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Rosenthal’s `1 theorem

Theorem (Rosenthal 1974)

Every normalize sequence (xn) in some Banach space X has a
subsequence which is either pointwise convergent on the dual ball
or equivalent to the natural basis of `1.

Theorem (Rosenthal 1977)

Every sequence (fn) of pointwise bounded continuous real
functions on a Polish (or compact) space X contains a
subsequence which is either pointwise convergent on X or has
closure in RX homeomorphic to βN.

Remark
Compact subsets of the class B1(X ) of Baire-class-1 functions on
X are called Rosenthal compacta.
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Corollary (Rosenthal 1977)

Rosenthal compacta over Polish (or more generally K-analytic)
spaces are sequentially compact.

Theorem (Rosenthal 1977)

Rosenthal compacta over Polish (or compact perfect) spaces are
countably tight.

Theorem (Bourgain-Fremlin-Talagrand 1978)

Rosenthal compacta over Polish (or compact perfect) spaces are
Fréchet.
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Double dual characterizations of `1 ↪→ X

Theorem (Odell-Rosenthal 1975; Saab-Saab 1983)

A Banach space X contains a subspace isomorphic to `1 if and
only if there is x∗∗ in X ∗∗ and a weak* compact subset K of X ∗

such that x∗∗ � K has no point of continuity.

Corollary (Odell-Rosenthal 1975)

A separable Banach space X contains no `1 if and only if the
double dual unit ball is a Rosenthal compactum over the dual unit
ball with the weak* topology.
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Metric characterizations

Let X be a Banach space and let y∗∗ in X ∗∗. The set of
smoothness Ω(y∗∗, ‖ · ‖) is the set of all x ∈ X \ {0} such that

lim
λ→0

(‖x + λy∗∗‖+ ‖x − λy∗∗‖ − 2‖x‖) = 0.

Thus, Ω(y∗∗, ‖ · ‖) is the collection of nonzero vectors of X at
which the bidual norm is differentiable in the direction y∗∗.

Theorem (Godefroy 1989)

The following are equivalent for a Banach space (X , ‖ · ‖) and
y∗∗ ∈ X ∗∗ :

1. y∗∗ has a point of continuity on every weak* compact subset
of X ∗.

2. For every equivalent norm ‖ · ‖ on X the set Ω(y∗∗, ‖ · ‖) is a
dense Gδ subset of X .
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Corollary (Godefroy 1989)

The following are equivalent for a separable Banach space X and
y∗∗ in X ∗∗ :

1. `1 6↪→ X ..

2. There is an equivalent norm ‖ · ‖′ on X such that
Ω(y∗∗, ‖ · ‖′) = X \ {0}.

Theorem (Godefroy 1989)

The following are equivalent for any Banach space X :

1. `1 ↪→ X .

2. There is an equivalent norm ‖ · ‖′ on X and y∗∗ ∈ X ∗∗ such
that for all x ∈ X ,

‖x + y∗∗‖′ = ‖x‖′ + ‖y∗∗‖′.
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Locally uniformly convex norms

A norm ‖ · ‖ of a Banach space X is locally uniformly convex if
‖xn‖ → ‖x‖ and ‖x + xn‖ → 2‖x‖ imply that ‖x − xn‖ → 0.

One of the reasons of being interested in this property is that if the
dual norm ‖ · ‖∗ on X ∗ is locally uniformly convex then the original
norm ‖ · ‖ on X is Fréchet differentiable.

Conjecture (Haydon-Molto-Orihuela 2007)

If K is a separable Rosenthal compact then C(K ) admits a locally
uniformly convex renorming.

Theorem (Haydon-Molto-Orihuela 2007)

If K is a separable Rosenthal compactum of functions on a Polish
space with only countably many points of discontinuities then
C(K ) admits a pointwise lower semicontinuous locally uniformly
convex renorming.
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Namioka property

We say that a compactum K has the Namiaka property if for
every Baire space B and a separately continuous function

f : X × B → R

there is a comeager set G of B such that f is continuous on X ×G .

This property is closed under products and continuous images, so
in particular every metric compactum has the Namioka property.
Its relevance to Haydon-Molto-Orihuela problem is supported by
the following.

