Projective Tensor Products: The Pursuit of Norm-Attainment

Juan Guerrero Viu (Universidad de Zaragoza)

Joint work with Luis Carlos García Lirola and Abraham Rueda Zoca

Structures in Banach Spaces (ESI, Vienna) 19th March 2025

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Table of contents

1 Tensor products

- 2 Projective norm
- 3 Projective tensor products where every element is norm-attaining

4 Denseness of norm-attaining tensors

< 1 k

Bilinear mappings

Let X, Y, Z be vector spaces.

Definition

 $A: X \times Y \rightarrow Z$ is bilinear if

•
$$A(x_1 + x_2, y) = A(x_1, y) + A(x_2, y), \quad \forall x_1, x_2 \in X, \ \forall y \in Y.$$

②
$$A(x, y_1 + y_2) = A(x, y_1) + A(x, y_2), \quad \forall x \in X, \forall y_1, y_2 \in Y.$$

- We denote $B(X \times Y, Z) = \{A : X \times Y \to Z : A \text{ bilinear }\}$.
- If $Z = \mathbb{K}$ we denote $B(X \times Y) = B(X \times Y, \mathbb{K})$.

Bilinear mappings

Let X, Y, Z be vector spaces.

Definition

 $A: X \times Y \rightarrow Z$ is bilinear if

•
$$A(x_1 + x_2, y) = A(x_1, y) + A(x_2, y), \quad \forall x_1, x_2 \in X, \ \forall y \in Y.$$

②
$$A(x, y_1 + y_2) = A(x, y_1) + A(x, y_2), \quad \forall x \in X, \forall y_1, y_2 \in Y.$$

- We denote $B(X \times Y, Z) = \{A : X \times Y \to Z : A \text{ bilinear } \}$.
- If $Z = \mathbb{K}$ we denote $B(X \times Y) = B(X \times Y, \mathbb{K})$.

We would like to **linearize** bilinear maps.

Tensor products

Consider the linear functional $x \otimes y : B(X \times Y) \to \mathbb{K}$ such that

• $(x \otimes y)(A) = A(x, y), \quad \forall A \in B(X \times Y).$

Definition

The **tensor product** $X \otimes Y$ is the subspace of the algebraic dual $B(X \times Y)^{\#}$ spanned by the set

 $\{x \otimes y : x \in X, y \in Y\}.$

Tensor products

Consider the linear functional $x \otimes y : B(X \times Y) \to \mathbb{K}$ such that

• $(x \otimes y)(A) = A(x, y), \quad \forall A \in B(X \times Y).$

Definition

The **tensor product** $X \otimes Y$ is the subspace of the algebraic dual $B(X \times Y)^{\#}$ spanned by the set

 $\{x \otimes y : x \in X, y \in Y\}.$

A **tensor** $u \in X \otimes Y$ has the following form

$$u = \sum_{i=1}^{n} x_i \otimes y_i$$
, where $x_i \in X$, $y_i \in Y$. (NOT UNIQUE)

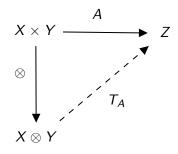
The **action** of $u \in X \otimes Y \subseteq B(X \times Y)^{\#}$ is defined as

$$u(A) = \sum_{i=1}^{n} A(x_i, y_i), \quad \forall A \in B(X \times Y)$$

and this value is independent of the representation of μ_{\odot} , μ_{\odot} ,

Juan Guerrero Viu

Linearization $B(X \times Y, Z)$



Given $A \in B(X \times Y, Z)$, define

$$T_A\left(\sum_{i=1}^n x_i \otimes y_i\right) = \sum_{i=1}^n A(x_i, y_i).$$

Conversely, if $T: X \otimes Y \rightarrow Z$ is linear, define $A \in B(X \times Y, Z)$ by

$$A(x,y)=T(x\otimes y).$$

< 47 ▶

Table of contents

2 Projective norm

3 Projective tensor products where every element is norm-attaining

4 Denseness of norm-attaining tensors

< 1 k

We would like to define a norm $\|\cdot\|$ on $X \otimes Y$. It is reasonable that it satisfies

 $||x \otimes y|| \le ||x|| ||y||, \quad \forall x \in X, \forall y \in Y.$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

We would like to define a norm $\|\cdot\|$ on $X \otimes Y$. It is reasonable that it satisfies

$$\|x \otimes y\| \le \|x\| \|y\|, \quad \forall x \in X, \forall y \in Y.$$

If $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes Y$, from the triangle inequality, it must be

$$||u|| \leq \sum_{i=1}^{n} ||x_i|| ||y_i||,$$

and this should hold for every representation of u.

