Closed subideals of bounded operators

Henrik Wirzenius

Institute of Mathematics Czech Academy of Sciences

Structures in Banach Spaces Erwin Schrödinger Institute, Vienna March 18, 2025

- Aim of talk: to describe examples and properties of non-trivial closed subideals and closed *n*-subideals of the Banach algebra $\mathcal{L}(X)$ of bounded linear operators on a Banach space X.
- The talk is based on
 - * H.-O. Tylli & H. Wirzenius: *Exotic closed subideals of algebras of bounded operators*, Proc. Amer. Math. Soc. 152 (2024).
 - * H.-O. Tylli & H. Wirzenius: Structure of closed subideals of $\mathcal{L}(X)$, in preparation.
- Notation: Let X, Y be ∞ -dim. (real or complex) Banach spaces, and denote

 $\mathcal{L}(X, Y) = \{ \text{ bounded linear operators } X \to Y \}.$

 $S(X, Y) = \{ \text{ strictly singular operators } X \to Y \}.$

 $\mathcal{K}(X, Y) = \{ \text{ compact operators } X \to Y \}.$

 $\mathcal{A}(X, Y) = \{ \text{ approximable operators } X \to Y \} := \overline{\mathcal{F}(X, Y)}, \text{ where }$ $\mathcal{F}(X, Y) = \{ \text{ bounded finite rank operators } X \to Y \} \text{ and closure in operator norm.}$

- $\mathcal{F}(X,Y) \subsetneq \mathcal{A}(X,Y) \subset \mathcal{K}(X,Y) \subset \mathcal{S}(X,Y) \subset \mathcal{L}(X,Y).$
- For X = Y write $\mathcal{L}(X) := \mathcal{L}(X, X)$ etc.

- Aim of talk: to describe examples and properties of non-trivial closed subideals and closed *n*-subideals of the Banach algebra $\mathcal{L}(X)$ of bounded linear operators on a Banach space X.
- The talk is based on
 - * H.-O. Tylli & H. Wirzenius: *Exotic closed subideals of algebras of bounded operators*, Proc. Amer. Math. Soc. 152 (2024).
 - * H.-O. Tylli & H. Wirzenius: Structure of closed subideals of $\mathcal{L}(X)$, in preparation.
- Notation: Let X, Y be ∞ -dim. (real or complex) Banach spaces, and denote

$$\mathcal{L}(X, Y) = \{ \text{ bounded linear operators } X \to Y \}.$$

$$S(X, Y) = \{ \text{ strictly singular operators } X \to Y \}.$$

 $\mathcal{K}(X, Y) = \{ \text{ compact operators } X \to Y \}.$

 $\mathcal{A}(X, Y) = \{ \text{ approximable operators } X \to Y \} := \overline{\mathcal{F}(X, Y)}, \text{ where }$ $\mathcal{F}(X, Y) = \{ \text{ bounded finite rank operators } X \to Y \} \text{ and closure in operator norm.}$

• $\mathcal{F}(X,Y) \subsetneq \mathcal{A}(X,Y) \subset \mathcal{K}(X,Y) \subset \mathcal{S}(X,Y) \subset \mathcal{L}(X,Y).$

• For
$$X = Y$$
 write $\mathcal{L}(X) := \mathcal{L}(X, X)$ etc.

- Aim of talk: to describe examples and properties of non-trivial closed subideals and closed *n*-subideals of the Banach algebra $\mathcal{L}(X)$ of bounded linear operators on a Banach space X.
- The talk is based on
 - * H.-O. Tylli & H. Wirzenius: *Exotic closed subideals of algebras of bounded operators*, Proc. Amer. Math. Soc. 152 (2024).
 - * H.-O. Tylli & H. Wirzenius: Structure of closed subideals of $\mathcal{L}(X)$, in preparation.
- Notation: Let X, Y be ∞ -dim. (real or complex) Banach spaces, and denote

 $\mathcal{L}(X, Y) = \{ \text{ bounded linear operators } X \to Y \}.$

$$S(X, Y) = \{ \text{ strictly singular operators } X \to Y \}.$$

 $\mathcal{K}(X, Y) = \{ \text{ compact operators } X \to Y \}.$

 $\mathcal{A}(X, Y) = \{ \text{ approximable operators } X \to Y \} := \overline{\mathcal{F}(X, Y)}, \text{ where }$

 $\mathcal{F}(X, Y) = \{ \text{ bounded finite rank operators } X \to Y \}$ and closure in operator norm.

• $\mathcal{F}(X,Y) \subsetneq \mathcal{A}(X,Y) \subset \mathcal{K}(X,Y) \subset \mathcal{S}(X,Y) \subset \mathcal{L}(X,Y).$

• For
$$X = Y$$
 write $\mathcal{L}(X) := \mathcal{L}(X, X)$ etc.

- Aim of talk: to describe examples and properties of non-trivial closed subideals and closed *n*-subideals of the Banach algebra $\mathcal{L}(X)$ of bounded linear operators on a Banach space X.
- The talk is based on
 - * H.-O. Tylli & H. Wirzenius: *Exotic closed subideals of algebras of bounded operators*, Proc. Amer. Math. Soc. 152 (2024).
 - * H.-O. Tylli & H. Wirzenius: Structure of closed subideals of $\mathcal{L}(X)$, in preparation.
- Notation: Let X, Y be ∞ -dim. (real or complex) Banach spaces, and denote

$$\begin{split} \mathcal{L}(X,Y) &= \{ \text{ bounded linear operators } X \to Y \}. \\ \mathcal{S}(X,Y) &= \{ \text{ strictly singular operators } X \to Y \}. \\ \mathcal{K}(X,Y) &= \{ \text{ compact operators } X \to Y \}. \\ \mathcal{A}(X,Y) &= \{ \text{ approximable operators } X \to Y \} := \overline{\mathcal{F}(X,Y)}, \text{ where } \\ \mathcal{F}(X,Y) &= \{ \text{ bounded finite rank operators } X \to Y \} \text{ and closure in operator norm.} \end{split}$$

- $\mathcal{F}(X,Y) \subsetneq \mathcal{A}(X,Y) \subset \mathcal{K}(X,Y) \subset \mathcal{S}(X,Y) \subset \mathcal{L}(X,Y).$
- For X = Y write $\mathcal{L}(X) := \mathcal{L}(X, X)$ etc.

