Compact sets of Baire class one functions in Banach space geometry

Stevo Todorcevic

University of Toronto; CNRS, Paris; Mathematical Institute, Belgrade

Vienna, March 17, 2025

Rosenthal's ℓ_1 theorem

Theorem (Rosenthal 1974)

Every normalize sequence (x_n) in some Banach space X has a subsequence which is either pointwise convergent on the dual ball or equivalent to the natural basis of ℓ_1 .

Rosenthal's ℓ_1 theorem

Theorem (Rosenthal 1974)

Every normalize sequence (x_n) in some Banach space X has a subsequence which is either pointwise convergent on the dual ball or equivalent to the natural basis of ℓ_1 .

Theorem (Rosenthal 1977)

Every sequence (f_n) of pointwise bounded continuous real functions on a Polish (or compact) space X contains a subsequence which is either pointwise convergent on X or has closure in \mathbb{R}^X homeomorphic to $\beta\mathbb{N}$.

Remark

Compact subsets of the class $\mathcal{B}_1(X)$ of Baire-class-1 functions on X are called **Rosenthal compacta**.

Corollary (Rosenthal 1977)

Rosenthal compacta over Polish (or more generally K-analytic) spaces are sequentially compact.

Corollary (Rosenthal 1977)

Rosenthal compacta over Polish (or more generally K-analytic) spaces are sequentially compact.

Theorem (Rosenthal 1977)

Rosenthal compacta over Polish (or compact perfect) spaces are countably tight.

Corollary (Rosenthal 1977)

Rosenthal compacta over Polish (or more generally K-analytic) spaces are sequentially compact.

Theorem (Rosenthal 1977)

Rosenthal compacta over Polish (or compact perfect) spaces are countably tight.

Theorem (Bourgain-Fremlin-Talagrand 1978)

Rosenthal compacta over Polish (or compact perfect) spaces are Fréchet.

Double dual characterizations of $\ell_1 \hookrightarrow X$

Theorem (Odell-Rosenthal 1975; Saab-Saab 1983) A Banach space X contains a subspace isomorphic to ℓ_1 if and only if there is x^{**} in X^{**} and a weak* compact subset K of X^* such that $x^{**} \upharpoonright K$ has no point of continuity.

Double dual characterizations of $\ell_1 \hookrightarrow X$

Theorem (Odell-Rosenthal 1975; Saab-Saab 1983)

A Banach space X contains a subspace isomorphic to ℓ_1 if and only if there is x^{**} in X^{**} and a weak* compact subset K of X^* such that $x^{**} \upharpoonright K$ has no point of continuity.

Corollary (Odell-Rosenthal 1975)

A separable Banach space X contains no ℓ_1 if and only if the double dual unit ball is a Rosenthal compactum over the dual unit ball with the weak* topology.

Let X be a Banach space and let y^{**} in X^{**} . The **set of smoothness** $\Omega(y^{**}, \|\cdot\|)$ is the set of all $x \in X \setminus \{0\}$ such that

$$\lim_{\lambda \to 0} (\|x + \lambda y^{**}\| + \|x - \lambda y^{**}\| - 2\|x\|) = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thus, $\Omega(y^{**}, \|\cdot\|)$ is the collection of nonzero vectors of X at which the bidual norm is differentiable in the direction y^{**} .

Let X be a Banach space and let y^{**} in X^{**} . The **set of smoothness** $\Omega(y^{**}, \|\cdot\|)$ is the set of all $x \in X \setminus \{0\}$ such that

$$\lim_{\lambda \to 0} (\|x + \lambda y^{**}\| + \|x - \lambda y^{**}\| - 2\|x\|) = 0.$$

Thus, $\Omega(y^{**}, \|\cdot\|)$ is the collection of nonzero vectors of X at which the bidual norm is differentiable in the direction y^{**} .

Theorem (Godefroy 1989)

The following are equivalent for a Banach space $(X, \|\cdot\|)$ and $y^{**} \in X^{**}$:

Let X be a Banach space and let y^{**} in X^{**} . The **set of smoothness** $\Omega(y^{**}, \|\cdot\|)$ is the set of all $x \in X \setminus \{0\}$ such that

$$\lim_{\lambda \to 0} (\|x + \lambda y^{**}\| + \|x - \lambda y^{**}\| - 2\|x\|) = 0.$$

Thus, $\Omega(y^{**}, \|\cdot\|)$ is the collection of nonzero vectors of X at which the bidual norm is differentiable in the direction y^{**} .

Theorem (Godefroy 1989)

The following are equivalent for a Banach space $(X,\|\cdot\|)$ and $y^{**}\in X^{**}$:

 y^{**} has a point of continuity on every weak* compact subset of X*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let X be a Banach space and let y^{**} in X^{**} . The **set of smoothness** $\Omega(y^{**}, \|\cdot\|)$ is the set of all $x \in X \setminus \{0\}$ such that

$$\lim_{\lambda \to 0} (\|x + \lambda y^{**}\| + \|x - \lambda y^{**}\| - 2\|x\|) = 0.$$

Thus, $\Omega(y^{**}, \|\cdot\|)$ is the collection of nonzero vectors of X at which the bidual norm is differentiable in the direction y^{**} .

Theorem (Godefroy 1989)

The following are equivalent for a Banach space $(X,\|\cdot\|)$ and $y^{**}\in X^{**}$:

- y^{**} has a point of continuity on every weak* compact subset of X*.
- For every equivalent norm || · || on X the set Ω(y^{**}, || · ||) is a dense G_δ subset of X.

The following are equivalent for a separable Banach space X and y^{**} in X^{**} :

The following are equivalent for a separable Banach space X and y^{**} in X^{**} :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1. $\ell_1 \not\hookrightarrow X$..

The following are equivalent for a separable Banach space X and y^{**} in X^{**} :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. $\ell_1 \not\hookrightarrow X$..
- 2. There is an equivalent norm $\|\cdot\|'$ on X such that $\Omega(y^{**}, \|\cdot\|') = X \setminus \{0\}.$

The following are equivalent for a separable Banach space X and y^{**} in X^{**} :

1. $\ell_1 \not\hookrightarrow X$..

2. There is an equivalent norm $\|\cdot\|'$ on X such that $\Omega(y^{**}, \|\cdot\|') = X \setminus \{0\}.$

Theorem (Godefroy 1989)

The following are equivalent for any Banach space X:

The following are equivalent for a separable Banach space X and y^{**} in X^{**} :

1. $\ell_1 \not\hookrightarrow X$..