We would like to define a norm $\|\cdot\|$ on $X \otimes Y$. It is reasonable that it satisfies

$$\|x \otimes y\| \le \|x\| \|y\|, \quad \forall x \in X, \forall y \in Y.$$

If $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes Y$, from the triangle inequality, it must be

$$||u|| \leq \sum_{i=1}^{n} ||x_i|| ||y_i||,$$

and this should hold for every representation of u.

Definition

Given $X \otimes Y$, we define the **projective norm** as follows

$$\|u\|_{\pi} = \inf\left\{\sum_{i=1}^n \|x_i\| \|y_i\| : u = \sum_{i=1}^n x_i \otimes y_i\right\}, \quad \forall u \in X \otimes Y.$$

We would like to define a norm $\|\cdot\|$ on $X \otimes Y$. It is reasonable that it satisfies

$$\|x \otimes y\| \le \|x\| \|y\|, \quad \forall x \in X, \forall y \in Y.$$

If $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \otimes Y$, from the triangle inequality, it must be

$$||u|| \leq \sum_{i=1}^{n} ||x_i|| ||y_i||,$$

and this should hold for every representation of u.

Definition

Given $X \otimes Y$, we define the **projective norm** as follows

$$\|u\|_{\pi} = \inf\left\{\sum_{i=1}^n \|x_i\| \|y_i\| : u = \sum_{i=1}^n x_i \otimes y_i\right\}, \quad \forall u \in X \otimes Y.$$

However, $(X \otimes Y, \| \cdot \|_{\pi})$ is complete if and only if X or Y are finite-dimensional.

Definition

The projective tensor product $X \widehat{\otimes}_{\pi} Y$ is the completion of $(X \otimes Y, \|\cdot\|_{\pi})$.

Dual space of $X \widehat{\otimes}_{\pi} Y$

Definition

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there exists C > 0 such that

 $\|A(x,y)\| \leq C \|x\| \|y\|, \quad \forall (x,y) \in X \times Y.$

 B(X × Y, Z) denotes the Banach space of bounded bilinear mappings with the norm ||A|| = sup{||A(x, y)|| : ||x|| ≤ 1, ||y|| ≤ 1}. Dual space of $X \widehat{\otimes}_{\pi} Y$

Definition

A bilinear map $A: X \times Y \rightarrow Z$ is said to be **bounded** if there exists C > 0 such that

 $\|A(x,y)\| \leq C \|x\| \|y\|, \quad \forall (x,y) \in X \times Y.$

B(X × Y, Z) denotes the Banach space of bounded bilinear mappings with the norm ||A|| = sup{||A(x, y)|| : ||x|| ≤ 1, ||y|| ≤ 1}.

It can be proved that

$$\mathcal{B}(X imes Y,Z)=\mathcal{L}(X\widehat{\otimes}_{\pi}Y,Z)$$
 $\mathcal{B}(X imes Y,\mathbb{K})=\mathcal{L}(X,Y^*)=(X\widehat{\otimes}_{\pi}Y)^*.$

く 何 ト く ヨ ト く ヨ ト

Dual space of $X \widehat{\otimes}_{\pi} Y$

Definition

A bilinear map $A: X \times Y \to Z$ is said to be **bounded** if there exists C > 0 such that

 $\|A(x,y)\| \leq C \|x\| \|y\|, \quad \forall (x,y) \in X \times Y.$

• $\mathcal{B}(X \times Y, Z)$ denotes the Banach space of bounded bilinear mappings with the norm $||A|| = \sup\{||A(x, y)|| : ||x|| \le 1, ||y|| \le 1\}$.