• Observation : Suppose $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, and there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$. Then

$$\mathcal{I} = \mathcal{J}.\tag{1}$$

In other words: distinct closed ideals of $\mathcal{L}(X)$ are never isomorphic as Banach algebras.

Reason: θ above is of the form

$$\theta(S) = USU^{-1} \quad (S \in \mathcal{I})$$

- (Tylli & W. '22) There is a Banach space X (failing the approximation property) with an uncountable family \mathfrak{F} of distinct closed ideals of $\mathcal{K}(X)$, where none of the ideals $\mathcal{I} \in \mathfrak{F}$ are ideals of $\mathcal{L}(X)$.
- Question (Schechtman): Are the ideals in $\mathfrak F$ pairwise non-isomorphic as Banach algebras?
- (Tylli & W. '24) \mathcal{I} and \mathcal{J} are isomorphic as Banach algebras for all $\mathcal{I}, \mathcal{J} \in \mathfrak{F}$.
 - * Conclusion: the above observation (1) fails for closed <u>subideals</u> of $\mathcal{L}(X)$.

• Observation : Suppose $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, and there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$. Then

$$\mathcal{I} = \mathcal{J}.$$
 (1)

In other words: distinct closed ideals of $\mathcal{L}(X)$ are never isomorphic as Banach algebras.

Reason: θ above is of the form

$$\theta(S) = USU^{-1} \quad (S \in \mathcal{I})$$

- (Tylli & W. '22) There is a Banach space X (failing the approximation property) with an uncountable family \mathfrak{F} of distinct closed ideals of $\mathcal{K}(X)$, where none of the ideals $\mathcal{I} \in \mathfrak{F}$ are ideals of $\mathcal{L}(X)$.
- Question (Schechtman): Are the ideals in $\mathfrak F$ pairwise non-isomorphic as Banach algebras?
- (Tylli & W. '24) \mathcal{I} and \mathcal{J} are isomorphic as Banach algebras for all $\mathcal{I}, \mathcal{J} \in \mathfrak{F}$.
 - * Conclusion: the above observation (1) fails for closed <u>subideals</u> of $\mathcal{L}(X)$.

• Observation : Suppose $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, and there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$. Then

$$\mathcal{I} = \mathcal{J}.\tag{1}$$

In other words: distinct closed ideals of $\mathcal{L}(X)$ are never isomorphic as Banach algebras.

Reason: θ above is of the form

 $\theta(S) = USU^{-1} \quad (S \in \mathcal{I})$

- (Tylli & W. '22) There is a Banach space X (failing the approximation property) with an uncountable family \mathfrak{F} of distinct closed ideals of $\mathcal{K}(X)$, where none of the ideals $\mathcal{I} \in \mathfrak{F}$ are ideals of $\mathcal{L}(X)$.
- Question (Schechtman): Are the ideals in $\mathfrak F$ pairwise non-isomorphic as Banach algebras?
- (Tylli & W. '24) \mathcal{I} and \mathcal{J} are isomorphic as Banach algebras for all $\mathcal{I}, \mathcal{J} \in \mathfrak{F}$.
 - * Conclusion: the above observation (1) fails for closed <u>subideals</u> of $\mathcal{L}(X)$.

• Observation : Suppose $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, and there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$. Then

$$\mathcal{I} = \mathcal{J}.\tag{1}$$

In other words: distinct closed ideals of $\mathcal{L}(X)$ are never isomorphic as Banach algebras.

Reason: θ above is of the form

$$\theta(S) = USU^{-1} \quad (S \in \mathcal{I})$$

- (Tylli & W. '22) There is a Banach space X (failing the approximation property) with an uncountable family \mathfrak{F} of distinct closed ideals of $\mathcal{K}(X)$, where none of the ideals $\mathcal{I} \in \mathfrak{F}$ are ideals of $\mathcal{L}(X)$.
- Question (Schechtman): Are the ideals in $\mathfrak F$ pairwise non-isomorphic as Banach algebras?
- (Tylli & W. '24) \mathcal{I} and \mathcal{J} are isomorphic as Banach algebras for all $\mathcal{I}, \mathcal{J} \in \mathfrak{F}$.
 - * Conclusion: the above observation (1) fails for closed <u>subideals</u> of $\mathcal{L}(X)$.

• Observation : Suppose $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, and there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$. Then

$$\mathcal{I} = \mathcal{J}.\tag{1}$$

In other words: distinct closed ideals of $\mathcal{L}(X)$ are never isomorphic as Banach algebras.

Reason: θ above is of the form

$$\theta(S) = USU^{-1} \quad (S \in \mathcal{I})$$

- (Tylli & W. '22) There is a Banach space X (failing the approximation property) with an uncountable family \mathfrak{F} of distinct closed ideals of $\mathcal{K}(X)$, where none of the ideals $\mathcal{I} \in \mathfrak{F}$ are ideals of $\mathcal{L}(X)$.
- Question (Schechtman): Are the ideals in $\mathfrak F$ pairwise non-isomorphic as Banach algebras?
- (Tylli & W. '24) \mathcal{I} and \mathcal{J} are isomorphic as Banach algebras for all $\mathcal{I}, \mathcal{J} \in \mathfrak{F}$.
 - * Conclusion: the above observation (1) fails for closed <u>subideals</u> of $\mathcal{L}(X)$.

• Observation : Suppose $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, and there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$. Then

$$\mathcal{I} = \mathcal{J}.\tag{1}$$

In other words: distinct closed ideals of $\mathcal{L}(X)$ are never isomorphic as Banach algebras.

Reason: θ above is of the form

$$\theta(S) = USU^{-1} \quad (S \in \mathcal{I})$$

- (Tylli & W. '22) There is a Banach space X (failing the approximation property) with an uncountable family \mathfrak{F} of distinct closed ideals of $\mathcal{K}(X)$, where none of the ideals $\mathcal{I} \in \mathfrak{F}$ are ideals of $\mathcal{L}(X)$.
- Question (Schechtman): Are the ideals in $\mathfrak F$ pairwise non-isomorphic as Banach algebras?
- (Tylli & W. '24) \mathcal{I} and \mathcal{J} are isomorphic as Banach algebras for all $\mathcal{I}, \mathcal{J} \in \mathfrak{F}$.
 - * Conclusion: the above observation (1) fails for closed <u>subideals</u> of $\mathcal{L}(X)$.