Theorem (Deville-Godefroy 1993)

If C(K ) admits a locally uniformly convex equivalent norm that is
pointwise lower semicontinuous, then K has the Namioka property
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In fact, we have the following sequence of implications for a
compact Hausdorff space K :

C(K ) has a pointwise lower semicontinuous locally uniformly
convex renorming.

→ C(K ) has an equivalent norm such that on its unit shpere the
norm topology agrees with the topology of pointwise convergence.

→ the topology of pointwise convergence on C(K ) is σ-fragmented
by the norm.

→ K has the Namioka property.

Theorem (T., 2005)

There is a scattered Rosenthal compactum K without the Namioka
property and therefore C(K ) does not have an equivalent pointwise
lower semicontinuous locally uniformly convex renorming.
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The construction of K

Identify the power set of the rationals with the Cantor cube 2Q.
For s, t ∈ 2Q, let s v t denote the fact that s ⊆ t and

(∀x ∈ s)(∀y ∈ t \ s)x <Q y .

For t ∈ 2Q, let
[t] = {x ∈ 2Q : t v x}.

Then [t] is a compact subset of 2Q which reduces to a singleton if
sup(t) =∞ and is homeomorphic to 2Q if sup(t) <∞.
Let 1[t] : 2Q → 2 be the characteristic function of [t] on 2Q, i.e.

1[t](x) = 1 iff t v x .

Note that 1[t] is a Baire-class-1 function on 2Q and that 1[t] = δt
iff sup(t) =∞.
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Let wQ be the collection of all subsets of Q that are well-ordered
under the induced ordering from Q.
We consider wQ as a tree under the ordering v as well as
tree-space equipped with the locally compact topology τin
generated by subbasic clopen sets of the form

(−∞, t] = {x : x v t} (t ∈ wQ).

Let
σQ = {t ∈ wQ : sup(t) <∞}

.
Let

KwQ = {1[t] : t ∈ wQ}.

Lemma
The set KwQ is a relatively compact subset of B1(2Q) with only
the constant mapping 0̄ as its proper accumulation point.
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Lemma
The map t 7→ 1[t] is a homeomorphism between (wQ, τin) and
(KwQ, τp).

Theorem
The one-point compactification of the tree-space (wQ, τin) is a
Rosenthal compactum over the Cantor set.

Proposition

Suppose T is a Hausdorff tree of cardinality at most continuum
which admits a strictly increasing mapping into R. Then (T , τin) is
homeomorphic to a subspace of (wQ, τin).
If T is moreover countably branching then (T , τin) is
homeomorphic to an open subspace of (wQ, τin).

Corollary

Every Hausdorff tree-space (T , τin) where T is of cardinality at
most continuum admitting a strictly increasing map to R has a
scattered compactification representable as a compact subset of
B1(2N).
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Separate versus joint continuity

Besides the locally compact topology τin, the tree σQ has
another interesting Baire topology τbc generated by subbasic
clopen sets of the form

{x ∈ σQ : t v x} and {x ∈ σQ : sup(x) < q},

where t ∈ σQ and q ∈ Q.

Lemma
(σQ, τbc) is a Baire (in fact, Choquet) space.

Define f : σQ× (wQ ∪ {∞})→ {0, 1} by

f (s, t) = 1 iff s w t.

Lemma
The mapping f is separately continuous but not continuous on any
set of the form G × (wQ∪{∞}) for G is a comeager subset of σQ.
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Theorem (T., 2005)

KwQ ∪ {0̄} is a scattered Rosenthal compactum which does not
have the Namioka property about continuity of separately
continuous functions on its products with Baire spaces.

Corollary (T., 2005)

KwQ ∪ {0̄} is a scattered Rosenthal compactum such that C(K )
admits no pointwise lower semicontinuous locally uniformly convex
renorming.

Question
Does (wQ, τin) (or (σQ, τin)) admit a separable Rosenthal
compactification?
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Universally Baire subtrees of wQ

A subset A of a topological space X is a universally Baire subset
of X if for every topological space Y (or equivalently, for every
Baire space Y ) and every continuous mapping f : Y → X the
preimage f −1[A] has the property of Baire as a subset of Y .

A subtree of wQ is universally Baire if it is universally Baire as a
subset of the Cantor cube 2Q.