2. There is an equivalent norm $\|\cdot\|'$ on X such that $\Omega(y^{**}, \|\cdot\|') = X \setminus \{0\}.$

Theorem (Godefroy 1989)

The following are equivalent for any Banach space X:

1.
$$\ell_1 \hookrightarrow X$$
.

The following are equivalent for a separable Banach space X and y^{**} in X^{**} :

1. $\ell_1 \not\hookrightarrow X$..

2. There is an equivalent norm $\|\cdot\|'$ on X such that $\Omega(y^{**}, \|\cdot\|') = X \setminus \{0\}.$

Theorem (Godefroy 1989)

The following are equivalent for any Banach space X :

- 1. $\ell_1 \hookrightarrow X$.
- 2. There is an equivalent norm $\|\cdot\|'$ on X and $y^{**} \in X^{**}$ such that for all $x \in X$,

$$||x + y^{**}||' = ||x||' + ||y^{**}||'.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A norm $\|\cdot\|$ of a Banach space X is **locally uniformly convex** if $\|x_n\| \to \|x\|$ and $\|x + x_n\| \to 2\|x\|$ imply that $\|x - x_n\| \to 0$.

A norm $\|\cdot\|$ of a Banach space X is **locally uniformly convex** if $\|x_n\| \to \|x\|$ and $\|x + x_n\| \to 2\|x\|$ imply that $\|x - x_n\| \to 0$.

One of the reasons of being interested in this property is that if the dual norm $\|\cdot\|^*$ on X^* is locally uniformly convex then the original norm $\|\cdot\|$ on X is Fréchet differentiable.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A norm $\|\cdot\|$ of a Banach space X is **locally uniformly convex** if $\|x_n\| \to \|x\|$ and $\|x + x_n\| \to 2\|x\|$ imply that $\|x - x_n\| \to 0$.

One of the reasons of being interested in this property is that if the dual norm $\|\cdot\|^*$ on X^* is locally uniformly convex then the original norm $\|\cdot\|$ on X is Fréchet differentiable.

Conjecture (Haydon-Molto-Orihuela 2007)

If K is a separable Rosenthal compact then C(K) admits a locally uniformly convex renorming.

A norm $\|\cdot\|$ of a Banach space X is **locally uniformly convex** if $\|x_n\| \to \|x\|$ and $\|x + x_n\| \to 2\|x\|$ imply that $\|x - x_n\| \to 0$.

One of the reasons of being interested in this property is that if the dual norm $\|\cdot\|^*$ on X^* is locally uniformly convex then the original norm $\|\cdot\|$ on X is Fréchet differentiable.

Conjecture (Haydon-Molto-Orihuela 2007)

If K is a separable Rosenthal compact then C(K) admits a locally uniformly convex renorming.

Theorem (Haydon-Molto-Orihuela 2007)

If K is a separable Rosenthal compactum of functions on a Polish space with only countably many points of discontinuities then C(K) admits a pointwise lower semicontinuous locally uniformly convex renorming.

Namioka property

We say that a compactum K has the **Namiaka property** if for every Baire space B and a separately continuous function

$$f:X \times B \to \mathbb{R}$$

there is a comeager set G of B such that f is continuous on $X \times G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Namioka property

We say that a compactum K has the **Namiaka property** if for every Baire space B and a separately continuous function

 $f:X \times B \to \mathbb{R}$

there is a comeager set G of B such that f is continuous on $X \times G$.

This property is closed under products and continuous images, so in particular every metric compactum has the Namioka property. Its relevance to Haydon-Molto-Orihuela problem is supported by the following.

Theorem (Deville-Godefroy 1993)

If C(K) admits a locally uniformly convex equivalent norm that is pointwise lower semicontinuous, then K has the Namioka property

 $\mathcal{C}(\mathcal{K})$ has a pointwise lower semicontinuous locally uniformly convex renorming.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\mathcal{C}(\mathcal{K})$ has a pointwise lower semicontinuous locally uniformly convex renorming.

 $\rightarrow C(K)$ has an equivalent norm such that on its unit shpere the norm topology agrees with the topology of pointwise convergence.

 $\mathcal{C}(\mathcal{K})$ has a pointwise lower semicontinuous locally uniformly convex renorming.

 $\rightarrow C(K)$ has an equivalent norm such that on its unit shpere the norm topology agrees with the topology of pointwise convergence.

 \rightarrow the topology of pointwise convergence on $\mathcal{C}(K)$ is σ -fragmented by the norm.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\mathcal{C}(\mathcal{K})$ has a pointwise lower semicontinuous locally uniformly convex renorming.

 $\rightarrow C(K)$ has an equivalent norm such that on its unit shpere the norm topology agrees with the topology of pointwise convergence.

 \rightarrow the topology of pointwise convergence on $\mathcal{C}(\mathcal{K})$ is $\sigma\text{-fragmented}$ by the norm.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 \rightarrow K has the Namioka property.

 $\mathcal{C}(\mathcal{K})$ has a pointwise lower semicontinuous locally uniformly convex renorming.

 $\rightarrow C(K)$ has an equivalent norm such that on its unit shpere the norm topology agrees with the topology of pointwise convergence.

 \rightarrow the topology of pointwise convergence on $\mathcal{C}(\mathcal{K})$ is $\sigma\text{-fragmented}$ by the norm.

 \rightarrow K has the Namioka property.

Theorem (T., 2005)

There is a scattered Rosenthal compactum K without the Namioka property and therefore C(K) does not have an equivalent pointwise lower semicontinuous locally uniformly convex renorming.

< 口 > < 問 > < 돋 > < 돋 > 도 - 의익()

Identify the power set of the rationals with the Cantor cube $2^{\mathbb{Q}}$.

