ..., N\}^{\mathbb{N}}$ for which $(\xi_n)_{n \in \mathbb{N}}$ is strongly convergent?

$$I \coloneqq \{1, \dots, N\}$$
$$K \coloneqq I^{\mathbb{N}}$$

• Measure theoretic: (K, Σ, \mathbb{P}) , full measure

- Measure theoretic: (K, Σ, \mathbb{P}) , full measure
- Topological: (K, \mathcal{T}) , dense G_{δ} -set

- Measure theoretic: (K, Σ, \mathbb{P}) , full measure
- Topological: (K, \mathcal{T}) , dense G_{δ} -set

Definition (Measure on K)

Equip $I = \{1, \dots, N\}$ with Bernoulli measure

$$\mathbb{P}_{I}(\{1\}) = \cdots = \mathbb{P}_{I}(\{N\}) = \frac{1}{N}$$

and $K = I^{\mathbb{N}}$ with the infinite product measure \mathbb{P} of \mathbb{P}_I .

- Measure theoretic: (K, Σ, \mathbb{P}) , full measure
- Topological: (K, \mathcal{T}) , dense G_{δ} -set

Definition (Measure on K)

Equip $I = \{1, \dots, N\}$ with Bernoulli measure

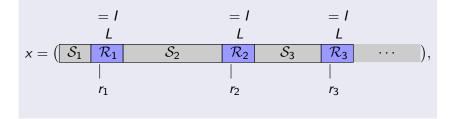
$$\mathbb{P}_{I}(\{1\}) = \cdots = \mathbb{P}_{I}(\{N\}) = \frac{1}{N}$$

and $K = I^{\mathbb{N}}$ with the infinite product measure \mathbb{P} of \mathbb{P}_I .

Theorem (Melo, da Cruz Neto, de Brito, '22)

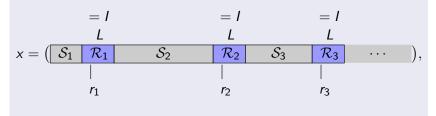
 \mathbb{P} -almost all orders $x \in K$ lead to $(\xi_n)_{n \in \mathbb{N}}$ being strongly convergent (under some constraints).

Definition (Greedy L-partition)



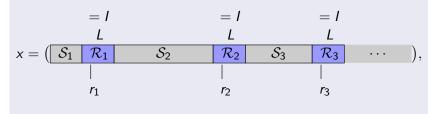
Definition (Greedy *L*-partition)

 $(r_k)_{k\in\mathbb{N}}$ greedy *L*-partition: Choose blocks \mathcal{R}_k as far left as possible.



Definition (Greedy *L*-partition)

 $(r_k)_{k \in \mathbb{N}}$ greedy *L*-partition: Choose blocks \mathcal{R}_k as far left as possible.



Definition (quasi-normal sequences)

 $x \in K$ quasinormal \iff

$$\exists L \geq N : \bigotimes \begin{cases} \text{greedy } L\text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists} \\ \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty \end{cases}$$

(i) x quasi-normal (ii) $(\xi_n)_{n\in\mathbb{N}}$ has accumulation point $\land \Rightarrow (\xi_n)_{n\in\mathbb{N}}$ converges

(i) x quasi-normal (ii) $(\xi_n)_{n\in\mathbb{N}}$ has accumulation point $\land \implies (\xi_n)_{n\in\mathbb{N}}$ converges

Theorem (Melo, da Cruz Neto, de Brito, '22)

 $\mathbb{P}(\mathcal{N}) = 1$

Theorem (Melo, da Cruz Neto, de Brito, '22)

$$\mathbb{P}(\mathcal{N}) = 1$$

(ii) is necessary in Hadamard spaces

Theorem (Melo, da Cruz Neto, de Brito, '22)

$$\mathbb{P}(\mathcal{N})=1$$

(ii) is necessary in Hadamard spacesGuaranteed if:

- in Hilbert space
- one C_j compact, j in x infinitely often
- Hadamard manifold

Large in what sense?

• Measure theoretic: (K, Σ, \mathbb{P}) , Full measure

• Topological: (K, \mathcal{T}) , dense G_{δ} -set

Large in what sense?

- Measure theoretic: (K, Σ, \mathbb{P}) , Full measure
- **Topological:** (K, \mathcal{T}) , dense G_{δ} -set

Large in what sense?

