

Preliminaries

In this work we deal mostly with categories, functors and diagrams. As a summary, we have used homological techniques, applied to functional analysis, to obtain some results about the existence of extension of compact operators.

Introduction

We establish Ban as the category of Banach spaces and (linear, continuous) operators, and V as the category of vector spaces and linear maps. Categories are related by **functors**. In this work, we focus on the functor $\mathcal{K}(-, E)$ associated to compact operators, which will be introduced in the next section. The basic diagrams we shall work with are **short exact sequences** in **Ban**, that is, diagrams of the form

 $0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0 \qquad (x)$

in which the kernel of every operator agrees with the image of the preceding. This amounts to saying that Y is a subspace of X and Z is isomorphic to the quotient X/j(Y).

• Equivalence of short exact sequences: if there exists $u: X_1 \to X_2$ making commutative the diagram

Triviality: A short exact sequence is said to be trivial if it is equivalent to

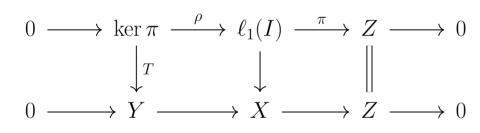
 $0 \longrightarrow Y \xrightarrow{j_1} Y \times_{\infty} Z \xrightarrow{q_2} Z \longrightarrow 0$

$$\operatorname{Ext}(Z,Y) = \frac{\{ 0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0 \}}{}$$

=

- [x] = class of all short exact sequences equivalent to (x).
- $Ext(Z, Y) = 0 \Rightarrow$ there are only trivial short exact sequences.

Proposition 1: Every element of Ext(Z, Y) fits in a diagram of the form:



The upper row of the previous diagram is called *projective presentation of* Z, and the lower row is trivial precisely when T admits an extension to $\ell_1(I)$. Hence the following identification holds:

$$\operatorname{Ext}(Z,Y) = \frac{\mathcal{L}(\ker \pi,Y)}{=} , \qquad [T] = 0 \iff \text{ there exists } \hat{T} : \ell_1(I) \to Y \text{ such that } T$$

The contravariant compact-operator functor

We consider the natural functor associated to the ideal \mathcal{K} of compact operators:

$$\begin{split} \mathcal{K}(-,E): \mathbf{Ban} \rightsquigarrow \mathbf{V} \\ & X \longmapsto \mathcal{K}(X,E) \\ & [T:X \to Y] \longmapsto \mathcal{K}(T,E) = T^*: \mathcal{K}(Y,E) \to \mathcal{K}(X,E) \end{split}$$

How does $\mathcal{K}(-, E)$ behave on short exact sequences?

$$(-,E) \stackrel{j}{\searrow} 0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0$$
$$(-,E) \stackrel{j'}{\searrow} 0 \longrightarrow \mathcal{K}(Z,E) \xrightarrow{q^*} \mathcal{K}(X,E) \xrightarrow{j^*} \mathcal{K}(Y,E)$$

 \checkmark q^* is injective, and $\operatorname{Im} q^* = \ker j^* \Rightarrow \mathcal{K}(-, E)$ is left-exact.

 \times In general, j^* is not a surjective $\Rightarrow \mathcal{K}(-, E)$ is not right-exact.

Proposition 2: The functor $\mathcal{K}(-, E)$ is exact if and only if E is an \mathcal{L}_{∞} -space.

Proof: The map $j^* : \mathcal{K}(X, E) \to \mathcal{K}(Y, E)$ is surjective if, and only if, for each compact operator $K : Y \to E$ we can construct the following diagram in which $\hat{K}: X \to E$ has to be also compact:

$$\begin{array}{ccc} Y & \stackrel{j}{\longleftrightarrow} & X \\ \downarrow_{K} & \stackrel{,}{\swarrow} & \hat{K} \\ E \end{array}$$

By [6, Th. 4.1], this is equivalent to the fact that E is an \mathcal{L}_{∞} -space.