Identify the power set of the rationals with the Cantor cube $2^{\mathbb{Q}}$. For $s, t \in 2^{\mathbb{Q}}$, let $s \sqsubseteq t$ denote the fact that $s \subseteq t$ and

 $(\forall x \in s)(\forall y \in t \setminus s)x <_{\mathbb{Q}} y.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Identify the power set of the rationals with the Cantor cube $2^{\mathbb{Q}}$. For $s, t \in 2^{\mathbb{Q}}$, let $s \sqsubseteq t$ denote the fact that $s \subseteq t$ and

 $(\forall x \in s)(\forall y \in t \setminus s)x <_{\mathbb{Q}} y.$

For $t \in 2^{\mathbb{Q}}$, let

$$[t] = \{x \in 2^{\mathbb{Q}} : t \sqsubseteq x\}.$$

Identify the power set of the rationals with the Cantor cube $2^{\mathbb{Q}}$. For $s, t \in 2^{\mathbb{Q}}$, let $s \sqsubseteq t$ denote the fact that $s \subseteq t$ and

 $(\forall x \in s)(\forall y \in t \setminus s)x <_{\mathbb{Q}} y.$

For $t \in 2^{\mathbb{Q}}$, let

$$[t] = \{x \in 2^{\mathbb{Q}} : t \sqsubseteq x\}.$$

Then [t] is a compact subset of $2^{\mathbb{Q}}$ which reduces to a singleton if $\sup(t) = \infty$ and is homeomorphic to $2^{\mathbb{Q}}$ if $\sup(t) < \infty$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Identify the power set of the rationals with the Cantor cube $2^{\mathbb{Q}}$. For $s, t \in 2^{\mathbb{Q}}$, let $s \sqsubseteq t$ denote the fact that $s \subseteq t$ and

 $(\forall x \in s)(\forall y \in t \setminus s)x <_{\mathbb{Q}} y.$

For $t \in 2^{\mathbb{Q}}$, let

$$[t] = \{x \in 2^{\mathbb{Q}} : t \sqsubseteq x\}.$$

Then [t] is a compact subset of $2^{\mathbb{Q}}$ which reduces to a singleton if $\sup(t) = \infty$ and is homeomorphic to $2^{\mathbb{Q}}$ if $\sup(t) < \infty$. Let $1_{[t]} : 2^{\mathbb{Q}} \to 2$ be the characteristic function of [t] on $2^{\mathbb{Q}}$, i.e.

$$1_{[t]}(x) = 1$$
 iff $t \sqsubseteq x$.

Note that $1_{[t]}$ is a Baire-class-1 function on $2^{\mathbb{Q}}$ and that $1_{[t]} = \delta_t$ iff sup $(t) = \infty$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
$$(-\infty, t] = \{x : x \sqsubseteq t\} \ (t \in w\mathbb{Q}).$$

$$(-\infty, t] = \{x : x \sqsubseteq t\} \ (t \in w\mathbb{Q}).$$

Let

$$\sigma \mathbb{Q} = \{t \in w \mathbb{Q} : \sup(t) < \infty\}$$

$$(-\infty, t] = \{x : x \sqsubseteq t\} \ (t \in w\mathbb{Q}).$$

Let

$$\sigma \mathbb{Q} = \{t \in w \mathbb{Q} : \sup(t) < \infty\}$$

Let

$$\mathcal{K}_{w\mathbb{Q}} = \{\mathbf{1}_{[t]} : t \in w\mathbb{Q}\}.$$

$$(-\infty, t] = \{x : x \sqsubseteq t\} \ (t \in w\mathbb{Q}).$$

Let

$$\sigma \mathbb{Q} = \{t \in w\mathbb{Q} : \sup(t) < \infty\}$$

Let

$$K_{w\mathbb{Q}} = \{1_{[t]} : t \in w\mathbb{Q}\}.$$

Lemma

The set $K_{w\mathbb{Q}}$ is a relatively compact subset of $\mathcal{B}_1(2^{\mathbb{Q}})$ with only the constant mapping $\overline{0}$ as its proper accumulation point.

The map $t \mapsto 1_{[t]}$ is a homeomorphism between $(w\mathbb{Q}, \tau_{in})$ and $(K_{w\mathbb{Q}}, \tau_{p})$.

The map $t \mapsto 1_{[t]}$ is a homeomorphism between $(w\mathbb{Q}, \tau_{in})$ and $(K_{w\mathbb{Q}}, \tau_{p})$.

Theorem

The one-point compactification of the tree-space (wQ, τ_{in}) is a Rosenthal compactum over the Cantor set.

The map $t \mapsto 1_{[t]}$ is a homeomorphism between $(w\mathbb{Q}, \tau_{in})$ and $(K_{w\mathbb{Q}}, \tau_{p})$.

Theorem

The one-point compactification of the tree-space (wQ, τ_{in}) is a Rosenthal compactum over the Cantor set.

Proposition

Suppose T is a Hausdorff tree of cardinality at most continuum which admits a strictly increasing mapping into \mathbb{R} . Then (T, τ_{in}) is homeomorphic to a subspace of $(w\mathbb{Q}, \tau_{in})$.

The map $t \mapsto 1_{[t]}$ is a homeomorphism between $(w\mathbb{Q}, \tau_{in})$ and $(K_{w\mathbb{Q}}, \tau_{p})$.

Theorem

The one-point compactification of the tree-space (wQ, τ_{in}) is a Rosenthal compactum over the Cantor set.

Proposition

Suppose T is a Hausdorff tree of cardinality at most continuum which admits a strictly increasing mapping into \mathbb{R} . Then (T, τ_{in}) is homeomorphic to a subspace of $(w\mathbb{Q}, \tau_{in})$. If T is moreover countably branching then (T, τ_{in}) is

homeomorphic to an open subspace of $(w\mathbb{Q}, \tau_{in})$.

lemma

The map $t \mapsto 1_{[t]}$ is a homeomorphism between $(w\mathbb{Q}, \tau_{in})$ and $(K_{w\mathbb{O}}, \tau_{\mathrm{p}}).$

Theorem

The one-point compactification of the tree-space ($w \mathbb{Q}, \tau_{in}$) is a Rosenthal compactum over the Cantor set.

Proposition

Suppose T is a Hausdorff tree of cardinality at most continuum which admits a strictly increasing mapping into \mathbb{R} . Then (T, τ_{in}) is homeomorphic to a subspace of $(w\mathbb{Q}, \tau_{in})$. If T is moreover countably branching then (T, τ_{in}) is

homeomorphic to an open subspace of $(w\mathbb{Q}, \tau_{in})$.

Corollary

Every Hausdorff tree-space (T, τ_{in}) where T is of cardinality at most continuum admitting a strictly increasing map to \mathbb{R} has a scattered compactification representable as a compact subset of $\mathcal{B}_1(2^{\mathbb{N}}).$ ・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Besides the locally compact topology τ_{in} , the tree $\sigma \mathbb{Q}$ has another interesting Baire topology τ_{bc} generated by subbasic clopen sets of the form

 $\{x \in \sigma \mathbb{Q} : t \sqsubseteq x\}$ and $\{x \in \sigma \mathbb{Q} : \sup(x) < q\}$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $t \in \sigma \mathbb{Q}$ and $q \in \mathbb{Q}$.