Lemma
Suppose T is a universally Baire downwards closed subtree of wQ.
Then the closure of T in wQ ∪ {∞} is a Rosenthal compactum
with the Namioka property

Lemma
If there is an uncountable co-analytic set of reals of cardinality
smaller than p then any subtree of wQ of cardinality ℵ1 is
universally Baire.
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Spacial trees and σ-fragmentability

Recall that a topological space (X , τ) is σ-fragmented by a
metric ρ on X if for every ε > 0 there is a decomposition
X =

⋃∞
n=0 X

ε
n such that for every n and A ⊆ X ε

n there is U ∈ τ
such that U ∩ A 6= ∅ and ρ-diam(U ∩ A) < ε.

Recall also that a tree is special if it can be decomposed into
countably many antichains.

Lemma
If for some subtree T of wQ the function space C0(T ) is
σ-fragmented by the norm then T must be special.

Corollary

If a subtree T of wQ is not spacial then C0(T ) admits no locally
uniformly convex renorming.
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The tree T (ρ1)

Fix a C -sequence Cα (α < ω1) such that Cα+1 = {α} and Cα ⊆ α
such that otp(Cα) = ω and sup(Cα) = α for limit α.
Using Cα (α < ω1), we recursively define ρ1 : [ω1]2 → ω as follows:

ρ1(α, β) = max{ρ1(α,min(Cβ \ α)), |Cβ ∩ α|}.

The corresponding tree

T (ρ1) = {ρ1(·, β) � α : α ≤ β < ω1}

admits a strictly increasing mapping into R and therefore it is
homeomorphic to an open subspace of wQ.

Question
Which choice of Cα (α < ω1) guarantees that T (ρ1) is universally
Baire?

Question
Which choice of Cα (α < ω1) guarantees that T (ρ1) is not spacial?
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Cohen generic choice of the C-sequence

Let Cα(0) = 0 and for 0 < n < ω, land et Cα(n) denote the n’th
element of Cα according to its increasing enumeration with the
convention that Cα+1(n) = α for all n > 0.

Fix also sequence eα : α→ ω (α < ω1) of one-to-one mappings
such that

{ξ < min{α, β} : eα(ξ) 6= eβ(ξ)}

is finite for all α and β.
For each r ∈ ([ω]<ω)ω, we associate another sequence
C r
α (α < ω1) by letting for limit α, C r

α =
⋃

n∈ω D
r
α(n), where

Dr
α(n) = {ξ ∈ [Cα(n),Cα(n + 1)) : eα(ξ) ∈ r(n)}.



Cohen generic choice of the C-sequence

Let Cα(0) = 0 and for 0 < n < ω, land et Cα(n) denote the n’th
element of Cα according to its increasing enumeration with the
convention that Cα+1(n) = α for all n > 0.

Fix also sequence eα : α→ ω (α < ω1) of one-to-one mappings
such that

{ξ < min{α, β} : eα(ξ) 6= eβ(ξ)}

is finite for all α and β.
For each r ∈ ([ω]<ω)ω, we associate another sequence
C r
α (α < ω1) by letting for limit α, C r

α =
⋃

n∈ω D
r
α(n), where

Dr
α(n) = {ξ ∈ [Cα(n),Cα(n + 1)) : eα(ξ) ∈ r(n)}.



Cohen generic choice of the C-sequence

Let Cα(0) = 0 and for 0 < n < ω, land et Cα(n) denote the n’th
element of Cα according to its increasing enumeration with the
convention that Cα+1(n) = α for all n > 0.

Fix also sequence eα : α→ ω (α < ω1) of one-to-one mappings
such that

{ξ < min{α, β} : eα(ξ) 6= eβ(ξ)}

is finite for all α and β.

For each r ∈ ([ω]<ω)ω, we associate another sequence
C r
α (α < ω1) by letting for limit α, C r

α =
⋃

n∈ω D
r
α(n), where

Dr
α(n) = {ξ ∈ [Cα(n),Cα(n + 1)) : eα(ξ) ∈ r(n)}.



Cohen generic choice of the C-sequence

Let Cα(0) = 0 and for 0 < n < ω, land et Cα(n) denote the n’th
element of Cα according to its increasing enumeration with the
convention that Cα+1(n) = α for all n > 0.