It can be proved that

$$\mathcal{B}(X \times Y, Z) = \mathcal{L}(X \widehat{\otimes}_{\pi} Y, Z)$$

$$\mathcal{B}(X \times Y, \mathbb{K}) = \mathcal{L}(X, Y^*) = (X \widehat{\otimes}_{\pi} Y)^*.$$

We also have that

$$B_{X\widehat{\otimes}_{\pi}Y} = \overline{\operatorname{conv}}(B_X \otimes B_Y).$$

Juan Guerrero Viu

Norm-attainment

Given $u \in X \widehat{\otimes}_{\pi} Y$ we can obtain the following expression for its projective norm

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : \ u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Norm-attainment

Given $u \in X \widehat{\otimes}_{\pi} Y$ we can obtain the following expression for its projective norm

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

When is that infimum a minimum?

э

Norm-attainment

Given $u \in X \widehat{\otimes}_{\pi} Y$ we can obtain the following expression for its projective norm

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{\infty} ||x_i|| ||y_i|| : u = \sum_{i=1}^{\infty} x_i \otimes y_i \right\}.$$

When is that infimum a minimum?

Definition

Given $u \in X \widehat{\otimes}_{\pi} Y$ it is said to attain its projective norm if

$$u = \sum_{i=1}^{\infty} x_i \otimes y_i$$
 and $||u||_{\pi} = \sum_{i=1}^{\infty} ||x_i|| ||y_i||.$

The set of those u which attain their projective norm is denoted by

 $NA_{\pi}(X \widehat{\otimes}_{\pi} Y).$

Table of contents

3 Projective tensor products where every element is norm-attaining

Denseness of norm-attaining tensors

< A I

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022)

We have that $\mathsf{NA}_\pi(X\widehat{\otimes}_\pi Y) = X\widehat{\otimes}_\pi Y$ in the following cases

- If X and Y are finite-dimensional.
- If $X = \ell_1(I)$ for some set I and Y is any Banach space.
- If X = Y is a complex Hilbert space.

▲ 同 ▶ → 三 ▶

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022)

We have that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ in the following cases

- If X and Y are finite-dimensional.
- If $X = \ell_1(I)$ for some set I and Y is any Banach space.
- If X = Y is a complex Hilbert space.

A. Pelczynski, N. Tomczak-Jaegermann (1988)

Given n, m there are spaces X, Y with $\dim(X) = n$ and $\dim(Y) = m$ and $u \in X \widehat{\otimes}_{\pi} Y$ such that all the optimal representations of u have nm terms (resp. 2nm for $\mathbb{K} = \mathbb{C}$).

・ 同 ト ・ ヨ ト ・ ヨ ト …

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022)

We have that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ in the following cases

- If X and Y are finite-dimensional.
- If $X = \ell_1(I)$ for some set I and Y is any Banach space.
- If X = Y is a complex Hilbert space.

A. Pelczynski, N. Tomczak-Jaegermann (1988)

Given n, m there are spaces X, Y with $\dim(X) = n$ and $\dim(Y) = m$ and $u \in X \widehat{\otimes}_{\pi} Y$ such that all the optimal representations of u have nm terms (resp. 2nm for $\mathbb{K} = \mathbb{C}$).

S. Dantas, L. C. García-Lirola, M. Jung, A. Rueda Zoca (2023) We have that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ if X is a finite-dimensional polyhedral Banach space and Y is any dual Banach space.

Juan Guerrero Viu

There are many examples of X, Y where $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) \neq X \widehat{\otimes}_{\pi} Y$.

э

There are many examples of X, Y where $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) \neq X \widehat{\otimes}_{\pi} Y$.

• Given $u \in X \widehat{\otimes}_{\pi} Y$, a representation $u = \sum_{n=1}^{\infty} x_n \otimes y_n \in X \widehat{\otimes}_{\pi} Y$ is optimal if and only if there is $T \colon X \to Y^*$ with ||T|| = 1 such that $T(x_n)(y_n) = ||x_n|| ||y_n|| \ \forall n$.