Besides the locally compact topology τ_{in} , the tree $\sigma \mathbb{Q}$ has another interesting Baire topology τ_{bc} generated by subbasic clopen sets of the form

$$\{x \in \sigma \mathbb{Q} : t \sqsubseteq x\}$$
 and $\{x \in \sigma \mathbb{Q} : \sup(x) < q\}$,

where $t \in \sigma \mathbb{Q}$ and $q \in \mathbb{Q}$.

Lemma

 $(\sigma \mathbb{Q}, \tau_{bc})$ is a Baire (in fact, Choquet) space.

Besides the locally compact topology τ_{in} , the tree $\sigma \mathbb{Q}$ has another interesting Baire topology τ_{bc} generated by subbasic clopen sets of the form

$$\{x \in \sigma \mathbb{Q} : t \sqsubseteq x\}$$
 and $\{x \in \sigma \mathbb{Q} : \sup(x) < q\}$,

where $t \in \sigma \mathbb{Q}$ and $q \in \mathbb{Q}$.

Lemma $(\sigma \mathbb{Q}, \tau_{bc})$ is a Baire (in fact, Choquet) space.

Define $f : \sigma \mathbb{Q} \times (w \mathbb{Q} \cup \{\infty\}) \rightarrow \{0,1\}$ by

f(s,t) = 1 iff $s \supseteq t$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Besides the locally compact topology τ_{in} , the tree $\sigma \mathbb{Q}$ has another interesting Baire topology τ_{bc} generated by subbasic clopen sets of the form

$$\{x \in \sigma \mathbb{Q} : t \sqsubseteq x\}$$
 and $\{x \in \sigma \mathbb{Q} : \sup(x) < q\}$,

where $t \in \sigma \mathbb{Q}$ and $q \in \mathbb{Q}$.

Lemma $(\sigma \mathbb{Q}, \tau_{bc})$ is a Baire (in fact, Choquet) space.

Define $f: \sigma \mathbb{Q} \times (w \mathbb{Q} \cup \{\infty\}) \rightarrow \{0,1\}$ by

f(s,t) = 1 iff $s \supseteq t$.

Lemma

The mapping f is separately continuous but not continuous on any set of the form $G \times (w \mathbb{Q} \cup \{\infty\})$ for G is a comeager subset of $\sigma \mathbb{Q}$.

Theorem (T., 2005)

 $K_{w\mathbb{Q}} \cup \{\overline{0}\}$ is a scattered Rosenthal compactum which does not have the Namioka property about continuity of separately continuous functions on its products with Baire spaces.

Theorem (T., 2005)

 $K_{w\mathbb{Q}} \cup \{\overline{0}\}$ is a scattered Rosenthal compactum which does not have the Namioka property about continuity of separately continuous functions on its products with Baire spaces.

Corollary (T., 2005)

 $K_{w\mathbb{Q}} \cup \{\overline{0}\}$ is a scattered Rosenthal compactum such that C(K) admits no pointwise lower semicontinuous locally uniformly convex renorming.

Theorem (T., 2005)

 $K_{w\mathbb{Q}} \cup \{\overline{0}\}$ is a scattered Rosenthal compactum which does not have the Namioka property about continuity of separately continuous functions on its products with Baire spaces.

Corollary (T., 2005)

 $K_{w\mathbb{Q}} \cup \{\overline{0}\}$ is a scattered Rosenthal compactum such that C(K) admits no pointwise lower semicontinuous locally uniformly convex renorming.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Question

Does $(w\mathbb{Q}, \tau_{in})$ (or $(\sigma\mathbb{Q}, \tau_{in})$) admit a separable Rosenthal compactification?

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

A subset A of a topological space X is a **universally Baire** subset of X if for every topological space Y (or equivalently, for every Baire space Y) and every continuous mapping $f : Y \to X$ the preimage $f^{-1}[A]$ has the **property of Baire** as a subset of Y.

A subset A of a topological space X is a **universally Baire** subset of X if for every topological space Y (or equivalently, for every Baire space Y) and every continuous mapping $f : Y \to X$ the preimage $f^{-1}[A]$ has the **property of Baire** as a subset of Y.

A subtree of $w\mathbb{Q}$ is universally Baire if it is universally Baire as a subset of the Cantor cube $2^{\mathbb{Q}}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A subset A of a topological space X is a **universally Baire** subset of X if for every topological space Y (or equivalently, for every Baire space Y) and every continuous mapping $f : Y \to X$ the preimage $f^{-1}[A]$ has the **property of Baire** as a subset of Y.

A subtree of $w\mathbb{Q}$ is universally Baire if it is universally Baire as a subset of the Cantor cube $2^{\mathbb{Q}}$.

Lemma

Suppose T is a universally Baire downwards closed subtree of $w\mathbb{Q}$. Then the closure of T in $w\mathbb{Q} \cup \{\infty\}$ is a Rosenthal compactum with the Namioka property

A subset A of a topological space X is a **universally Baire** subset of X if for every topological space Y (or equivalently, for every Baire space Y) and every continuous mapping $f : Y \to X$ the preimage $f^{-1}[A]$ has the **property of Baire** as a subset of Y.

A subtree of $w\mathbb{Q}$ is universally Baire if it is universally Baire as a subset of the Cantor cube $2^{\mathbb{Q}}$.

Lemma

Suppose T is a universally Baire downwards closed subtree of $w\mathbb{Q}$. Then the closure of T in $w\mathbb{Q} \cup \{\infty\}$ is a Rosenthal compactum with the Namioka property

Lemma

If there is an uncountable co-analytic set of reals of cardinality smaller than \mathfrak{p} then any subtree of $w\mathbb{Q}$ of cardinality \aleph_1 is universally Baire.

Recall that a topological space (X, τ) is σ -fragmented by a **metric** ρ on X if for every $\epsilon > 0$ there is a decomposition $X = \bigcup_{n=0}^{\infty} X_n^{\epsilon}$ such that for every n and $A \subseteq X_n^{\epsilon}$ there is $U \in \tau$ such that $U \cap A \neq \emptyset$ and ρ -diam $(U \cap A) < \epsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Recall that a topological space (X, τ) is σ -fragmented by a **metric** ρ on X if for every $\epsilon > 0$ there is a decomposition $X = \bigcup_{n=0}^{\infty} X_n^{\epsilon}$ such that for every n and $A \subseteq X_n^{\epsilon}$ there is $U \in \tau$ such that $U \cap A \neq \emptyset$ and ρ -diam $(U \cap A) < \epsilon$.

