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Preliminaries

In this work we deal mostly with categories, functors and diagrams. As a summary, we have used homological techniques, applied to

functional analysis, to obtain some results about the existence of extension of compact operators.

Introduction

We establish Ban as the category of Banach spaces and (linear, continuous) operators, and V as the category of vector spaces and linear

maps. Categories are related by functors. In this work, we focus on the functor K(−, E) associated to compact operators, which will be

introduced in the next section. The basic diagrams we shall work with are short exact sequences in Ban, that is, diagrams of the form

0 Y X Z 0 (x)j q

in which the kernel of every operator agrees with the image of the preceding. This amounts to saying that Y is a subspace of X and Z is

isomorphic to the quotient X/j(Y ).

Equivalence of short exact sequences: if there exists u : X1 → X2 making commutative the diagram

0 Y X1 Z 0

0 Y X2 Z 0

u

Triviality: A short exact sequence is said to be trivial if it is equivalent to

0 Y Y ×∞ Z Z 0j1 q2

Ext(Z, Y ) =
{ 0 Y X Z 0j q }

≡

[x] = class of all short exact sequences equivalent to (x).
Ext(Z, Y ) = 0 ⇒ there are only trivial short exact sequences.

Proposition 1: Every element of Ext(Z, Y ) fits in a diagram of the form:

0 ker π `1(I) Z 0

0 Y X Z 0

ρ

T

π

The upper row of the previous diagram is called projective presentation of Z , and the lower row is trivial precisely when T admits an

extension to `1(I). Hence the following identification holds:

Ext(Z, Y ) = L(ker π, Y )
≡

, [T ] = 0 ⇐⇒ there exists T̂ : `1(I) → Y such that T = T̂ ρ (1)

The contravariant compact-operator functor

We consider the natural functor associated to the ideal K of compact operators:

K(−, E) : Ban V

X 7−→ K(X, E)
[T : X → Y ] 7−→ K(T, E) = T ∗ : K(Y, E) → K(X, E)

How does K(−, E) behave on short exact sequences?

0 Y X Z 0

0 K(Z, E) K(X, E) K(Y, E)

K(−,E)

j q

q∗ j∗

X q∗ is injective, and Im q∗ = ker j∗ ⇒ K(−, E) is left-exact.
In general, j∗ is not a surjective ⇒ K(−, E) is not right-exact.

Proposition 2: The functor K(−, E) is exact if and only if E is an L∞-space.

Proof: The map j∗ : K(X, E) → K(Y, E) is surjective if, and only if, for each compact operator K : Y → E we can construct the

following diagram in which K̂ : X → E has to be also compact:

Y X

E

j

K
K̂

By [6, Th. 4.1], this is equivalent to the fact that E is an L∞-space.

Compact short exact sequences

Since, in general, the functor K(−, E) is not right-exact, we can compute its right-derived functors using homological techniques. In

particular, we are interested in the first right-derived functor:

R1K(−, E)(X) = ExtK(−, E)(X) = ExtK(X, E)

But... who is ExtK(X, E)?

Short exact sequences fitting in a diagram of the form:

0 ker π `1(I) X 0

0 E � X 0

ρ

K

π

where K : ker π → E is a compact operator.

Equivalence relation: [�]K = [�′]K ⇐⇒ there exists K̂ ∈ K(`1(I), E) such that K̂ρ = K1 − K ′
2.

K-trivial element: [�]K = 0 ⇐⇒ there exists K̂ ∈ K(`1(I), E) such that K̂ρ = K .

Are the equivalence relations defined on Ext and ExtK compatible?

Every K-trivial element is trivial.

A non-trivial short exact sequence that is not compact. c0 is not complemented in `∞, so the following short exact sequence is

not trivial:

0 c0 `∞ `∞/c0 0

Since c0 is an L∞-space, if it were an element of ExtK(`∞/c0, c0), it should be K-trivial, hence trivial.

0 ker π `1(I) `∞/c0 0

0 c0 `∞ `∞/c0 0

K
K̂

Every trivial element is K-trivial. Please, keep on reading...

Extension of compact operators: main results

Theorem 3. A compact operator that admits an extension to some superspace does not necessarily admit a compact extension.

Proof. Let 0 Y X Z 0ρ π
be a non-trivial short exact sequence and K : Y → E a compact operatorwithout an extension:

0 Y X Z 0 [x]

0 E PO Z 0 [Kx] 6= 0

ρ

K

π

K

i q

Let us observe that K is a (non-compact) extension for the compact operator iK : Y → PO:

0 Y X Z 0 [x]

0 PO PO Z 0 [iKx] = 0

ρ

iK

π

K

Is there a compact extesion β : X → PO for iK? Let us suppose so:

0 Y X Z 0 [x]

0 E PO Z 0

ρ

K

π

β γ

i q

where β, and therefore γ, are compact. The previous diagram can be decomposed as follows:

0 Y X Z 0 [x]

0 E PO Z 0 [Kx]

0 E PB Z 0 [Kxγ]

0 E PO Z 0 [Kx]

ρ

K

π

K

β u

γ γ

j q

Therefore, [Kx] = [Kxγ] which implies that [Kx] = 0 [1, Lem. 4.3.3], contradicting our hypothesis.

We now show that compact operators that cannot be extended occur quite often. For this purpose, we need to represent short exact

sequences by means of a certain type of nonlinear map defined between Banach spaces.