• Observation : Suppose $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, and there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$. Then

$$\mathcal{I} = \mathcal{J}.$$
 (1)

In other words: distinct closed ideals of $\mathcal{L}(X)$ are never isomorphic as Banach algebras.

Reason: θ above is of the form

$$\theta(S) = USU^{-1} \quad (S \in \mathcal{I})$$

- (Tylli & W. '22) There is a Banach space X (failing the approximation property) with an uncountable family \mathfrak{F} of distinct closed ideals of $\mathcal{K}(X)$, where none of the ideals $\mathcal{I} \in \mathfrak{F}$ are ideals of $\mathcal{L}(X)$.
- Question (Schechtman): Are the ideals in $\mathfrak F$ pairwise non-isomorphic as Banach algebras?
- (Tylli & W. '24) \mathcal{I} and \mathcal{J} are isomorphic as Banach algebras for all $\mathcal{I}, \mathcal{J} \in \mathfrak{F}$.
 - * Conclusion: the above observation (1) fails for closed subideals of $\mathcal{L}(X)$.

Let $\mathcal{J}, \mathcal{I} \subset \mathcal{L}(X)$ be closed subalgebras. Then \mathcal{J} is called a closed subideal (or a closed \mathcal{I} -subideal) of $\mathcal{L}(X)$ if

 $\mathcal{J} \subset \mathcal{I} \subset \mathcal{L}(X)$

where \mathcal{J} is an ideal of \mathcal{I} , and \mathcal{I} is an ideal of $\mathcal{L}(X)$. \mathcal{J} is a non-trivial subideal if \mathcal{J} is not an ideal of $\mathcal{L}(X)$.

- (Fong & Radjavi '83) Examples of non-trivial, but non-closed, *K*(ℓ²)-subideals of *L*(ℓ²). (Terminology due to Patnaik & Weiss '13.)
- Remark: If the closed ideal *I* ⊂ *L*(*X*) has an approximate identity, then there are no non-trivial closed *I*-subideals of *L*(*X*).
 (A net (*U*_α) ⊂ *I* is an approximate identity if *S* = lim_α *U*_α*S* = lim_α *SU*_α for all *S* ∈ *I*.)
 - * Consequence: If H is a Hilbert space, then there are no non-trivial closed subideals of $\mathcal{L}(H)$. Reason: every closed ideal $\mathcal{I} \subset \mathcal{L}(H)$ has an approximate identity.

Let $\mathcal{J}, \mathcal{I} \subset \mathcal{L}(X)$ be closed subalgebras. Then \mathcal{J} is called a closed subideal (or a closed \mathcal{I} -subideal) of $\mathcal{L}(X)$ if

$$\mathcal{J} \subset \mathcal{I} \subset \mathcal{L}(X)$$

where \mathcal{J} is an ideal of \mathcal{I} , and \mathcal{I} is an ideal of $\mathcal{L}(X)$. \mathcal{J} is a non-trivial subideal if \mathcal{J} is not an ideal of $\mathcal{L}(X)$.

- (Fong & Radjavi '83) Examples of non-trivial, but non-closed, $\mathcal{K}(\ell^2)$ -subideals of $\mathcal{L}(\ell^2)$. (Terminology due to Patnaik & Weiss '13.)
- Remark: If the closed ideal *I* ⊂ *L*(*X*) has an approximate identity, then there are no non-trivial closed *I*-subideals of *L*(*X*).
 (A net (*U*_α) ⊂ *I* is an approximate identity if *S* = lim_α *U*_α*S* = lim_α *SU*_α for all *S* ∈ *I*.)
 - * Consequence: If H is a Hilbert space, then there are no non-trivial <u>closed</u> subideals of $\mathcal{L}(H)$. Reason: every closed ideal $\mathcal{I} \subset \mathcal{L}(H)$ has an approximate identity.

Let $\mathcal{J}, \mathcal{I} \subset \mathcal{L}(X)$ be closed subalgebras. Then \mathcal{J} is called a closed subideal (or a closed \mathcal{I} -subideal) of $\mathcal{L}(X)$ if

$$\mathcal{J} \subset \mathcal{I} \subset \mathcal{L}(X)$$

where \mathcal{J} is an ideal of \mathcal{I} , and \mathcal{I} is an ideal of $\mathcal{L}(X)$. \mathcal{J} is a non-trivial subideal if \mathcal{J} is not an ideal of $\mathcal{L}(X)$.

- (Fong & Radjavi '83) Examples of non-trivial, but non-closed, $\mathcal{K}(\ell^2)$ -subideals of $\mathcal{L}(\ell^2)$. (Terminology due to Patnaik & Weiss '13.)
- Remark: If the closed ideal *I* ⊂ *L*(*X*) has an approximate identity, then there are no non-trivial closed *I*-subideals of *L*(*X*).
 (A net (*U*_α) ⊂ *I* is an approximate identity if *S* = lim_α *U*_α*S* = lim_α *SU*_α for all *S* ∈ *I*.)
 - * Consequence: If H is a Hilbert space, then there are no non-trivial <u>closed</u> subideals of $\mathcal{L}(H)$. Reason: every closed ideal $\mathcal{I} \subset \mathcal{L}(H)$ has an approximate identity.

Let $\mathcal{J}, \mathcal{I} \subset \mathcal{L}(X)$ be closed subalgebras. Then \mathcal{J} is called a closed subideal (or a closed \mathcal{I} -subideal) of $\mathcal{L}(X)$ if

 $\mathcal{J} \subset \mathcal{I} \subset \mathcal{L}(X)$

where \mathcal{J} is an ideal of \mathcal{I} , and \mathcal{I} is an ideal of $\mathcal{L}(X)$. \mathcal{J} is a non-trivial subideal if \mathcal{J} is not an ideal of $\mathcal{L}(X)$.

- (Fong & Radjavi '83) Examples of non-trivial, but non-closed, $\mathcal{K}(\ell^2)$ -subideals of $\mathcal{L}(\ell^2)$. (Terminology due to Patnaik & Weiss '13.)
- Remark: If the closed ideal *I* ⊂ *L*(*X*) has an approximate identity, then there are no non-trivial closed *I*-subideals of *L*(*X*).