Recall also that a tree is **special** if it can be decomposed into countably many antichains.

Recall that a topological space (X, τ) is σ -fragmented by a **metric** ρ on X if for every $\epsilon > 0$ there is a decomposition $X = \bigcup_{n=0}^{\infty} X_n^{\epsilon}$ such that for every n and $A \subseteq X_n^{\epsilon}$ there is $U \in \tau$ such that $U \cap A \neq \emptyset$ and ρ -diam $(U \cap A) < \epsilon$.

Recall also that a tree is **special** if it can be decomposed into countably many antichains.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lemma

If for some subtree T of $w\mathbb{Q}$ the function space $C_0(T)$ is σ -fragmented by the norm then T must be special.

Recall that a topological space (X, τ) is σ -fragmented by a **metric** ρ on X if for every $\epsilon > 0$ there is a decomposition $X = \bigcup_{n=0}^{\infty} X_n^{\epsilon}$ such that for every n and $A \subseteq X_n^{\epsilon}$ there is $U \in \tau$ such that $U \cap A \neq \emptyset$ and ρ -diam $(U \cap A) < \epsilon$.

Recall also that a tree is **special** if it can be decomposed into countably many antichains.

Lemma

If for some subtree T of $w\mathbb{Q}$ the function space $C_0(T)$ is σ -fragmented by the norm then T must be special.

Corollary

If a subtree T of $w\mathbb{Q}$ is not spacial then $C_0(T)$ admits no locally uniformly convex renorming.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

Fix a *C*-sequence C_{α} ($\alpha < \omega_1$) such that $C_{\alpha+1} = \{\alpha\}$ and $C_{\alpha} \subseteq \alpha$ such that $\operatorname{otp}(C_{\alpha}) = \omega$ and $\sup(C_{\alpha}) = \alpha$ for limit α .

Fix a *C*-sequence C_{α} ($\alpha < \omega_1$) such that $C_{\alpha+1} = \{\alpha\}$ and $C_{\alpha} \subseteq \alpha$ such that $\operatorname{otp}(C_{\alpha}) = \omega$ and $\sup(C_{\alpha}) = \alpha$ for limit α . Using C_{α} ($\alpha < \omega_1$), we recursively define $\rho_1 : [\omega_1]^2 \to \omega$ as follows:

 $\rho_1(\alpha,\beta) = \max\{\rho_1(\alpha,\min(\mathcal{C}_\beta \setminus \alpha)), |\mathcal{C}_\beta \cap \alpha|\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Fix a *C*-sequence C_{α} ($\alpha < \omega_1$) such that $C_{\alpha+1} = \{\alpha\}$ and $C_{\alpha} \subseteq \alpha$ such that $\operatorname{otp}(C_{\alpha}) = \omega$ and $\sup(C_{\alpha}) = \alpha$ for limit α . Using C_{α} ($\alpha < \omega_1$), we recursively define $\rho_1 : [\omega_1]^2 \to \omega$ as follows:

$$\rho_1(\alpha,\beta) = \max\{\rho_1(\alpha,\min(\mathcal{C}_\beta \setminus \alpha)), |\mathcal{C}_\beta \cap \alpha|\}.$$

The corresponding tree

$$T(\rho_1) = \{\rho_1(\cdot,\beta) \upharpoonright \alpha : \alpha \le \beta < \omega_1\}$$

A D N A 目 N A E N A E N A B N A C N

admits a strictly increasing mapping into \mathbb{R} and therefore it is homeomorphic to an open subspace of $w\mathbb{Q}$.

Fix a *C*-sequence C_{α} ($\alpha < \omega_1$) such that $C_{\alpha+1} = \{\alpha\}$ and $C_{\alpha} \subseteq \alpha$ such that $\operatorname{otp}(C_{\alpha}) = \omega$ and $\sup(C_{\alpha}) = \alpha$ for limit α . Using C_{α} ($\alpha < \omega_1$), we recursively define $\rho_1 : [\omega_1]^2 \to \omega$ as follows:

$$\rho_1(\alpha,\beta) = \max\{\rho_1(\alpha,\min(\mathcal{C}_\beta \setminus \alpha)), |\mathcal{C}_\beta \cap \alpha|\}.$$

The corresponding tree

$$T(\rho_1) = \{\rho_1(\cdot,\beta) \upharpoonright \alpha : \alpha \le \beta < \omega_1\}$$

admits a strictly increasing mapping into \mathbb{R} and therefore it is homeomorphic to an open subspace of $w\mathbb{Q}$.

Question

Which choice of C_{α} ($\alpha < \omega_1$) guarantees that $T(\rho_1)$ is universally Baire?

Fix a *C*-sequence C_{α} ($\alpha < \omega_1$) such that $C_{\alpha+1} = \{\alpha\}$ and $C_{\alpha} \subseteq \alpha$ such that $\operatorname{otp}(C_{\alpha}) = \omega$ and $\sup(C_{\alpha}) = \alpha$ for limit α . Using C_{α} ($\alpha < \omega_1$), we recursively define $\rho_1 : [\omega_1]^2 \to \omega$ as follows:

$$\rho_1(\alpha,\beta) = \max\{\rho_1(\alpha,\min(\mathcal{C}_\beta \setminus \alpha)), |\mathcal{C}_\beta \cap \alpha|\}.$$

The corresponding tree

$$T(\rho_1) = \{\rho_1(\cdot,\beta) \upharpoonright \alpha : \alpha \le \beta < \omega_1\}$$

admits a strictly increasing mapping into \mathbb{R} and therefore it is homeomorphic to an open subspace of $w\mathbb{Q}$.

Question

Which choice of C_{α} ($\alpha < \omega_1$) guarantees that $T(\rho_1)$ is universally Baire?

Question

Which choice of C_{α} ($\alpha < \omega_1$) guarantees that $T(\rho_1)$ is not spacial?

Cohen generic choice of the C-sequence

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Cohen generic choice of the C-sequence

Let $C_{\alpha}(0) = 0$ and for $0 < n < \omega$, land et $C_{\alpha}(n)$ denote the *n*'th element of C_{α} according to its increasing enumeration with the convention that $C_{\alpha+1}(n) = \alpha$ for all n > 0.

Cohen generic choice of the C-sequence

Let $C_{\alpha}(0) = 0$ and for $0 < n < \omega$, land et $C_{\alpha}(n)$ denote the *n*'th element of C_{α} according to its increasing enumeration with the convention that $C_{\alpha+1}(n) = \alpha$ for all n > 0.