- Measure theoretic: (K, Σ, \mathbb{P}) , Full measure
- Topological: (K, \mathcal{T}) , dense G_{δ} -set

Definition (Metric on K)

On *I* choose discrete metric d_0 . On *K* choose

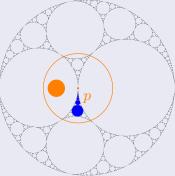
$$d(x, y) \coloneqq \max\{2^{-j}d_0(x_j, y_j) \colon j \in \mathbb{N}\}$$
$$= 2^{-(\text{first index where } x_j \neq y_j)}.$$

Note that

$$B(x,2^{-j}) = \{(x_1,\ldots,x_j,?,?,?,...)\}.$$

Definition ((ϕ -)porosity)

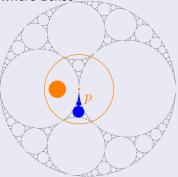
Metric version of nowhere dense



porous ϕ -porous σ -(ϕ -)porous (metric version of meager) holes scale linear holes scale to given function countable union of $(\phi-)$ porous sets.

Definition ((ϕ -)porosity)

Metric version of nowhere dense



porous ϕ -porous σ - $(\phi$ -)porous (metric version of meager) holes scale linear holes scale to given function countable union of ($\phi-$)porous sets.

Complement is large, **co-(···)-porous** \implies dense G_{δ} .

How large is the set of sequences $x \in K$ for which $(\xi_n)_{n \in \mathbb{N}}$ is strongly convergent? (in a metric sense)

Proposition (T., '23)

$\{\text{periodic sequences}\} \subseteq (K, \mathcal{T}) \text{ is } \sigma\text{-porous}$

Proposition (T., '23)

$\{\text{periodic sequences}\} \subseteq (K, \mathcal{T}) \text{ is } \sigma\text{-porous}$

Quasi-periodic sequences?

Proposition (T., '23)

$$\{\text{periodic sequences}\} \subseteq (K, \mathcal{T}) \text{ is } \sigma\text{-porous}$$

Quasi-periodic sequences?

Proposition (T., '23)

{quasi-periodic sequences} $\subseteq (K, \mathcal{T})$ is σ -porous

Well...

Well...

$$\mathcal{N}_0\subseteq \mathcal{N}$$

Well...

$$\mathcal{N}_0\subseteq \mathcal{N}$$

Theorem (T., '23)

 $\mathcal{N}_0 \subseteq (\mathcal{K}, \mathcal{T})$ nowhere dense

Well...

 $\mathcal{N}_0\subseteq \mathcal{N}$

Theorem (T., '23)

 $\mathcal{N}_0 \subseteq (\mathcal{K}, \mathcal{T})$ nowhere dense

Theorem (T., '24)

 $\mathcal{N} \subseteq (\mathcal{K}, \mathcal{T})$ contains a co- σ - ϕ -porous set

Well...

$$\mathcal{N}_0\subseteq \mathcal{N}$$

Theorem (T., '23)

 $\mathcal{N}_0 \subseteq (\mathcal{K}, \mathcal{T})$ nowhere dense

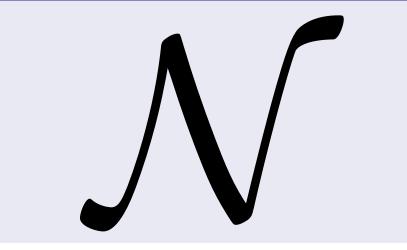
Theorem (T., '24)

 $\mathcal{N} \subseteq (\mathcal{K}, \mathcal{T})$ contains a co- σ - ϕ -porous set

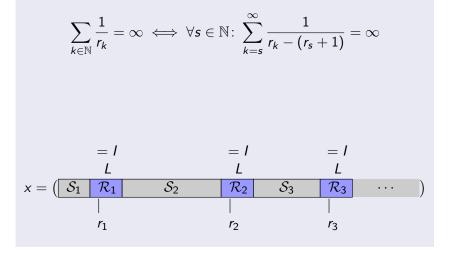
Theorem (T., '25)

 $\mathcal{N} \subseteq (\mathcal{K}, \mathcal{T})$ contains a co- σ -porous set

Theorem (T., '25)