Centralizers and quasi-linear maps

A homogeneous map Ω : X → Y is quasi-linear if there is C > 0 such that, for every x, y ∈ X , the estimation ‖Ω(x + y) − Ω(x) − Ω(y)‖ ≤
C(‖x‖ + ‖y‖) holds. Due to Kalton [4] we know that quasi-linear maps can be used to represent short exact sequences, and vice versa.

Indeed, every quasi-linear map Ω : X → Y gives rise to the exact sequence

0 Y Y ⊕Ω X X 0

where Y ⊕Ω X is just the direct product Y × X endowed with the quasi-norm ‖(y, x)‖Ω = ‖y − Ω(x)‖ + ‖x‖. Conversely, every short
exact sequence arises in this way. It is easy to check that the short exact sequence induced by a quasi-linear map Ω is trivial precisely

when Ω = B + L for a suitable linear map L : X → Y and a suitable bounded map B : X → Y . Hence, we define the space

Q(X, Y ) = Q(X, Y )
L(X, Y ) + B(X, Y )

,

where Q(X, Y ) is the space of all quasi-linear maps from X to Y . This way, it holds that Q(X, Y ) ' Ext(X, Y ). Now, let us consider only
spaces X which are Banach sequence spaces, that is:

the elements of X are sequences,

the unit vectors (en)∞
n=1 form a normalized basis of X ,

if x ∈ X and |y| ≤ x, then y ∈ X and ‖y‖ ≤ ‖x‖.

The space X is the completion of the subspace X0 consisting of finitely supported sequences under a certain norm. Every sequence

space X is an `∞-module: the pointwise product `∞ × X → X , (a · x)(n) = a(n) · x(n) is norm-continuous. Now, a quasi-linear map

Ω : X0 → Y is a centralizer if there is C > 0 such that ‖a · Ω(x) − Ω(a · x)‖ ≤ C‖a‖∞‖x‖ for every a ∈ `∞ and for every x ∈ X .

Consider X a Banach sequence space, and let us denote Xn = [ei : 1 ≤ i ≤ n]. Let Ω : X0 → X be a centralizer and n ∈ N, we define:

λn[Ω] = inf{||π||, π : Xn ⊕Ω Xn → Xn such that π(x, 0) = x}

Lemma 4. Assume X is an ultrasummand. Then Ω is trivial if and only if (λn[Ω])∞
n=1 is bounded.

Proof. If Ω is trivial and π : X ⊕Ω X → X is a projection, then for every n ∈ N and every projection πn : Xn ⊕Ω Xn → Xn we must

have that ‖πn‖ ≤ ‖π‖. Conversely, if supn λn[Ω] is finite, consider U a free ultrafilter on N and the operator π = [πn] : X ⊕Ω X → XU. Since

X is complemented in XU via some projection P , it turns out that Pπ is a bounded projection, which implies Ω is trivial.

Proposition 5. Every non-trivial centralizer Ω : X0 → X admits a diagonal compact operator d• : X → X with no extension to X ⊕Ω X .

Proof. It is a consequence from the above plus the fact that if (dn) ∈ c0 is decreasing, then dn · λn[Ω] → ∞ implies λn[d•Ω] → ∞.

Theorem 6. Let E and X be Banach spaces.

(i) If E has the BAP, then Ext(X, E) = 0 implies ExtK(X, E) = 0.
(ii) If E is an ultrasummand with the BAP, then ExtK(X, E) = 0 implies Ext(X, E) = 0.

Proof. (i) .– Recall that Ext(X, E) = 0 means –see [4, Prop. 3.3] or [2, Thm. 1]– that given a projective presentation of X

0 ker π `1(I) X 0 (x)

there exists C > 0 such that every operator τ : ker π → E admits an extension τC : `1(I) → E with ‖τC‖ ≤ C‖τ‖. Using this fact and that E

has the λ-AP let us show that, if τ is compact, then τ2λC can be chosen compact. First: if τ has finite rank then τ2λC can be chosen to have

finite rank. Indeed, pick ε > 0 and T : E → E a finite rank operator such that T (τx) = τx for all x and ‖T‖ ≤ λ + ε (see [1, Def. 0.0.1] and

[3, Lem. 2.4]). Hence, TτC is a finite-rank operator extension of τ and ||TτC|| ≤ (λ + ε)C . Finally, compact operators can be extended to

compact operators: if τ = lim τn is compact for a sequence of finite-rank operators with ‖τn‖ ≤ λ, and we assume ‖τn+1 − τn‖ ≤ 2−n, then

T =
∑

(τn+1 − τn)2λC is a compact extension of τ .

(ii) .– Let τ : ker π → E be an operator, and (τn) be a sequence of finite rank operators pointwisely convergent to the identity. Recall that,

due to the λ-AP, if all compact operators admit C-extensions, all finite-rank operators admit finite-rank 2λC-extensions. Let ((τn)2λC) be
the sequence of such extensions, consider U be a free ultrafilter on N, and define T = [(τn)2λC ] : X → EU. If P : EU → E is a projection

onto the natural diagonal embedding E → EU, then PT is an extension of τ .

Finally, let us observe that equation (1) endows Ext(Z, Y ) with a natural (non-Hausdorff) vector topology. In this line, we have:

Theorem 7. Let E be an ultrasummand with the BAP. Then:

(i) Ext(X, E) = 0 ⇐⇒ (ii) Ext(X, E) is Hausdorff ⇐⇒ (iii) ExtK(X, E) = 0.

Proof. The implication (i) ⇒ (ii) is obvious, and (ii) ⇒ (iii) follows from [1, Lemma 4.5.10]. Finally, (iii) ⇒ (i) is just Theorem 6.
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