Fix also sequence $e_{\alpha}: \alpha \to \omega$ ($\alpha < \omega_1$) of one-to-one mappings such that

$$\{\xi < \min\{\alpha, \beta\} : e_{\alpha}(\xi) \neq e_{\beta}(\xi)\}$$

is finite for all α and β .
Cohen generic choice of the C-sequence

Let $C_{\alpha}(0) = 0$ and for $0 < n < \omega$, land et $C_{\alpha}(n)$ denote the *n*'th element of C_{α} according to its increasing enumeration with the convention that $C_{\alpha+1}(n) = \alpha$ for all n > 0.

Fix also sequence $e_{\alpha} : \alpha \to \omega$ ($\alpha < \omega_1$) of one-to-one mappings such that

$$\{\xi < \min\{\alpha, \beta\} : e_{\alpha}(\xi) \neq e_{\beta}(\xi)\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is finite for all α and β . For each $r \in ([\omega]^{<\omega})^{\omega}$, we associate another sequence $C_{\alpha}^{r} (\alpha < \omega_{1})$ by letting for limit α , $C_{\alpha}^{r} = \bigcup_{n \in \omega} D_{\alpha}^{r}(n)$, where $D_{\alpha}^{r}(n) = \{\xi \in [C_{\alpha}(n), C_{\alpha}(n+1)) : e_{\alpha}(\xi) \in r(n)\}.$ For $r \in ([\omega]^{<\omega})^{\omega}$, using C_{α}^{r} ($\alpha < \omega_{1}$), as before, we recursively define $\rho_{1}^{r} : [\omega_{1}]^{2} \to \omega$ as follows:

 $\rho_1^r(\alpha,\beta) = \max\{\rho_1^r(\alpha,\min(C_\beta^r\setminus\alpha)), |C_\beta^r\cap\alpha|\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For $r \in ([\omega]^{<\omega})^{\omega}$, using C_{α}^{r} $(\alpha < \omega_{1})$, as before, we recursively define $\rho_{1}^{r} : [\omega_{1}]^{2} \to \omega$ as follows:

$$\rho_1^r(\alpha,\beta) = \max\{\rho_1^r(\alpha,\min(C_\beta^r\setminus\alpha)), |C_\beta^r\cap\alpha|\}.$$

The corresponding tree

$$T(\rho_1^r) = \{\rho_1^r(\cdot,\beta) \upharpoonright \alpha : \alpha \le \beta < \omega_1\}$$

admits a strictly increasing mapping into \mathbb{R} and is therefore homeomorphic to an open subspace of $w\mathbb{Q}$.

For $r \in ([\omega]^{<\omega})^{\omega}$, using C_{α}^{r} $(\alpha < \omega_{1})$, as before, we recursively define $\rho_{1}^{r} : [\omega_{1}]^{2} \to \omega$ as follows:

$$\rho_1^r(\alpha,\beta) = \max\{\rho_1^r(\alpha,\min(C_\beta^r\setminus\alpha)), |C_\beta^r\cap\alpha|\}.$$

The corresponding tree

$$T(\rho_1') = \{\rho_1'(\cdot,\beta) \upharpoonright \alpha : \alpha \le \beta < \omega_1\}$$

admits a strictly increasing mapping into \mathbb{R} and is therefore homeomorphic to an open subspace of $w\mathbb{Q}$.

Lemma

If r is a Cohen real then $T(\rho_1^r)$ is not special.

Theorem (T., 2005)

If there is an uncountable co-analytic set of cardinality $< \mathfrak{p}$ and if r is a Cohen real, then $T(\rho_1^r)$ admits a Rosenthal compactification K which has the Namioka property but the corresponding function space C(K) is not σ -fragmented by the norm.

Theorem (T., 2005)

If there is an uncountable co-analytic set of cardinality $< \mathfrak{p}$ and if r is a Cohen real, then $T(\rho_1^r)$ admits a Rosenthal compactification K which has the Namioka property but the corresponding function space C(K) is not σ -fragmented by the norm.

Theorem (Haydon 1990)

The topology τ_p of pointwise convergence of C(K) for K a scattered compactum is σ -fragmented by the norm if and only if the restriction of τ_p to the function subspace C(K, 2) of $\{0, 1\}$ -valued continuous maps on K is σ -scattered.

Theorem (T., 2005)

If there is an uncountable co-analytic set of cardinality $< \mathfrak{p}$ and if r is a Cohen real, then $T(\rho_1^r)$ admits a Rosenthal compactification K which has the Namioka property but the corresponding function space C(K) is not σ -fragmented by the norm.

Theorem (Haydon 1990)

The topology τ_p of pointwise convergence of C(K) for K a scattered compactum is σ -fragmented by the norm if and only if the restriction of τ_p to the function subspace C(K, 2) of $\{0,1\}$ -valued continuous maps on K is σ -scattered.

Theorem (T., 2007)

If there is a compact cardinal and if T is a subtree of $w\mathbb{Q}$ whose closure K in $w\mathbb{Q}$ satisfies the Namioka principle then the topology of pointwise convergence of function space C(K) is σ -fragmented by the norm.

Problem (T., 2007)

Show that in the presence of sufficiently many compact cardinals the Namioka generic continuity principle captures norm- σ -fragmentability of the topology of pointwise convergence in function spaces of the form C(K).

Problem (T., 2007)

Show that in the presence of sufficiently many compact cardinals the Namioka generic continuity principle captures norm- σ -fragmentability of the topology of pointwise convergence in function spaces of the form C(K).

Question

Given sufficiently many compact cardinals, can the Namioka property of a compactum K guarantee locally uniformly convex renorming of C(K)?

Theorem (Bourgain 1978)

Every Rosenthal compactum has a dense set of G_{δ} points.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Bourgain 1978)

Every Rosenthal compactum has a dense set of G_{δ} points.

Problem (Bourgain, 1978)

If K is a Rosenthal compactum, is the set of G_{δ} -points of K a co-meager subset of K.

Theorem (Bourgain 1978)

Every Rosenthal compactum has a dense set of G_{δ} points.

Problem (Bourgain, 1978)

If K is a Rosenthal compactum, is the set of G_{δ} -points of K a co-meager subset of K.

Theorem (T., 1999)

Every Rosenthal compactum has a dense metrizable subspace

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

The Cantor tree is the tree

$$P = (2^{\leq \omega}, \sqsubseteq)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

of finite and infinite sequences of 0's and 1's ordered by end-extension.