"Structures in Banach Spaces", Vienna, March, 17th–21st, 2025

On the extension of compact operators

Nazaret Trejo-Arroyo¹ (ntrejo@ucm.es)

A joint work with F. Cabello Sánchez² J.M.F. Castillo² A. Salguero-Alarcón¹

¹Universidad Complutense de Madrid

Compact short exact sequences

Since, in general, the functor $\mathcal{K}(-, E)$ is not right-exact, we can compute its right-derived functors using homological techniques. In particular, we are interested in the first right-derived functor:

But... who is $Ext_{\mathcal{K}}(X, E)$?

Short exact sequences fitting in a diagram of the form:

where $K : \ker \pi \to E$ is a compact operator.

- Equivalence relation: $[\Box]_{\mathcal{K}} = [\Box']_{\mathcal{K}} \iff$ there exists $\widehat{K} \in \mathcal{K}(\ell_1(I), E)$ such that $\widehat{K}\rho = K_1 K'_2$.
- \mathcal{K} -trivial element: $[\Box]_{\mathcal{K}} = 0 \iff$ there exists $\widehat{K} \in \mathcal{K}(\ell_1(I), E)$ such that $\widehat{K}\rho = K$.

Are the equivalence relations defined on Ext and $Ext_{\mathcal{K}}$ compatible?

• Every \mathcal{K} -trivial element is trivial. • A non-trivial short exact sequence that is not compact. c_0 is not complemented in ℓ_{∞} , so the following short exact sequence is not trivial:

 $0 \longrightarrow c_0 \longrightarrow \ell_{\infty} \longrightarrow \ell_{\infty}/c_0 \longrightarrow 0$

Since c_0 is an \mathcal{L}_{∞} -space, if it were an element of $\text{Ext}_{\mathcal{K}}(\ell_{\infty}/c_0, c_0)$, it should be \mathcal{K} -trivial, hence trivial.

Every trivial element is \mathcal{K} -trivial. Please, keep on reading...

Extension of compact operators: main results

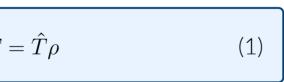
Theorem 3. A compact operator that admits an extension to some superspace does not necessarily admit a compact extension.

Proof. Let $0 \longrightarrow Y \xrightarrow{\rho} X \xrightarrow{\pi} Z \longrightarrow 0$ be a non-trivial short exact sequence and $K: Y \to E$ a compact operator without an extension:

Let us observe that \overline{K} is a (non-compact) extension for the compact operator iK :

Is there a compact extession $\beta: X \to PO$ for iK? Let us suppose so:

where β , and therefore γ , are compact. The previous diagram can be decomposed as follows:



Therefore, $[Kx] = [Kx\gamma]$ which implies that [Kx] = 0 [1, Lem. 4.3.3], contradicting our hypothesis

²Universidad de Extremadura

 $\mathcal{R}^{1}\mathcal{K}(-, E)(X) = \operatorname{Ext}_{\mathcal{K}}(-, E)(X) = \operatorname{Ext}_{\mathcal{K}}(X, E)$

 $X \longrightarrow 0$ $\longrightarrow 0$

$$\|$$

$$[K\mathbf{x}] \neq \mathbf{0}$$

$$Y \to PO$$
:

$$[iK\mathbf{x}] = 0$$

)	[x]	
)	[Kx]	

 $[K \mathbf{x} \gamma]$

We now show that compact operators that cannot be extended occur quite often. For this purpose, we need to represent short exact sequences by means of a certain type of *nonlinear map* defined between Banach spaces.