(A net $(U_{\alpha}) \subset \mathcal{I}$ is an approximate identity if $S = \lim_{\alpha} U_{\alpha}S = \lim_{\alpha} SU_{\alpha}$ for all $S \in \mathcal{I}$.)

* Consequence: If H is a Hilbert space, then there are no non-trivial <u>closed</u> subideals of $\mathcal{L}(H)$. Reason: every closed ideal $\mathcal{I} \subset \mathcal{L}(H)$ has an approximate identity.

Let $\mathcal{J}, \mathcal{I} \subset \mathcal{L}(X)$ be closed subalgebras. Then \mathcal{J} is called a closed subideal (or a closed \mathcal{I} -subideal) of $\mathcal{L}(X)$ if

 $\mathcal{J} \subset \mathcal{I} \subset \mathcal{L}(X)$

where \mathcal{J} is an ideal of \mathcal{I} , and \mathcal{I} is an ideal of $\mathcal{L}(X)$. \mathcal{J} is a non-trivial subideal if \mathcal{J} is not an ideal of $\mathcal{L}(X)$.

- (Fong & Radjavi '83) Examples of non-trivial, but non-closed, $\mathcal{K}(\ell^2)$ -subideals of $\mathcal{L}(\ell^2)$. (Terminology due to Patnaik & Weiss '13.)
- Remark: If the closed ideal *I* ⊂ *L*(*X*) has an approximate identity, then there are no non-trivial closed *I*-subideals of *L*(*X*).
 (A set (*U*)) ⊂ *T* is an approximate identity if *C* lime (*U*) *C* lime *C*(*X*).

(A net $(U_{\alpha}) \subset \mathcal{I}$ is an approximate identity if $S = \lim_{\alpha} U_{\alpha}S = \lim_{\alpha} SU_{\alpha}$ for all $S \in \mathcal{I}$.)

* Consequence: If *H* is a Hilbert space, then there are no non-trivial <u>closed</u> subideals of $\mathcal{L}(H)$. Reason: every closed ideal $\mathcal{I} \subset \mathcal{L}(H)$ has an approximate identity.

Let $\mathcal{J}, \mathcal{I} \subset \mathcal{L}(X)$ be closed subalgebras. Then \mathcal{J} is called a closed subideal (or a closed \mathcal{I} -subideal) of $\mathcal{L}(X)$ if

$$\mathcal{J} \subset \mathcal{I} \subset \mathcal{L}(X)$$

where \mathcal{J} is an ideal of \mathcal{I} , and \mathcal{I} is an ideal of $\mathcal{L}(X)$. \mathcal{J} is a non-trivial subideal if \mathcal{J} is not an ideal of $\mathcal{L}(X)$.

- (Fong & Radjavi '83) Examples of non-trivial, but non-closed, $\mathcal{K}(\ell^2)$ -subideals of $\mathcal{L}(\ell^2)$. (Terminology due to Patnaik & Weiss '13.)
- Remark: If the closed ideal *I* ⊂ *L*(*X*) has an approximate identity, then there are no non-trivial closed *I*-subideals of *L*(*X*).

(A net $(U_{\alpha}) \subset \mathcal{I}$ is an approximate identity if $S = \lim_{\alpha} U_{\alpha}S = \lim_{\alpha} SU_{\alpha}$ for all $S \in \mathcal{I}$.)

* Consequence: If H is a Hilbert space, then there are no non-trivial closed subideals of $\mathcal{L}(H)$. Reason: every closed ideal $\mathcal{I} \subset \mathcal{L}(H)$ has an approximate identity.

- Question: Non-trivial closed subideals of $\mathcal{L}(X)$ for classical Banach spaces X?
- If X = ℓ^p, 1 ≤ p < ∞ or X = c₀, then L(X) does not have any non-trivial closed subideals. Reason:
 - (i) In these cases $\mathcal{K}(X)$ is the unique non-trivial closed ideal of $\mathcal{L}(X)$, and X has the approximation property, so $\mathcal{A}(X) = \mathcal{K}(X)$.
 - (ii) General fact for any X: If \mathcal{I} is a closed subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- How about non-trivial closed subideals of L(X) for X = L^p(0, 1), where 1 ≤ p < ∞, p ≠ 2 or X = C(0, 1)? In these cases, L(X) has plenty of closed ideals.

Theorem (Tylli & W. 2024)

- (i) are pairwise non-isomorphic as Banach algebras, or
- (ii) contains pairs of isomorphic Banach algebras.

- Question: Non-trivial closed subideals of $\mathcal{L}(X)$ for classical Banach spaces X?
- If X = ℓ^p, 1 ≤ p < ∞ or X = c₀, then L(X) does not have any non-trivial closed subideals. Reason:
 - (i) In these cases $\mathcal{K}(X)$ is the unique non-trivial closed ideal of $\mathcal{L}(X)$, and X has the approximation property, so $\mathcal{A}(X) = \mathcal{K}(X)$.
 - (ii) General fact for any X: If \mathcal{I} is a closed subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- How about non-trivial closed subideals of L(X) for X = L^p(0,1), where 1 ≤ p < ∞, p ≠ 2 or X = C(0,1)? In these cases, L(X) has plenty of closed ideals.

Theorem (Tylli & W. 2024)

- (i) are pairwise non-isomorphic as Banach algebras, or
- (ii) contains pairs of isomorphic Banach algebras.

- Question: Non-trivial closed subideals of $\mathcal{L}(X)$ for classical Banach spaces X?
- If X = ℓ^p, 1 ≤ p < ∞ or X = c₀, then L(X) does not have any non-trivial closed subideals. Reason:
 - (i) In these cases $\mathcal{K}(X)$ is the unique non-trivial closed ideal of $\mathcal{L}(X)$, and X has the approximation property, so $\mathcal{A}(X) = \mathcal{K}(X)$.
 - (ii) General fact for any X: If \mathcal{I} is a closed subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- How about non-trivial closed subideals of L(X) for X = L^p(0,1), where 1 ≤ p < ∞, p ≠ 2 or X = C(0,1)? In these cases, L(X) has plenty of closed ideals.

Theorem (Tylli & W. 2024)

- (i) are pairwise non-isomorphic as Banach algebras, or
- (ii) contains pairs of isomorphic Banach algebras.