There are many examples of X, Y where $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) \neq X \widehat{\otimes}_{\pi} Y$.

• Given $u \in X \widehat{\otimes}_{\pi} Y$, a representation $u = \sum_{n=1}^{\infty} x_n \otimes y_n \in X \widehat{\otimes}_{\pi} Y$ is optimal if and only if there is $T \colon X \to Y^*$ with ||T|| = 1 such that $T(x_n)(y_n) = ||x_n|| ||y_n|| \ \forall n$.

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022)

If every tensor on $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then every operator $T: X \to Y^*$ can be approximated by norm-attaining ones.

Thus, there are tensors not attaining their projective norm in $L_1(\mathbb{T})\widehat{\otimes}_{\pi}\ell_2^2$, $L_1[0,1]\widehat{\otimes}_{\pi}L_1[0,1]$, $\ell_p\widehat{\otimes}_{\pi}G$ (1

12/25

・ 同 ト ・ ヨ ト ・ ヨ ト

There are many examples of X, Y where $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) \neq X \widehat{\otimes}_{\pi} Y$.

• Given $u \in X \widehat{\otimes}_{\pi} Y$, a representation $u = \sum_{n=1}^{\infty} x_n \otimes y_n \in X \widehat{\otimes}_{\pi} Y$ is optimal if and only if there is $T \colon X \to Y^*$ with ||T|| = 1 such that $T(x_n)(y_n) = ||x_n|| ||y_n|| \ \forall n$.

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022)

If every tensor on $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then every operator $T: X \to Y^*$ can be approximated by norm-attaining ones.

Thus, there are tensors not attaining their projective norm in $L_1(\mathbb{T})\widehat{\otimes}_{\pi}\ell_2^2$, $L_1[0,1]\widehat{\otimes}_{\pi}L_1[0,1]$, $\ell_p\widehat{\otimes}_{\pi}G$ (1

A. Rueda Zoca (2023)

 $\mathsf{NA}_{\pi}(c_0\widehat{\otimes}_{\pi}\ell_2)\subseteq c_0\otimes\ell_2.$

・ロト ・四ト ・ヨト ・ ヨト

19/03/2025

New results

Definition

 $Z \subseteq Y$ is said to be **1-complemented** if there exists a (linear) projection $P: Y \rightarrow Z$ with ||P|| = 1.

Lemma (L. C. García-Lirola, J. G.-V., A. Rueda Zoca, 2025)

Let X, Y be Banach spaces such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$. Assume $Z \subset Y$ is a 1-complemented subspace. Then, $NA_{\pi}(X \widehat{\otimes}_{\pi} Z) = X \widehat{\otimes}_{\pi} Z$.

This allow us to get rid of the **asumption of duality**, because every dual Banach space Y is 1-complemented in its bidual Y^{**} .

A (1) < A (2) < A (2) </p>

L. C. García-Lirola, J. G.-V., A. Rueda Zoca (2025)

Let Z be a Banach space such that $Z^* = \ell_1(I)$ isometrically. Let X be a subspace of Z and Y be any Banach space. If either X^* or Y^* has the AP, then $NA_{\pi}(X^*\widehat{\otimes}_{\pi}Y^*) = X^*\widehat{\otimes}_{\pi}Y^*$.

• The injective tensor product $X \widehat{\otimes}_{\varepsilon} Y$ is the completion of $X \otimes Y$ endowed with the norm

$$\|u\|_{\varepsilon} = \left\{ \left|\sum_{i=1}^{n} \varphi(x_i)\psi(y_i)\right|: \ \varphi \in X^*, \ \psi \in Y^*, \ \|\varphi\|, \|\psi\| \leq 1 \right\},$$

where $\sum_{i=1}^{n} x_i \otimes y_i$ is any representation of u.