The Cantor tree is the tree

$$P = (2^{\leq \omega}, \sqsubseteq)$$

of finite and infinite sequences of 0's and 1's ordered by end-extension.

We consider P as a topological space with the interval topology τ_{in} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Cantor tree is the tree

$$P = (2^{\leq \omega}, \sqsubseteq)$$

of finite and infinite sequences of 0's and 1's ordered by end-extension.

We consider P as a topological space with the interval topology τ_{in} . Its one point compactification $P \cup \{\infty\}$ is a separable Rosenthal compactum over the Cantor set.

The Cantor tree is the tree

$$P = (2^{\leq \omega}, \sqsubseteq)$$

of finite and infinite sequences of 0's and 1's ordered by end-extension.

We consider P as a topological space with the interval topology τ_{in} . Its one point compactification $P \cup \{\infty\}$ is a separable Rosenthal compactum over the Cantor set.

The point ∞ is a non G_{δ} -point of $P \cup \{\infty\}$.

The Cantor tree is the tree

$$P = (2^{\leq \omega}, \sqsubseteq)$$

of finite and infinite sequences of 0's and 1's ordered by end-extension.

We consider P as a topological space with the interval topology τ_{in} . Its one point compactification $P \cup \{\infty\}$ is a separable Rosenthal compactum over the Cantor set.

The point ∞ is a non G_{δ} -point of $P \cup \{\infty\}$.

Theorem (T., 1999)

If x is a non G_{δ} -point in a Rosenthal compactum K then there is a homeomorphic embedding

$$f: P \cup \{\infty\} \to K$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

such that $f(\infty) = x$.

Suppose that a separable Banach space X does not contain ℓ_1 but it has a non separable dual X^{*}. Then there is a homeomorphic embedding

$$f: P \cup \{\infty\} \to (X^{**}, w^{**})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

such that $f(\infty) = 0^{**}$.

Suppose that a separable Banach space X does not contain ℓ_1 but it has a non separable dual X^{*}. Then there is a homeomorphic embedding

$$f:P\cup\{\infty\}\to (X^{**},w^{**})$$

such that $f(\infty) = 0^{**}$.

Lemma (Argyros-Dodos-Kannelopoulos 2008) Given X and f as above, for every positive integer n, the set UNC_n , $\{(x_1,...,x_n) \in (\{0,1\}^{\omega})^{[n]} : \{f(x_1),...,f(x_n)\} \text{ is 1-unconditional in } X^{**}\}$ is a comeager subset of $(\{0,1\}^{\omega})^n$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose that a separable Banach space X does not contain ℓ_1 but it has a non separable dual X^{*}. Then there is a homeomorphic embedding

$$f:P\cup\{\infty\}\to (X^{**},w^{**})$$

such that $f(\infty) = 0^{**}$.

Lemma (Argyros-Dodos-Kannelopoulos 2008) Given X and f as above, for every positive integer n, the set UNC_n ,

 $\{(x_1, ..., x_n) \in (\{0, 1\}^{\omega})^{[n]} : \{f(x_1), ..., f(x_n)\} \text{ is 1-unconditional in } X^{**}\}$

is a comeager subset of $(\{0,1\}^{\omega})^n$.

Remark

By Mycielski's theorem there is a perfect set $P \subseteq \{0,1\}^{\omega}$ such that $[P]^n \subseteq UNC_n$ for all $n < \omega$. Hence $\{f(x) : x \in P\}$ is a 1-unconditional sequence in X^{**} .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Problem (Banach 1930; Pelczynski 1964)

Does every infinite-dimensional Banach space has an infinite dimensional quotient with a Schauder basis?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem (Banach 1930; Pelczynski 1964)

Does every infinite-dimensional Banach space has an infinite dimensional quotient with a Schauder basis?

Theorem (Johnson-Rosenthal 1972; Rosenthal 1998)

If the dual X^* of a Banach space X has an infinite unconditional basic sequence then X has an infinite dimensional quotient with a Schauder basis.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem (Banach 1930; Pelczynski 1964)

Does every infinite-dimensional Banach space has an infinite dimensional quotient with a Schauder basis?

Theorem (Johnson-Rosenthal 1972; Rosenthal 1998)

If the dual X^* of a Banach space X has an infinite unconditional basic sequence then X has an infinite dimensional quotient with a Schauder basis.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary (Argyros-Dodos-Kannelopoulos 2008)

Every infinite-dimensional dual Banach space has an infinite-domensional quotient with a Shauder basis.

Rosenthal compacta close to metrizable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rosenthal compacta close to metrizable

Theorem (T., 1999)

The following are equivalent for every Rosenthal compactum K:

- 1. K is hereditarily separable.
- 2. K is hereditarily Lindelöf.
- 3. K has no uncountable discrete subspace.

Rosenthal compacta close to metrizable

Theorem (T., 1999)

The following are equivalent for every Rosenthal compactum K:

- 1. K is hereditarily separable.
- 2. K is hereditarily Lindelöf.
- 3. K has no uncountable discrete subspace.

Theorem (T., 1999)

If a Rosenthal compacum has no uncountable discrete subspace then there is a compact metric space M and a continuous map $f: K \to M$ such that $|f^{-1}(x)| \le 2$ for all $x \in M$.

Every Rosenthal compactum K with no uncountable discrete subspace has the Namioka property.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Every Rosenthal compactum K with no uncountable discrete subspace has the Namioka property.

Proof.

Let *M* and *f* be as above and let $h: K \times B \to \mathbb{R}$ be a given separately continuous map where *B* is some Baire space.

Every Rosenthal compactum K with no uncountable discrete subspace has the Namioka property.

Proof.

Let M and f be as above and let $h: K \times B \to \mathbb{R}$ be a given separately continuous map where B is some Baire space. Define $g: M \times B \to [\mathbb{R}]^{\leq 2}$ by

$$g(x,y) = \{h(u,y) : u \in f^{-1}(x)\}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Every Rosenthal compactum K with no uncountable discrete subspace has the Namioka property.

Proof.

Let M and f be as above and let $h: K \times B \to \mathbb{R}$ be a given separately continuous map where B is some Baire space. Define $g: M \times B \to [\mathbb{R}]^{\leq 2}$ by

$$g(x,y) = \{h(u,y) : u \in f^{-1}(x)\}.$$

Then g is separatelly continuous and since M has the Namioka property there is a dense G_{δ} subset G of B such that g is continuous on $M \times G$. Then h is continuous on $K \times G$.