- Question: Non-trivial closed subideals of $\mathcal{L}(X)$ for classical Banach spaces X?
- If X = ℓ^p, 1 ≤ p < ∞ or X = c₀, then L(X) does not have any non-trivial closed subideals. Reason:
 - (i) In these cases $\mathcal{K}(X)$ is the unique non-trivial closed ideal of $\mathcal{L}(X)$, and X has the approximation property, so $\mathcal{A}(X) = \mathcal{K}(X)$.
 - (ii) General fact for any X: If \mathcal{I} is a closed subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- How about non-trivial closed subideals of L(X) for X = L^p(0,1), where 1 ≤ p < ∞, p ≠ 2 or X = C(0,1)? In these cases, L(X) has plenty of closed ideals.

Theorem (Tylli & W. 2024)

- (i) are pairwise non-isomorphic as Banach algebras, or
- (ii) contains pairs of isomorphic Banach algebras.

- Question: Non-trivial closed subideals of $\mathcal{L}(X)$ for classical Banach spaces X?
- If X = ℓ^p, 1 ≤ p < ∞ or X = c₀, then L(X) does not have any non-trivial closed subideals. Reason:
 - (i) In these cases $\mathcal{K}(X)$ is the unique non-trivial closed ideal of $\mathcal{L}(X)$, and X has the approximation property, so $\mathcal{A}(X) = \mathcal{K}(X)$.
 - (ii) General fact for any X: If \mathcal{I} is a closed subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- How about non-trivial closed subideals of L(X) for X = L^p(0,1), where 1 ≤ p < ∞, p ≠ 2 or X = C(0,1)? In these cases, L(X) has plenty of closed ideals.

Theorem (Tylli & W. 2024)

- (i) are pairwise non-isomorphic as Banach algebras, or
- (ii) contains pairs of isomorphic Banach algebras.

- Question: Non-trivial closed subideals of $\mathcal{L}(X)$ for classical Banach spaces X?
- If X = ℓ^p, 1 ≤ p < ∞ or X = c₀, then L(X) does not have any non-trivial closed subideals. Reason:
 - (i) In these cases $\mathcal{K}(X)$ is the unique non-trivial closed ideal of $\mathcal{L}(X)$, and X has the approximation property, so $\mathcal{A}(X) = \mathcal{K}(X)$.
 - (ii) General fact for any X: If \mathcal{I} is a closed subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- How about non-trivial closed subideals of L(X) for X = L^p(0,1), where 1 ≤ p < ∞, p ≠ 2 or X = C(0,1)? In these cases, L(X) has plenty of closed ideals.

Theorem (Tylli & W. 2024)

- (i) are pairwise non-isomorphic as Banach algebras, or
- (ii) contains pairs of isomorphic Banach algebras.

Let \mathcal{I} be a closed subalgebra of $\mathcal{L}(X)$ and $n \in \mathbb{N}$. We call \mathcal{I} a closed *n*-subideal of $\mathcal{L}(X)$ if there are closed subalgebras $\mathcal{J}_0, \ldots, \mathcal{J}_n$ of $\mathcal{L}(X)$ such that

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X)$$
(2)

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- (Shulman & Turovskii '14) Algebraic *n*-subideals of Banach algebras.
- Closed 1-subideals *I* ⊂ *L*(*X*) correspond to closed ideals of *L*(*X*) and closed 2-subideals are the closed subideals from the previous slides.
- If I is a closed n-subideal of L(X), then I is a closed (n + 1)-subideal. Reason: Define J_{n+1} := J_n = I in (2).

How about the converse: Are there closed (n + 1)-subideals of $\mathcal{L}(X)$ that are not closed *n*-subideals of $\mathcal{L}(X)$?

Let \mathcal{I} be a closed subalgebra of $\mathcal{L}(X)$ and $n \in \mathbb{N}$. We call \mathcal{I} a closed *n*-subideal of $\mathcal{L}(X)$ if there are closed subalgebras $\mathcal{J}_0, \ldots, \mathcal{J}_n$ of $\mathcal{L}(X)$ such that

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X)$$
(2)

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- (Shulman & Turovskii '14) Algebraic *n*-subideals of Banach algebras.
- Closed 1-subideals $\mathcal{I} \subset \mathcal{L}(X)$ correspond to closed ideals of $\mathcal{L}(X)$ and closed 2-subideals are the closed subideals from the previous slides.
- If *I* is a closed *n*-subideal of *L*(*X*), then *I* is a closed (*n*+1)-subideal. Reason: Define *J*_{n+1} := *J*_n = *I* in (2).

How about the converse: Are there closed (n + 1)-subideals of $\mathcal{L}(X)$ that are not closed *n*-subideals of $\mathcal{L}(X)$?

Let \mathcal{I} be a closed subalgebra of $\mathcal{L}(X)$ and $n \in \mathbb{N}$. We call \mathcal{I} a closed *n*-subideal of $\mathcal{L}(X)$ if there are closed subalgebras $\mathcal{J}_0, \ldots, \mathcal{J}_n$ of $\mathcal{L}(X)$ such that

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X)$$
(2)

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- (Shulman & Turovskii '14) Algebraic *n*-subideals of Banach algebras.
- Closed 1-subideals $\mathcal{I} \subset \mathcal{L}(X)$ correspond to closed ideals of $\mathcal{L}(X)$ and closed 2-subideals are the closed subideals from the previous slides.
- If *I* is a closed *n*-subideal of *L*(*X*), then *I* is a closed (*n*+1)-subideal. Reason: Define *J*_{n+1} := *J*_n = *I* in (2).

How about the converse: Are there closed (n + 1)-subideals of $\mathcal{L}(X)$ that are not closed *n*-subideals of $\mathcal{L}(X)$?

Let \mathcal{I} be a closed subalgebra of $\mathcal{L}(X)$ and $n \in \mathbb{N}$. We call \mathcal{I} a closed *n*-subideal of $\mathcal{L}(X)$ if there are closed subalgebras $\mathcal{J}_0, \ldots, \mathcal{J}_n$ of $\mathcal{L}(X)$ such that

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X)$$
(2)

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- (Shulman & Turovskii '14) Algebraic *n*-subideals of Banach algebras.
- Closed 1-subideals $\mathcal{I} \subset \mathcal{L}(X)$ correspond to closed ideals of $\mathcal{L}(X)$ and closed 2-subideals are the closed subideals from the previous slides.
- If *I* is a closed *n*-subideal of *L*(*X*), then *I* is a closed (*n* + 1)-subideal. Reason: Define *J*_{n+1} := *J*_n = *I* in (2).