• The injective tensor product $X \widehat{\otimes}_{\varepsilon} Y$ is the completion of $X \otimes Y$ endowed with the norm

$$\|u\|_{\varepsilon} = \left\{ \left| \sum_{i=1}^{n} \varphi(x_i) \psi(y_i) \right| : \varphi \in X^*, \ \psi \in Y^*, \ \|\varphi\|, \|\psi\| \leq 1 \right\},$$

where $\sum_{i=1}^{n} x_i \otimes y_i$ is any representation of u.

• $i \otimes Id : X \widehat{\otimes}_{\varepsilon} Y \to Z \widehat{\otimes}_{\varepsilon} Y$ is a linear isometry (injective tensor product respect subspaces).

• The injective tensor product $X \widehat{\otimes}_{\varepsilon} Y$ is the completion of $X \otimes Y$ endowed with the norm

$$\|u\|_{\varepsilon} = \left\{ \left| \sum_{i=1}^{n} \varphi(x_i) \psi(y_i) \right| : \varphi \in X^*, \ \psi \in Y^*, \ \|\varphi\|, \|\psi\| \leq 1 \right\},$$

where $\sum_{i=1}^{n} x_i \otimes y_i$ is any representation of u.

• $i \otimes Id : X \widehat{\otimes}_{\varepsilon} Y \to Z \widehat{\otimes}_{\varepsilon} Y$ is a linear isometry (injective tensor product respect subspaces).

•
$$(X \widehat{\otimes}_{\varepsilon} Y)^* = X^* \widehat{\otimes}_{\pi} Y^*$$
 and $(Z \widehat{\otimes}_{\varepsilon} Y)^* = \ell_1(I) \widehat{\otimes}_{\pi} Y^*$.

15 / 25

• The injective tensor product $X \otimes_{\varepsilon} Y$ is the completion of $X \otimes Y$ endowed with the norm

$$\|u\|_{\varepsilon} = \left\{ \left| \sum_{i=1}^{n} \varphi(x_i) \psi(y_i) \right| : \varphi \in X^*, \ \psi \in Y^*, \ \|\varphi\|, \|\psi\| \leq 1 \right\},$$

where $\sum_{i=1}^{n} x_i \otimes y_i$ is any representation of u.

• $i \otimes Id : X \widehat{\otimes}_{\varepsilon} Y \to Z \widehat{\otimes}_{\varepsilon} Y$ is a linear isometry (injective tensor product respect subspaces).

•
$$(X \widehat{\otimes}_{\varepsilon} Y)^* = X^* \widehat{\otimes}_{\pi} Y^*$$
 and $(Z \widehat{\otimes}_{\varepsilon} Y)^* = \ell_1(I) \widehat{\otimes}_{\pi} Y^*$.

Lemma

Let X, Y be normed spaces and T: $X \to Y$ a linear isometry. Then, the operator $T^*: Y^* \to X^*$ is a quotient operator. In fact, given $x^* \in X^*$, there exists $y^* \in Y^*$ such that $T^*(y^*) = x^*$ and $||y^*|| = ||x^*||$.

Take $u \in X^* \widehat{\otimes}_{\pi} Y^*$. By the previous lemma, there is $z \in \ell_1(I) \widehat{\otimes}_{\pi} Y^*$ with

$$||z|| = ||u||$$
 and $(i \otimes Id)^*(z) = u$.

▲ 伊 ▶ ▲ 三

Take $u \in X^* \widehat{\otimes}_{\pi} Y^*$. By the previous lemma, there is $z \in \ell_1(I) \widehat{\otimes}_{\pi} Y^*$ with

$$||z|| = ||u||$$
 and $(i \otimes Id)^*(z) = u$.

We know that z attains its norm because $\ell_1(I)\widehat{\otimes}_{\pi}Y^* = NA_{\pi}(\ell_1(I)\widehat{\otimes}_{\pi}Y^*)$.

Take $u \in X^* \widehat{\otimes}_{\pi} Y^*$. By the previous lemma, there is $z \in \ell_1(I) \widehat{\otimes}_{\pi} Y^*$ with

$$||z|| = ||u||$$
 and $(i \otimes Id)^*(z) = u$.