Centralizers and quasi-linear maps

A homogeneous map $\Omega: X \to Y$ is **quasi-linear** if there is C > 0 such that, for every $x, y \in X$, the estimation $\|\Omega(x+y) - \Omega(x) - \Omega(y)\| \leq C$ C(||x|| + ||y||) holds. Due to Kalton [4] we know that quasi-linear maps can be used to represent short exact sequences, and vice versa. Indeed, every quasi-linear map $\Omega: X \to Y$ gives rise to the exact sequence

where $Y \oplus_{\Omega} X$ is just the direct product $Y \times X$ endowed with the quasi-norm $||(y, x)||_{\Omega} = ||y - \Omega(x)|| + ||x||$. Conversely, every short exact sequence arises in this way. It is easy to check that the short exact sequence induced by a quasi-linear map Ω is trivial precisely when $\Omega = B + L$ for a suitable linear map $L: X \to Y$ and a suitable bounded map $B: X \to Y$. Hence, we define the space

spaces X which are Banach sequence spaces, that is:

- the elements of X are sequences,
- the unit vectors $(e_n)_{n=1}^{\infty}$ form a normalized basis of X
- if $x \in X$ and $|y| \leq x$, then $y \in X$ and $||y|| \leq ||x||$.

 $\lambda_n[\Omega] = \inf\{\|\pi\|, \pi : X_n \oplus_\Omega X_n \to X_n \text{ such that } \pi(x, 0) = x\}$

Lemma 4. Assume X is an ultrasummand. Then Ω is trivial if and only if $(\lambda_n[\Omega])_{n=1}^{\infty}$ is bounded.

Theorem 6. Let *E* and *X* be Banach spaces.

- (i) If E has the BAP, then Ext(X, E) = 0 implies $Ext_{\mathcal{K}}(X, E) = 0$.
- (ii) If E is an ultrasummand with the BAP, then $Ext_{\mathcal{K}}(X, E) = 0$ implies Ext(X, E) = 0.

there exists C > 0 such that every operator $\tau : \ker \pi \to E$ admits an extension $\tau_C : \ell_1(I) \to E$ with $\|\tau_C\| \le C \|\tau\|$. Using this fact and that E has the λ -AP let us show that, if τ is compact, then $\tau_{2\lambda C}$ can be chosen compact. First: if τ has finite rank then $\tau_{2\lambda C}$ can be chosen to have finite rank. Indeed, pick $\varepsilon > 0$ and $T: E \to E$ a finite rank operator such that $T(\tau x) = \tau x$ for all x and $||T|| \leq \lambda + \varepsilon$ (see [1, Def. 0.0.1] and [3, Lem. 2.4]). Hence, $T\tau_C$ is a finite-rank operator extension of τ and $||T\tau_C|| \leq (\lambda + \varepsilon)C$. Finally, compact operators can be extended to compact operators: if $\tau = \lim \tau_n$ is compact for a sequence of finite-rank operators with $\|\tau_n\| \leq \lambda$, and we assume $\|\tau_{n+1} - \tau_n\| \leq 2^{-n}$, then $T = \sum (\tau_{n+1} - \tau_n)_{2\lambda C}$ is a compact extension of τ .

onto the natural diagonal embedding $E \to E_{\mathbb{U}}$, then PT is an extension of τ .

Finally, let us observe that equation (1) endows Ext(Z, Y) with a natural (non-Hausdorff) vector topology. In this line, we have:

Theorem 7. Let *E* be an ultrasummand with the BAP. Then:

- [6] J. Lindenstrauss and H. P. Rosenthal, *The* \mathcal{L}_p -spaces, Israel J. Math. 7 (1969),

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

 $0 \longrightarrow Y \longrightarrow Y \oplus_{\Omega} X \longrightarrow X \longrightarrow 0$

$$Q(X,Y) = \frac{Q(X,Y)}{L(X,Y) + B(X,Y)},$$

where Q(X,Y) is the space of all quasi-linear maps from X to Y. This way, it holds that $Q(X,Y) \simeq Ext(X,Y)$. Now, let us consider only

The space X is the completion of the subspace X^0 consisting of finitely supported sequences under a certain norm. Every sequence space X is an ℓ_{∞} -module: the pointwise product $\ell_{\infty} \times X \to X$, $(a \cdot x)(n) = a(n) \cdot x(n)$ is norm-continuous. Now, a quasi-linear map $\Omega: X^0 \to Y$ is a **centralizer** if there is C > 0 such that $||a \cdot \Omega(x) - \Omega(a \cdot x)|| \le C ||a||_{\infty} ||x||$ for every $a \in \ell_{\infty}$ and for every $x \in X$.