How about the converse: Are there closed (n + 1)-subideals of $\mathcal{L}(X)$ that are not closed *n*-subideals of $\mathcal{L}(X)$?

Let \mathcal{I} be a closed subalgebra of $\mathcal{L}(X)$ and $n \in \mathbb{N}$. We call \mathcal{I} a closed *n*-subideal of $\mathcal{L}(X)$ if there are closed subalgebras $\mathcal{J}_0, \ldots, \mathcal{J}_n$ of $\mathcal{L}(X)$ such that

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X)$$
(2)

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- (Shulman & Turovskii '14) Algebraic *n*-subideals of Banach algebras.
- Closed 1-subideals $\mathcal{I} \subset \mathcal{L}(X)$ correspond to closed ideals of $\mathcal{L}(X)$ and closed 2-subideals are the closed subideals from the previous slides.
- If *I* is a closed *n*-subideal of *L*(*X*), then *I* is a closed (*n*+1)-subideal. Reason: Define *J*_{n+1} := *J*_n = *I* in (2).

How about the converse: Are there closed (n + 1)-subideals of $\mathcal{L}(X)$ that are not closed *n*-subideals of $\mathcal{L}(X)$?

Let \mathcal{I} be a closed subalgebra of $\mathcal{L}(X)$ and $n \in \mathbb{N}$. We call \mathcal{I} a closed *n*-subideal of $\mathcal{L}(X)$ if there are closed subalgebras $\mathcal{J}_0, \ldots, \mathcal{J}_n$ of $\mathcal{L}(X)$ such that

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X)$$
(2)

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- (Shulman & Turovskii '14) Algebraic *n*-subideals of Banach algebras.
- Closed 1-subideals $\mathcal{I} \subset \mathcal{L}(X)$ correspond to closed ideals of $\mathcal{L}(X)$ and closed 2-subideals are the closed subideals from the previous slides.
- If *I* is a closed *n*-subideal of *L*(*X*), then *I* is a closed (*n*+1)-subideal. Reason: Define *J*_{n+1} := *J*_n = *I* in (2).

How about the converse: Are there closed (n + 1)-subideals of $\mathcal{L}(X)$ that are not closed *n*-subideals of $\mathcal{L}(X)$?

• If H is a Hilbert space, then every closed *n*-subideals of $\mathcal{L}(H)$ is a closed ideals of $\mathcal{L}(H)$.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X),$$

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

• If \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.

• The closed subalgebra

$$\mathcal{M} := \mathcal{A}(X) + \mathbb{K} Id \subset \mathcal{L}(X)$$

is not a closed *n*-subideal of $\mathcal{L}(X)$ for any $n \in \mathbb{N}$ when $\mathcal{M} \neq \mathcal{L}(X)$.

Lemma

Let \mathcal{M} be a closed subalgebra of a non-unital Banach algebra \mathcal{A} . Let $n \geq 2$ and suppose

 $a_1,\ldots,a_n\in\mathcal{A}\Rightarrow a_1\cdots a_n\in\mathcal{M}.$

Then \mathcal{M} is a closed (n-1)-subideal of \mathcal{A} .

In particular: if $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals and \mathcal{J}/\mathcal{I} is n-nilpotent, then any closed subalgebra $\mathcal{I} \subset \mathcal{M} \subset \mathcal{J}$ is a closed n-subideal of $\mathcal{L}(X)$.

* \mathcal{J}/\mathcal{I} is *n*-nilpotent: $T_1, \ldots, T_n \in \mathcal{J} \Rightarrow T_1 \cdots T_n \in \mathcal{I}$. Sketch of proof: Define $\mathcal{J}_0 = \mathcal{A}$ and successively $\mathcal{J}_k = [\mathcal{M} \cap \mathcal{J}_{k-1}]_{\mathcal{J}_{k-1}} = [\mathcal{M}]_{\mathcal{J}_{k-1}}$ for $k = 1, \ldots, n-2$. Then $\mathcal{M} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-2} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \stackrel{cl.ideal}{\subset} \mathcal{J}_0 = \mathcal{A}$.

6/10

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X),$$

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

• If \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.

The closed subalgebra

$$\mathcal{M} := \mathcal{A}(X) + \mathbb{K} Id \subset \mathcal{L}(X)$$

is not a closed *n*-subideal of $\mathcal{L}(X)$ for any $n \in \mathbb{N}$ when $\mathcal{M} \neq \mathcal{L}(X)$.

Lemma

Let \mathcal{M} be a closed subalgebra of a non-unital Banach algebra \mathcal{A} . Let $n \geq 2$ and suppose

$$a_1,\ldots,a_n\in\mathcal{A}\Rightarrow a_1\cdots a_n\in\mathcal{M}.$$

Then \mathcal{M} is a closed (n-1)-subideal of \mathcal{A} .

In particular: if $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals and \mathcal{J}/\mathcal{I} is n-nilpotent, then any closed subalgebra $\mathcal{I} \subset \mathcal{M} \subset \mathcal{J}$ is a closed n-subideal of $\mathcal{L}(X)$.

* \mathcal{J}/\mathcal{I} is *n*-nilpotent: $T_1, \ldots, T_n \in \mathcal{J} \Rightarrow T_1 \cdots T_n \in \mathcal{I}$. Sketch of proof: Define $\mathcal{J}_0 = \mathcal{A}$ and successively $\mathcal{J}_k = [\mathcal{M} \cap \mathcal{J}_{k-1}]_{\mathcal{J}_{k-1}} = [\mathcal{M}]_{\mathcal{J}_{k-1}}$ for $k = 1, \ldots, n-2$. Then $\mathcal{M} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-2} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \stackrel{cl.ideal}{\subset} \mathcal{J}_0 = \mathcal{A}$.