We know that z attains its norm because $\ell_1(I)\widehat{\otimes}_{\pi}Y^* = \mathsf{NA}_{\pi}(\ell_1(I)\widehat{\otimes}_{\pi}Y^*)$. We can conclude that u attains its norm.

Take $u \in X^* \widehat{\otimes}_{\pi} Y^*$. By the previous lemma, there is $z \in \ell_1(I) \widehat{\otimes}_{\pi} Y^*$ with

$$||z|| = ||u||$$
 and $(i \otimes Id)^*(z) = u$.

We know that z attains its norm because $\ell_1(I)\widehat{\otimes}_{\pi}Y^* = \mathsf{NA}_{\pi}(\ell_1(I)\widehat{\otimes}_{\pi}Y^*)$. We can conclude that u attains its norm.

L. C. García-Lirola, J. G.-V., A. Rueda Zoca (2025)

Let Z be a Banach space such that $Z^* = \ell_1(I)$ isometrically. Let X be a subspace of Z and Y be any Banach space which is 1-complemented in Y^{**} . If either X^* or Y^{**} has the AP, then $NA_{\pi}(X^*\widehat{\otimes}_{\pi}Y) = X^*\widehat{\otimes}_{\pi}Y$.

New results

Noticing that $C(K)^* = \ell_1(I)$ for K scattered and compact, we obtain:

Corollary (L. C. García-Lirola, J. G.-V., A. Rueda Zoca, 2025)

Let X be a subspace of C(K), where K is a compact Hausdorff scattered space, and Y be any Banach space which is 1-complemented in Y^{**}. If X^{*} has the AP then NA_{π}(X^{*} $\hat{\otimes}_{\pi}$ Y) = X^{*} $\hat{\otimes}_{\pi}$ Y.

New results

Noticing that $C(K)^* = \ell_1(I)$ for K scattered and compact, we obtain:

Corollary (L. C. García-Lirola, J. G.-V., A. Rueda Zoca, 2025)

Let X be a subspace of C(K), where K is a compact Hausdorff scattered space, and Y be any Banach space which is 1-complemented in Y^{**}. If X^{*} has the AP then NA_{π}(X^{*} $\hat{\otimes}_{\pi}$ Y) = X^{*} $\hat{\otimes}_{\pi}$ Y.

Example (L. C. García-Lirola, J. G.-V., A. Rueda Zoca, 2025)

The hypothesis of K being scattered cannot be removed: Let \mathbb{T} be the unit circle of \mathbb{R}^2 . Then,

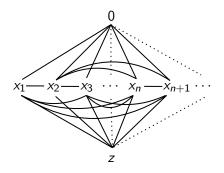
$$\mathsf{NA}_{\pi}\left(\mathcal{C}(\mathbb{T})^*\widehat{\otimes}_{\pi}\mathbb{R}^2\right)\neq \mathcal{C}(\mathbb{T})^*\widehat{\otimes}_{\pi}\mathbb{R}^2.$$

New Results (Lipschitz-free spaces)

L. C. García-Lirola, J. G.-V., A. Rueda Zoca (2025)

Let *M* be a complete metric space. Then $NA_{\pi}(\mathcal{F}(M)\widehat{\otimes}_{\pi}Y) = \mathcal{F}(M)\widehat{\otimes}_{\pi}Y$ for any Banach space *Y* which is 1-complemented in *Y*^{**} if *M* satisfies one of the following conditions:

- a) *M* is countable and proper.
- b) M is uniformly discrete, countable, and there is a compact Hausdorff topology τ on M such that d is τ-lower semicontinuous, and V = {d(x, y) : (x, y) ∈ M²} ⊆ ℝ⁺₀ is a compact set.



Example

Define $M = \{0\} \cup \{x_n : n \in \mathbb{N}\} \cup \{z\}$ whose distances are defined as $d(x_n, x_m) = d(x_n, 0) = d(x_n, z) = 1$ for every $n, m \in \mathbb{N}, n \neq m$ and d(0, z) = 2. Define τ such that $(x_n)_n$ converges in τ to x_1 and the points $M \setminus \{x_1\}$ are all discrete.