Problem

Let K be a Rosenthal compactum with no uncountable discrete subspace. Show that C(K) has admits a pointwise lower semicontinuous locally uniformly convex renorming.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem

Let K be a Rosenthal compactum with no uncountable discrete subspace. Show that C(K) has admits a pointwise lower semicontinuous locally uniformly convex renorming.

Question

Is there a fine structure theory of compact sets of Baire class one functions on K-analytic spaces analogous to that of the class of Baire class one functions on analytic (Polish) spaces?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Rosenthal and Bourgain-Fremlin-Talagrand dichotomies on non Polish spaces
Rosenthal and Bourgain-Fremlin-Talagrand dichotomies on non Polish spaces

Example

Let $X\subseteq [\omega]^\omega$ be a fixed splitting family. For $n<\omega,$ let $p_n:X\to\{0,1\}$ be defined by,

 $p_n(x) = 1$ if and only if $n \in x$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Then no subsequence of (p_n) is pointwise convergent on X

Rosenthal and Bourgain-Fremlin-Talagrand dichotomies on non Polish spaces

Example

Let $X\subseteq [\omega]^\omega$ be a fixed splitting family. For $n<\omega,$ let $p_n:X\to\{0,1\}$ be defined by,

 $p_n(x) = 1$ if and only if $n \in x$.

Then no subsequence of (p_n) is pointwise convergent on X

Example

Let $X \subseteq [\omega]^{\omega}$ be a fixed infinite maximal almost disjoint family. For $n < \omega$, let $p_n : X \to \{0, 1\}$ be defined by

 $p_n(x) = 1$ if and only if $n \in x$.

Let $\overline{0}$ be the constantly equal 0 function. Then $\overline{0}$ is the pointwise closure of $\{p_n : n < \omega\}$ on X but no subsequence of (p_n) pointwise converges to $\overline{0}$.

The function space $\mathbb{R}^{X} \cap L(\mathbb{R})$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

The function space $\mathbb{R}^{X} \cap L(\mathbb{R})$

Let $L(\mathbb{R})$ be the constructible closure of the reals.

The existence of large cardinal is assumed that make every selective ultrafilter on ω generic over $L(\mathbb{R})$ and in particular that $L(\mathbb{R})$ is a **Solovay model** in which all sets of reals are Lebesgue measurable and have the property of Baire.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The function space $\mathbb{R}^{X} \cap L(\mathbb{R})$

Let $L(\mathbb{R})$ be the constructible closure of the reals.

The existence of large cardinal is assumed that make every selective ultrafilter on ω generic over $L(\mathbb{R})$ and in particular that $L(\mathbb{R})$ is a **Solovay model** in which all sets of reals are Lebesgue measurable and have the property of Baire.

We shall see that Rosenthal and Bourgain-Fremlin-Talagrand dichotomies **do hold** even in the larger function space $\mathbb{R}^X \cap L(\mathbb{R})$ rather than $\mathcal{B}_1(X)$ and with X not necessarily Polish but rather than just a separable metric space belonging to $L(\mathbb{R})$.

(日)((1))

Let X be a separable metric space in $L(\mathbb{R})$.Let (f_n) be a sequence of pointwise bounded continuous functions on X. Then either

1. There is an infinite subsequence of (f_n) pointwise convergent on X, or

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let X be a separable metric space in $L(\mathbb{R})$.Let (f_n) be a sequence of pointwise bounded continuous functions on X. Then either

- 1. There is an infinite subsequence of (f_n) pointwise convergent on X, or
- There is an infinite subsequence {f_n : n ∈ N} isomorphic to the sequence {p_n : n < ω} of Example 1 for the splitting family [ω]^ω.

Let X be a separable metric space in $L(\mathbb{R})$.Let (f_n) be a sequence of pointwise bounded continuous functions on X. Then either

- 1. There is an infinite subsequence of (f_n) pointwise convergent on X, or
- There is an infinite subsequence {f_n : n ∈ N} isomorphic to the sequence {p_n : n < ω} of Example 1 for the splitting family [ω]^ω.

Corollary

For every $S \subseteq [\omega]^{\omega}$ be a splitting family in $L(\mathbb{R})$ there is a $B \in [\omega]^{\omega}$ such that

$$\mathcal{S} \upharpoonright B = \mathcal{P}(B),$$

where $S \upharpoonright B = \{A \cap B : A \in S\}$.

Let X be a separable metric space in $L(\mathbb{R})$. Let \mathcal{F} a a countable set of continuous pointwise bounded functions on X. Then either

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. \mathcal{F} is sequentially dense in its pointwise closure in \mathbb{R}^X , or

Let X be a separable metric space in $L(\mathbb{R})$. Let \mathcal{F} a a countable set of continuous pointwise bounded functions on X. Then either

- 1. \mathcal{F} is sequentially dense in its pointwise closure in \mathbb{R}^X , or
- There is a sequence {f_n : n < ω} ⊆ F isomorphic to the sequence {p_n : n < ω} of Example 1 for the splitting family [ω]^ω.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let X be a separable metric space in $L(\mathbb{R})$. Let \mathcal{F} a a countable set of continuous pointwise bounded functions on X. Then either

- 1. \mathcal{F} is sequentially dense in its pointwise closure in \mathbb{R}^X , or
- There is a sequence {f_n : n < ω} ⊆ F isomorphic to the sequence {p_n : n < ω} of Example 1 for the splitting family [ω]^ω.

Question

Let \mathcal{U} be a selective ultrafilter on ω . How much of this can be transferred to the larger model $L(\mathbb{R})[\mathcal{U}]$?

Let X be a separable metric space in $L(\mathbb{R})$. Let \mathcal{F} a a countable set of continuous pointwise bounded functions on X. Then either

- 1. \mathcal{F} is sequentially dense in its pointwise closure in \mathbb{R}^X , or
- There is a sequence {f_n : n < ω} ⊆ F isomorphic to the sequence {p_n : n < ω} of Example 1 for the splitting family [ω]^ω.

Question

Let \mathcal{U} be a selective ultrafilter on ω . How much of this can be transferred to the larger model $L(\mathbb{R})[\mathcal{U}]$?

Remark

It can be shown that there are no infinite maximal almost disjoint families in $L(\mathbb{R})[\mathcal{U}]$ so in this model there are no counterexamples to the Bourgain-Fremlin-Talagrand dichotomy as in Example 2.

THANK YOU!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@