6/10

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X),$$

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- If \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- The closed subalgebra

$$\mathcal{M} := \mathcal{A}(X) + \mathbb{K} Id \subset \mathcal{L}(X)$$

is not a closed *n*-subideal of $\mathcal{L}(X)$ for any $n \in \mathbb{N}$ when $\mathcal{M} \neq \mathcal{L}(X)$.

Lemma

Let \mathcal{M} be a closed subalgebra of a non-unital Banach algebra \mathcal{A} . Let $n \geq 2$ and suppose

 $a_1,\ldots,a_n\in\mathcal{A}\Rightarrow a_1\cdots a_n\in\mathcal{M}.$

Then \mathcal{M} is a closed (n-1)-subideal of \mathcal{A} .

In particular: if $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals and \mathcal{J}/\mathcal{I} is n-nilpotent, then any closed subalgebra $\mathcal{I} \subset \mathcal{M} \subset \mathcal{J}$ is a closed n-subideal of $\mathcal{L}(X)$.

* \mathcal{J}/\mathcal{I} is *n*-nilpotent: $T_1, \ldots, T_n \in \mathcal{J} \Rightarrow T_1 \cdots T_n \in \mathcal{I}$. Sketch of proof: Define $\mathcal{J}_0 = \mathcal{A}$ and successively $\mathcal{J}_k = [\mathcal{M} \cap \mathcal{J}_{k-1}]_{\mathcal{J}_{k-1}} = [\mathcal{M}]_{\mathcal{J}_{k-1}}$ for $k = 1, \ldots, n-2$. Then $\mathcal{M} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-2} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \stackrel{cl.ideal}{\subset} \mathcal{J}_0 = \mathcal{A}$.

6/10

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X),$$

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- If \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- The closed subalgebra

$$\mathcal{M} := \mathcal{A}(X) + \mathbb{K} \mathit{Id} \subset \mathcal{L}(X)$$

is not a closed *n*-subideal of $\mathcal{L}(X)$ for any $n \in \mathbb{N}$ when $\mathcal{M} \neq \mathcal{L}(X)$.

Lemma

Let \mathcal{M} be a closed subalgebra of a non-unital Banach algebra \mathcal{A} . Let $n \geq 2$ and suppose

$$a_1,\ldots,a_n\in\mathcal{A}\Rightarrow a_1\cdots a_n\in\mathcal{M}.$$

Then \mathcal{M} is a closed (n-1)-subideal of \mathcal{A} .

In particular: if $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals and \mathcal{J}/\mathcal{I} is n-nilpotent, then any closed subalgebra $\mathcal{I} \subset \mathcal{M} \subset \mathcal{J}$ is a closed n-subideal of $\mathcal{L}(X)$.

* \mathcal{J}/\mathcal{I} is *n*-nilpotent: $T_1, \ldots, T_n \in \mathcal{J} \Rightarrow T_1 \cdots T_n \in \mathcal{I}$. Sketch of proof: Define $\mathcal{J}_0 = \mathcal{A}$ and successively $\mathcal{J}_k = [\mathcal{M} \cap \mathcal{J}_{k-1}]_{\mathcal{J}_{k-1}} = [\mathcal{M}]_{\mathcal{J}_{k-1}}$ for $k = 1, \ldots, n-2$. Then $\mathcal{M} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-2} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \stackrel{cl.ideal}{\subset} \mathcal{J}_0 = \mathcal{A}$.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X),$$

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- If \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- The closed subalgebra

$$\mathcal{M} := \mathcal{A}(X) + \mathbb{K} \mathit{Id} \subset \mathcal{L}(X)$$

is not a closed *n*-subideal of $\mathcal{L}(X)$ for any $n \in \mathbb{N}$ when $\mathcal{M} \neq \mathcal{L}(X)$.

Lemma

Let \mathcal{M} be a closed subalgebra of a non-unital Banach algebra \mathcal{A} . Let $n \geq 2$ and suppose

$$a_1,\ldots,a_n\in\mathcal{A}\Rightarrow a_1\cdots a_n\in\mathcal{M}.$$

Then \mathcal{M} is a closed (n-1)-subideal of \mathcal{A} .

In particular: if $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals and \mathcal{J}/\mathcal{I} is n-nilpotent, then any closed subalgebra $\mathcal{I} \subset \mathcal{M} \subset \mathcal{J}$ is a closed n-subideal of $\mathcal{L}(X)$.

* \mathcal{J}/\mathcal{I} is *n*-nilpotent: $T_1, \ldots, T_n \in \mathcal{J} \Rightarrow T_1 \cdots T_n \in \mathcal{I}$.

Sketch of proof: Define $\mathcal{J}_0 = \mathcal{A}$ and successively $\mathcal{J}_k = [\mathcal{M} \cap \mathcal{J}_{k-1}]_{\mathcal{J}_{k-1}} = [\mathcal{M}]_{\mathcal{J}_{k-1}}$ for $k = 1, \dots, n-2$. Then $\mathcal{M} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-2} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \stackrel{cl.ideal}{\subset} \mathcal{J}_0 = \mathcal{A}.$

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} = \mathcal{J}_n \subset \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{J}_0 = \mathcal{L}(X),$$

where \mathcal{J}_k is an ideal of \mathcal{J}_{k-1} for all $k = 1, \ldots, n$.

- If \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$, then $\mathcal{A}(X) \subset \mathcal{I}$.
- The closed subalgebra

$$\mathcal{M} := \mathcal{A}(X) + \mathbb{K} Id \subset \mathcal{L}(X)$$

is not a closed *n*-subideal of $\mathcal{L}(X)$ for any $n \in \mathbb{N}$ when $\mathcal{M} \neq \mathcal{L}(X)$.

Lemma

Let \mathcal{M} be a closed subalgebra of a non-unital Banach algebra \mathcal{A} . Let $n \geq 2$ and suppose

$$a_1,\ldots,a_n\in\mathcal{A}\Rightarrow a_1\cdots a_n\in\mathcal{M}.$$

Then \mathcal{M} is a closed (n-1)-subideal of \mathcal{A} .

In particular: if $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals and \mathcal{J}/\mathcal{I} is n-nilpotent, then any closed subalgebra $\mathcal{I} \subset \mathcal{M} \subset \mathcal{J}$ is a closed n-subideal of $\mathcal{L}(X)$.