Lemma



x quasi-normal \iff

$$\exists L \ge N : \bigotimes \begin{cases} \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty & \text{(a)} \\ \text{greedy } L \text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists } (b) \end{cases}$$

x quasi-normal \iff

$$\exists L \ge N : \bigotimes \begin{cases} \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty & \text{(a)} \\ \text{greedy } L \text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists } (b) \end{cases}$$

$$x \notin \mathcal{N} \iff \forall L \ge N \colon \neg(a) \lor \neg(b)$$

x quasi-normal \iff

$$\exists L \ge N : \bigcap \begin{cases} \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty & \text{(a)} \\ \text{greedy } L \text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists } (b) \end{cases}$$

Show that complement $K \setminus \mathcal{N}$ is small, σ - ϕ -porous.

$$x \notin \mathcal{N} \iff \forall L \ge N \colon \neg(a) \lor \neg(b)$$
$$x \in \mathcal{K} \setminus \mathcal{N} \iff x \in \bigcap_{L \ge N} (\underbrace{A_L \cup B_L}_{\text{small}})$$

 $A_L = \left\{ \sum \frac{1}{r_k} < \infty \right\}$

x quasi-normal \iff

$$\exists L \ge N : \bigotimes \begin{cases} \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty & \text{(a)} \\ \text{greedy } L \text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists } (b) \end{cases}$$

Show that complement $K \setminus \mathcal{N}$ is small, σ - ϕ -porous.

$$x \notin \mathcal{N} \iff \forall L \ge N \colon \neg(a) \lor \neg(b)$$
$$x \in K \setminus \mathcal{N} \iff x \in \bigcap_{L \ge N} (\underbrace{A_L \cup B_L}_{\text{small}})$$

 $A_L = \{\sum \frac{1}{r_k} < \infty\} = \bigcup_{M \in \mathbb{N}} \{\sum \frac{1}{r_k} < M\}$

x quasi-normal \iff

$$\exists L \ge N : \bigcirc \begin{cases} \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty & \text{(a)} \\ \text{greedy } L \text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists } (b) \end{cases}$$

$$x \notin \mathcal{N} \iff \forall L \ge N : \neg(a) \lor \neg(b)$$
$$x \in \mathcal{K} \setminus \mathcal{N} \iff x \in \bigcap_{L \ge N} (\underbrace{A_L \cup B_L}_{\text{small}})$$
$$A_L = \{ \sum_{r_k} \frac{1}{r_k} < \infty \} = \bigcup_{M \in \mathbb{N}} \{ \sum_{r_k} \frac{1}{r_k} < M \}$$
$$(x_1, x_2, x_3, x_4, x_5, \underbrace{\mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{R}, \dots, \mathcal{R}}_{\text{enough to make } \sum > M}, \dots)$$

x quasi-normal \iff

$$\exists L \ge N : \bigotimes \begin{cases} \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty & \text{(a)} \\ \text{greedy } L \text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists } (b) \end{cases}$$

$$\begin{aligned} x \notin \mathcal{N} \iff \forall L \ge N \colon \neg(a) \lor \neg(b) \\ x \in \mathcal{K} \setminus \mathcal{N} \iff x \in \bigcap_{L \ge N} (\underbrace{A_L \cup B_L}_{\text{small}}) \\ A_L &= \{ \sum_{r_k} 1_{r_k} < \infty \} = \bigcup_{M \in \mathbb{N}} \{ \sum_{r_k} 1_{r_k} < M \} \\ (x_1, x_2, x_3, x_4, x_5, \underbrace{\mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{R}, \ldots, \mathcal{R}}_{\text{enough to make } \sum > M}, \ldots) \\ B_L &= \{ \nexists \text{ greedy } L\text{-part.} \} \end{aligned}$$

x quasi-normal \iff

$$\exists L \ge N : \bigcirc \begin{cases} \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty & \text{(a)} \\ \text{greedy } L \text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists } (b) \end{cases}$$

$$\begin{aligned} x \notin \mathcal{N} \iff \forall L \ge N \colon \neg(a) \lor \neg(b) \\ x \in \mathcal{K} \setminus \mathcal{N} \iff x \in \bigcap_{L \ge N} (\underbrace{A_L \cup B_L}_{small}) \\ A_L &= \{ \sum_{r_k} 1_{r_k} < \infty \} = \bigcup_{M \in \mathbb{N}} \{ \sum_{r_k} 1_{r_k} < M \} \\ (x_1, x_2, x_3, x_4, x_5, \underbrace{\mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{R}, \ldots, \mathcal{R}}_{enough \text{ to make } \sum > M} \\ B_L &= \{ \nexists \text{ greedy } L\text{-part.} \} = \bigcup_{k \in \mathbb{N}} \{ g. \text{ L-p. only up to block } \mathcal{R}_k \} \end{aligned}$$