Fix also sequence eα : α→ ω (α < ω1) of one-to-one mappings
such that

{ξ < min{α, β} : eα(ξ) 6= eβ(ξ)}

is finite for all α and β.
For each r ∈ ([ω]<ω)ω, we associate another sequence
C r
α (α < ω1) by letting for limit α, C r

α =
⋃

n∈ω D
r
α(n), where

Dr
α(n) = {ξ ∈ [Cα(n),Cα(n + 1)) : eα(ξ) ∈ r(n)}.



For r ∈ ([ω]<ω)ω, using C r
α (α < ω1), as before, we recursively

define ρr1 : [ω1]2 → ω as follows:

ρr1(α, β) = max{ρr1(α,min(C r
β \ α)), |C r

β ∩ α|}.

The corresponding tree

T (ρr1) = {ρr1(·, β) � α : α ≤ β < ω1}

admits a strictly increasing mapping into R and is therefore
homeomorphic to an open subspace of wQ.

Lemma
If r is a Cohen real then T (ρr1) is not special.
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Theorem (T., 2005)

If there is an uncountable co-analytic set of cardinality < p and if r
is a Cohen real, then T (ρr1) admits a Rosenthal compactification K
which has the Namioka property but the corresponding function
space C(K ) is not σ-fragmented by the norm.

Theorem (Haydon 1990)

The topology τpof pointwise convergence of C(K ) for K a
scattered compactum is σ-fragmented by the norm if and only if
the restriction of τp to the function subspace C(K , 2) of
{0, 1}-valued continuous maps on K is σ-scattered.

Theorem (T., 2007)

If there is a compact cardinal and if T is a subtree of wQ whose
closure K in wQ satisfies the Namioka principle then the topology
of pointwise convergence of function space C(K ) is σ-fragmented
by the norm.
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Problem (T., 2007)

Show that in the presence of sufficiently many compact cardinals
the Namioka generic continuity principle captures
norm-σ-fragmentability of the topology of pointwise convergence
in function spaces of the form C(K ).

Question
Given sufficiently many compact cardinals, can the Namioka
property of a compactum K guarantee locally uniformly convex
renorming of C(K )?
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Gδ points in Rosenthal compacta

Theorem (Bourgain 1978)

Every Rosenthal compactum has a dense set of Gδ points.

Problem (Bourgain, 1978)

If K is a Rosenthal compactum, is the set of Gδ-points of K a
co-meager subset of K .

Theorem (T., 1999)

Every Rosenthal compactum has a dense metrizable subspace
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Non Gδ points and the Separable Quotient Problem

The Cantor tree is the tree

P = (2≤ω,v)

of finite and infinite sequences of 0’s and 1’s ordered by
end-extension.
We consider P as a topological space with the interval topology τin.
Its one point compactification P ∪ {∞} is a separable Rosenthal
compactum over the Cantor set.
The point ∞ is a non Gδ-point of P ∪ {∞}.

Theorem (T., 1999)

If x is a non Gδ-point in a Rosenthal compactum K then there is a
homeomorphic embedding

f : P ∪ {∞} → K

such that f (∞) = x .
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Corollary

Suppose that a separable Banach space X does not contain `1 but
it has a non separable dual X ∗. Then there is a homeomorphic
embedding

f : P ∪ {∞} → (X ∗∗,w∗∗)

such that f (∞) = 0∗∗.

Lemma (Argyros-Dodos-Kannelopoulos 2008)

Given X and f as above, for every positive integer n, the set UNCn,

{(x1, ..., xn) ∈ ({0, 1}ω)[n] : {f (x1), ..., f (xn)} is 1-unconditional in X ∗∗}

is a comeager subset of ({0, 1}ω)n.

Remark
By Mycielski’s theorem there is a perfect set P ⊆ {0, 1}ω such that
[P]n ⊆ UNCn for all n < ω. Hence {f (x) : x ∈ P} is a
1-unconditional sequence in X ∗∗.
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The Separable Quotient Problem

Problem (Banach 1930; Pelczynski 1964)

Does every infinite-dimensional Banach space has an infinite
dimensional quotient with a Schauder basis?