Then, *M* satisfies (b) and $\mathcal{F}(M)$ is not isometrically isomorphic to ℓ_1 .

< /□ > < Ξ

Table of contents

- 2 Projective norm
- 3 Projective tensor products where every element is norm-attaining

4 Denseness of norm-attaining tensors

4 E N

< 1 k

Let $f = \sum_{n=1}^{N} \chi_{E_n} \cdot y_n \in L_1(\mu, Y) = L_1(\mu) \widehat{\otimes}_{\pi} Y$ be a simple function with (E_n) pairwise disjoint sets.

Let $f = \sum_{n=1}^{N} \chi_{E_n} \cdot y_n \in L_1(\mu, Y) = L_1(\mu) \widehat{\otimes}_{\pi} Y$ be a simple function with (E_n) pairwise disjoint sets. Then

$$\|f\|_{1} = \sum_{n=1}^{N} \mu(E_{n}) \|y_{n}\| = \sum_{n=1}^{N} \|\chi_{E_{n}}\|_{1} \cdot \|y_{n}\|$$

That is, $f \in NA_{\pi}(L_1(\mu)\widehat{\otimes}_{\pi}Y)$.

Let $f = \sum_{n=1}^{N} \chi_{E_n} \cdot y_n \in L_1(\mu, Y) = L_1(\mu) \widehat{\otimes}_{\pi} Y$ be a simple function with (E_n) pairwise disjoint sets. Then

$$\|f\|_{1} = \sum_{n=1}^{N} \mu(E_{n}) \|y_{n}\| = \sum_{n=1}^{N} \|\chi_{E_{n}}\|_{1} \cdot \|y_{n}\|$$

That is, $f \in NA_{\pi}(L_1(\mu)\widehat{\otimes}_{\pi}Y)$. It follows that

$$\overline{\mathsf{NA}_{\pi}(L_{1}(\mu)\widehat{\otimes}_{\pi}Y)} = L_{1}(\mu)\widehat{\otimes}_{\pi}Y$$

Let $f = \sum_{n=1}^{N} \chi_{E_n} \cdot y_n \in L_1(\mu, Y) = L_1(\mu) \widehat{\otimes}_{\pi} Y$ be a simple function with (E_n) pairwise disjoint sets. Then

$$\|f\|_{1} = \sum_{n=1}^{N} \mu(E_{n}) \|y_{n}\| = \sum_{n=1}^{N} \|\chi_{E_{n}}\|_{1} \cdot \|y_{n}\|$$

That is, $f \in NA_{\pi}(L_1(\mu)\widehat{\otimes}_{\pi}Y)$. It follows that

$$\overline{\mathsf{NA}_{\pi}(L_{1}(\mu)\widehat{\otimes}_{\pi}Y)} = L_{1}(\mu)\widehat{\otimes}_{\pi}Y$$

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022) There exist X. X such that NA. $(X \otimes X)$ is **NOT** dense in $X \otimes X$

There exist X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is **NOT** dense in $X \widehat{\otimes}_{\pi} Y$.

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022)

Let X, Y be reflexive spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022)

Let X, Y be reflexive spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

S. Dantas, L.C. García-Lirola, M. Jung, A. Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022) Let X, Y be reflexive spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

S. Dantas, L.C. García-Lirola, M. Jung, A. Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Definition

A space X is said to have the **metric** π -property if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon \ \forall i$.

- 4 同 ト 4 三 ト - 4 三 ト - -

S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca (2022) Let X, Y be reflexive spaces. Is $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$?

S. Dantas, L.C. García-Lirola, M. Jung, A. Rueda Zoca (2023)

Assume X and Y are dual spaces with the RNP and at least one of them has the approximation property. Then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ dense in $X \widehat{\otimes}_{\pi} Y$.

Definition

A space X is said to have the **metric** π -property if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subset S_X$, we can find a finite-dimensional 1-complemented subspace $M \subset X$ and points $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon \ \forall i$.

• Equivalently, there are finite-rank projections $P_{\alpha} : X \to X$ with $||P_{\alpha}|| = 1$ and $P_{\alpha}x \to x$ for every $x \in X$.