x quasi-normal \iff

$$\exists L \ge N : \bigotimes \begin{cases} \sum_{k \in \mathbb{N}} \frac{1}{r_k} = \infty & \text{(a)} \\ \text{greedy } L \text{-partition } (r_k)_{k \in \mathbb{N}} \text{ exists } (b) \end{cases}$$

$$\begin{aligned} x \notin \mathcal{N} \iff \forall L \ge N \colon \neg(a) \lor \neg(b) \\ x \in \mathcal{K} \setminus \mathcal{N} \iff x \in \bigcap_{L \ge N} (\underbrace{A_L \cup B_L}_{\text{small}}) \\ A_L &= \{ \sum_{r_k} \frac{1}{r_k} < \infty \} = \bigcup_{M \in \mathbb{N}} \{ \sum_{r_k} \frac{1}{r_k} < M \} \\ (x_1, x_2, x_3, x_4, x_5, \underbrace{\mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{R}, \mathcal{R}, \dots, \mathcal{R}}_{\text{enough to make } \sum > M} \\ B_L &= \{ \nexists \text{ greedy } L\text{-part.} \} = \bigcup_{k \in \mathbb{N}} \{ \text{g. L-p. only up to block } \mathcal{R}_k \} \\ (\mathcal{S}_1, \mathcal{R}_1, \dots, \mathcal{S}_k, \mathcal{R}_k, \mathcal{R}_{k+1}, \dots) \end{aligned}$$

- Amemiya, I., Ando, T. Convergence of random products of contractions in Hilbert space. Acta Sci. Math.(Szeged), 26(3-4), 239–244 (1965)
- Halperin, I. The product of projection operators. Acta Sci. Math.(Szeged). 23, 96-99 (1962)
- Kopecká, E. & Müller, V. A product of three projections. Studia Mathematica. 223, pp. 175-186 (2014)
- Kopecká, E. & Paszkiewicz, A. Strange products of projections. Israel Journal Of Mathematics. 219 pp. 271-286 (2017)
- Melo, I., Cruz Neto, J. & Brito, J. Strong Convergence of Alternating Projections. Journal Of Optimization Theory And Applications. 194, 306-324 (2022)
- Neumann, J. On rings of operators. Reduction theory. Annals Of Mathematics. pp. 401-485 (1949)

- Prager, M. On a principle of convergence in a Hilbert space. Czech. Math. J., 10, 271–282 (1960)
- Sakai, M. Strong convergence of infinite products of orthogonal projections in Hilbert space. Applicable Analysis. **59**, 109-120 (1995)
- Thimm, D. K. Most Iterations of Projections Converge, J. Optim. Theory Appl. 203, 285–304 (2024)
- Thimm, D. K. On a meager full measure subset of *N*-ary sequences, Appl. Set-Valued Anal. Optim. 6, 81-86 (2024)

$$Q = \bigcup_{m \ge N} Q_m$$

$$Q = \bigcup_{m \ge N} Q_m$$

 $Q_m =$ quasi-periodic with quasi-period m.

$$Q = \bigcup_{m \ge N} Q_m$$

 $Q_m =$ quasi-periodic with quasi-period m. Let $x \in Q_m$.

$$x = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

$$Q = \bigcup_{m \ge N} Q_m$$

 $Q_m =$ quasi-periodic with quasi-period m. Let $x \in Q_m$.

 $x = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$ Close: = 2⁻⁶.

$$Q = \bigcup_{m \ge N} Q_m$$

 $Q_m =$ quasi-periodic with quasi-period m. Let $x \in Q_m$.

 $x = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$

Close: $= 2^{-6}$.

$$Q = \bigcup_{m \ge N} Q_m$$

 $Q_m =$ quasi-periodic with quasi-period m. Let $x \in Q_m$.

$$x = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, \dots)$$

 $\mathsf{Close:}\ = 2^{-6}.$

$$B(y,2^{-s}) = (\underbrace{x_1, x_2, x_3, x_4, x_5, x_6, \overbrace{1,1,1,1,1,1}^{m}, 1, 1, 1, 1}_{s}, 1, 1, \dots) \cap Q_m = \emptyset$$