Consider X a Banach sequence space, and let us denote $X_n = [e_i : 1 \le i \le n]$. Let $\Omega : X^0 \to X$ be a centralizer and $n \in \mathbb{N}$, we define:

Proof. If Ω is trivial and $\pi: X \oplus_{\Omega} X \to X$ is a projection, then for every $n \in \mathbb{N}$ and every projection $\pi_n: X_n \oplus_{\Omega} X_n \to X_n$ we must have that $\|\pi_n\| \leq \|\pi\|$. Conversely, if $\sup_n \lambda_n[\Omega]$ is finite, consider \mathbb{U} a free ultrafilter on \mathbb{N} and the operator $\pi = [\pi_n] : X \oplus_\Omega X \to X_{\mathbb{U}}$. Since X is complemented in $X_{\mathbb{U}}$ via some projection P, it turns out that $P\pi$ is a bounded projection, which implies Ω is trivial.

Proposition 5. Every non-trivial centralizer $\Omega: X^0 \to X$ admits a diagonal compact operator $d_{\bullet}: X \to X$ with no extension to $X \oplus_{\Omega} X$.

Proof. It is a consequence from the above plus the fact that if $(d_n) \in c_0$ is decreasing, then $d_n \cdot \lambda_n[\Omega] \to \infty$ implies $\lambda_n[d_{\bullet}\Omega] \to \infty$.

Proof. (i) - Recall that Ext(X, E) = 0 means -see [4, Prop. 3.3] or [2, Thm. 1] - that given a projective presentation of X

 $0 \longrightarrow \ker \pi \longrightarrow \ell_1(I) \longrightarrow X \longrightarrow 0 \qquad (x)$

(ii) - Let τ : ker $\pi \to E$ be an operator, and (τ_n) be a sequence of finite rank operators pointwisely convergent to the identity. Recall that, due to the λ -AP, if all compact operators admit C-extensions, all finite-rank operators admit finite-rank $2\lambda C$ -extensions. Let $((\tau_n)_{2\lambda C})$ be the sequence of such extensions, consider \mathbb{U} be a free ultrafilter on \mathbb{N} , and define $T = [(\tau_n)_{2\lambda C}] : X \to E_{\mathbb{U}}$. If $P : E_{\mathbb{U}} \to E$ is a projection

(i) $\operatorname{Ext}(X, E) = 0 \iff$ (ii) $\operatorname{Ext}(X, E)$ is Hausdorff \iff (iii) $\operatorname{Ext}_{\mathcal{K}}(X, E) = 0$.

Proof. The implication (i) \Rightarrow (ii) is obvious, and (ii) \Rightarrow (iii) follows from [1, Lemma 4.5.10]. Finally, (iii) \Rightarrow (i) is just Theorem 6.

References

[1] F. Cabello Sánchez, J. M. F. Castillo, *Homological methods in Banach space theory*. Cambridge Studies in Adv. Math. (2023). [2] F. Cabello Sánchez, J. M. F. Castillo, Uniform boundedness and twisted sums of Banach spaces, Houston J. Math. 30 (2004), [3] W. Johnson, H. P. Rosenthal, and M. Zippin, On bases, FDDs and weaker structures in Banach spaces, Israel J. Math., 9 (1971), [4] N. J. Kalton, The three-space problem for locally bounded F-spaces, Compo. Math., 37 (1978), [5] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., 48 (1964),