Theorem (Johnson-Rosenthal 1972 ; Rosenthal 1998)

If the dual X ∗ of a Banach space Xhas an infinite unconditional
basic sequence then X has an infinite dimensional quotient with a
Schauder basis.

Corollary (Argyros-Dodos-Kannelopoulos 2008)

Every infinite-dimensional dual Banach space has an
infinite-domensional quotient with a Shauder basis.
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Rosenthal compacta close to metrizable

Theorem (T., 1999)

The following are equivalent for every Rosenthal compactum K :

1. K is hereditarily separable.

2. K is hereditarily Lindelöf.

3. K has no uncountable discrete subspace.

Theorem (T., 1999)

If a Rosenthal compacum has no uncountable discrete subspace
then there is a compact metric space M and a continuous map
f : K → M such that |f −1(x)| ≤ 2 for all x ∈ M.
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Corollary

Every Rosenthal compactum K with no uncountable discrete
subspace has the Namioka property.

Proof.
Let M and f be as above and let h : K × B → R be a given
separately continuous map where B is some Baire space. Define
g : M × B → [R]≤2 by

g(x , y) = {h(u, y) : u ∈ f −1(x)}.

Then g is separatelly continuous and since M has the Namioka
property there is a dense Gδ subset G of B such that g is
continuous on M × G . Then h is continuous on K × G .
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Problem
Let K be a Rosenthal compactum with no uncountable discrete
subspace. Show that C(K ) has admits a pointwise lower
semicontinuous locally uniformly convex renorming.

Question
Is there a fine structure theory of compact sets of Baire class one
functions on K-analytic spaces analogous to that of the class of
Baire class one functions on analytic (Polish) spaces?
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Rosenthal and Bourgain-Fremlin-Talagrand dichotomies on
non Polish spaces

Example

Let X ⊆ [ω]ω be a fixed splitting family. For n < ω, let
pn : X → {0, 1} be defined by,

pn(x) = 1 if and only if n ∈ x .

Then no subsequence of (pn) is pointwise convergent on X

Example

Let X ⊆ [ω]ω be a fixed infinite maximal almost disjoint family.
For n < ω, let pn : X → {0, 1} be defined by

pn(x) = 1 if and only if n ∈ x .

Let 0̄ be the constantly equal 0 function.
Then 0̄ is the pointwise closure of {pn : n < ω} on X but no
subsequence of (pn) pointwise converges to 0̄.
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The function space RX ∩ L(R)

Let L(R) be the constructible closure of the reals.

The existence of large cardinal is assumed that make every
selective ultrafilter on ω generic over L(R) and in particular that
L(R) is a Solovay model in which all sets of reals are Lebesgue
measurable and have the property of Baire.

We shall see that Rosenthal and Bourgain-Fremlin-Talagrand
dichotomies do hold even in the larger function space RX ∩ L(R)
rather than B1(X ) and with X not necessarily Polish but rather
than just a separable metric space belonging to L(R).
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Theorem (Horowicz-T., 2019)

Let X be a separable metric space in L(R).Let (fn) be a sequence
of pointwise bounded continuous functions on X . Then either

1. There is an infinite subsequence of (fn) pointwise convergent
on X , or

2. There is an infinite subsequence {fn : n ∈ N} isomorphic to
the sequence {pn : n < ω} of Example 1 for the splitting
family [ω]ω.

Corollary

For every S ⊆ [ω]ω be a splitting family in L(R) there is a
B ∈ [ω]ω such that

S � B = P(B),

where S � B = {A ∩ B : A ∈ S}.
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Theorem (Horowicz-T., 2019)

Let X be a separable metric space in L(R). Let F a a countable
set of continuous pointwise bounded functions on X . Then either

1. F is sequentially dense in its pointwise closure in RX , or

2. There is a sequence {fn : n < ω} ⊆ F isomorphic to the
sequence {pn : n < ω} of Example 1 for the splitting family
[ω]ω.

Question
Let U be a selective ultrafilter on ω. How much of this can be
transferred to the larger model L(R)[U ]?

Remark
It can be shown that there are no infinite maximal almost disjoint
families in L(R)[U ] so in this model there are no counterexamples
to the Bourgain-Fremlin-Talagrand dichotomy as in Example 2.
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