ヘロア 人間 アメヨア ヘヨアー

Let X be a space with the metric π -property. $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ if

- Y has the metric π-property or Y is uniformly convex (S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca, 2022).
- X is polyhedral and Y is a dual space (S. Dantas, L.C. García-Lirola, M. Jung, A. Rueda Zoca, 2023).

Let X be a space with the metric π -property. $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ if

- Y has the metric π-property or Y is uniformly convex (S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca, 2022).
- X is polyhedral and Y is a dual space (S. Dantas, L.C. García-Lirola, M. Jung, A. Rueda Zoca, 2023).

These results are implied by the following theorem:

L.C. García-Lirola, J. G.-V., A. Rueda Zoca (2025)

Suppose that for every $\varepsilon > 0$ and $x_1, \ldots, x_n \in X$, there exists a finite dimensional 1-complemented subspace $\underline{M \subseteq X}$ and $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$ for each $i = 1, \ldots, n$. Assume that $\overline{NA_{\pi}(M \widehat{\otimes}_{\pi} Y)} = M \widehat{\otimes}_{\pi} Y$. Then,

$$\mathsf{NA}_{\pi}(X\widehat{\otimes}_{\pi}Y) = X\widehat{\otimes}_{\pi}Y.$$

Let X be a space with the metric π -property. $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ if

- Y has the metric π-property or Y is uniformly convex (S. Dantas, M. Jung, O. Roldán, A. Rueda Zoca, 2022).
- X is polyhedral and Y is a dual space (S. Dantas, L.C. García-Lirola, M. Jung, A. Rueda Zoca, 2023).

These results are implied by the following theorem:

L.C. García-Lirola, J. G.-V., A. Rueda Zoca (2025)

Suppose that for every $\varepsilon > 0$ and $x_1, \ldots, x_n \in X$, there exists a finite dimensional 1-complemented subspace $M \subseteq X$ and $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$ for each $i = 1, \ldots, n$. Assume that $\overline{NA_{\pi}(M \widehat{\otimes}_{\pi} Y)} = M \widehat{\otimes}_{\pi} Y$. Then,

$$\overline{\mathsf{NA}_{\pi}(X\widehat{\otimes}_{\pi}Y)} = X\widehat{\otimes}_{\pi}Y.$$

As a consequence, $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$ in the following cases:

- a) $X^* = L_1(\mu)$ and Y is 1-complemented in Y^{**} .
- b) X has the metric π -property and Y is a dual space with the RNP.

Some related questions

Is every extreme point of $B_{X\widehat{\otimes}_{\pi}Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

A 3 >

Some related questions

Is every extreme point of $B_{X\widehat{\otimes}_{\pi}Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

How are the Banach spaces X such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y, \forall Y$?

Some related questions

Is every extreme point of $B_{X\widehat{\otimes}_{\pi}Y}$ of the form $x \otimes y$ with $x \in B_X$, $y \in B_Y$?

How are the Banach spaces X such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y, \forall Y$?

Are there **reflexive** Banach spaces X, Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) \neq X \widehat{\otimes}_{\pi} Y$?

- R. A. RYAN, Introduction to Tensor Products of Banach Spaces, 2002, Springer-Verlag: Springer-Verlag London.
- S. DANTAS, M. JUNG, O. ROLDÁN, A. RUEDA ZOCA, Norm-attaining tensors and nuclear operators. Mediterr. J. Math. 19, No. 1, Paper No. 38, 27 p. (2022).
- S. DANTAS, L. C. GARCÍA-LIROLA, M. JUNG, AND A. RUEDA ZOCA, On norm-attainment in (symmetric) tensor products, Quaest. Math. 46, No. 2, 393-409 (2023).
- L. C. GARCÍA-LIROLA, J. GUERRERO-VIU, A. RUEDA ZOCA, *Projective tensor products where every element is norm-attaining* Banach J. Math. Anal. **19**, No. 19 (2025).

Thank you for your attention!

・ 同 ト ・ ヨ ト ・ ヨ ト