* \mathcal{J}/\mathcal{I} is *n*-nilpotent: $T_1, \ldots, T_n \in \mathcal{J} \Rightarrow T_1 \cdots T_n \in \mathcal{I}$. Sketch of proof: Define $\mathcal{J}_0 = \mathcal{A}$ and successively $\mathcal{J}_k = [\mathcal{M} \cap \mathcal{J}_{k-1}]_{\mathcal{J}_{k-1}} = [\mathcal{M}]_{\mathcal{J}_{k-1}}$ for $k = 1, \ldots, n-2$. Then $\mathcal{M} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-2} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \stackrel{cl.ideal}{\subset} \mathcal{J}_0 = \mathcal{A}.$ _{6/10}

Example

Let $n \geq 2$ and $1 \leq p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Sketch of proof:

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent:

 $S(X) = \begin{bmatrix} S(\ell^{p_1}) & S(\ell^{p_2}, \ell^{p_1}) & \cdots & S(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & S(\ell^{p_2}) & \cdots & S(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & S(\ell^{p_n}) \end{bmatrix} = \begin{bmatrix} \mathcal{K}(\ell^{p_1}) & \mathcal{K}(\ell^{p_2}, \ell^{p_1}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & \mathcal{K}(\ell^{p_2}, \ell^{p_n}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & \mathcal{K}(\ell^{p_n}) \end{bmatrix}$

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$:

Let $i_k : \ell^{p_k} \to \ell^{p_{k+1}}$ be the inclusion map. Then

$$T = \sum_{k=1}^{n-1} J_{k+1} i_k P_k \in \mathcal{S}(X) \quad (T : (x_1, \dots, x_n) \mapsto (0, i_1 x_1, \dots, i_{n-1} x_{n-1})), \text{ and}$$

Example

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Sketch of proof:

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent:

 $S(X) = \begin{bmatrix} S(\ell^{p_1}) & S(\ell^{p_2}, \ell^{p_1}) & \cdots & S(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & S(\ell^{p_2}) & \cdots & S(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & S(\ell^{p_n}) \end{bmatrix} = \begin{bmatrix} \mathcal{K}(\ell^{p_1}) & \mathcal{K}(\ell^{p_2}, \ell^{p_1}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & \mathcal{K}(\ell^{p_2}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & \mathcal{K}(\ell^{p_n}) \end{bmatrix}$

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$:

Let $i_k : \ell^{p_k} \to \ell^{p_{k+1}}$ be the inclusion map. Then

$$T = \sum_{k=1}^{n-1} J_{k+1} i_k P_k \in \mathcal{S}(X) \quad (T : (x_1, \dots, x_n) \mapsto (0, i_1 x_1, \dots, i_{n-1} x_{n-1})), \text{ and}$$

Example

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Sketch of proof:

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent:

 $S(X) = \begin{bmatrix} S(\ell^{p_1}) & S(\ell^{p_2}, \ell^{p_1}) & \cdots & S(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & S(\ell^{p_2}) & \cdots & S(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & S(\ell^{p_n}) \end{bmatrix} = \begin{bmatrix} \mathcal{K}(\ell^{p_1}) & \mathcal{K}(\ell^{p_2}, \ell^{p_1}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_2}) \\ S(\ell^{p_1}, \ell^{p_2}) & \mathcal{K}(\ell^{p_2}, \ell^{p_n}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & \mathcal{K}(\ell^{p_n}) \end{bmatrix}$

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$:

Let $i_k : \ell^{p_k} \to \ell^{p_{k+1}}$ be the inclusion map. Then

$$T = \sum_{k=1}^{n-1} J_{k+1} i_k P_k \in \mathcal{S}(X) \quad (T : (x_1, \dots, x_n) \mapsto (0, i_1 x_1, \dots, i_{n-1} x_{n-1})), \text{ and }$$

Example

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Sketch of proof:

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent:

$$S(X) = \begin{bmatrix} S(\ell^{p_1}) & S(\ell^{p_2}, \ell^{p_1}) & \cdots & S(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & S(\ell^{p_2}) & \cdots & S(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & S(\ell^{p_n}) \end{bmatrix} = \begin{bmatrix} \mathcal{K}(\ell^{p_1}) & \mathcal{K}(\ell^{p_2}, \ell^{p_1}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & \mathcal{K}(\ell^{p_2}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & S(\ell^{p_n}) \end{bmatrix}$$

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$:

Let $i_k : \ell^{p_k} \to \ell^{p_{k+1}}$ be the inclusion map. Then

$$T = \sum_{k=1}^{n-1} J_{k+1} i_k P_k \in \mathcal{S}(X) \quad (T : (x_1, \dots, x_n) \mapsto (0, i_1 x_1, \dots, i_{n-1} x_{n-1})), \text{ and }$$

Example

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Sketch of proof:

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent:

$$S(X) = \begin{bmatrix} S(\ell^{p_1}) & S(\ell^{p_2}, \ell^{p_1}) & \cdots & S(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & S(\ell^{p_2}) & \cdots & S(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & S(\ell^{p_n}) \end{bmatrix} = \begin{bmatrix} \mathcal{K}(\ell^{p_1}) & \mathcal{K}(\ell^{p_2}, \ell^{p_1}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & \mathcal{K}(\ell^{p_2}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & \mathcal{K}(\ell^{p_n}) \end{bmatrix}$$

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$:

Let $i_k : \ell^{p_k} \to \ell^{p_{k+1}}$ be the inclusion map. Then

$$T = \sum_{k=1}^{n-1} J_{k+1} i_k P_k \in \mathcal{S}(X) \quad (T : (x_1, \dots, x_n) \mapsto (0, i_1 x_1, \dots, i_{n-1} x_{n-1})), \text{ and}$$

Example

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Sketch of proof:

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent:

$$S(X) = \begin{bmatrix} S(\ell^{p_1}) & S(\ell^{p_2}, \ell^{p_1}) & \cdots & S(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & S(\ell^{p_2}) & \cdots & S(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & S(\ell^{p_n}) \end{bmatrix} = \begin{bmatrix} \mathcal{K}(\ell^{p_1}) & \mathcal{K}(\ell^{p_2}, \ell^{p_1}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_1}) \\ S(\ell^{p_1}, \ell^{p_2}) & \mathcal{K}(\ell^{p_2}) & \cdots & \mathcal{K}(\ell^{p_n}, \ell^{p_2}) \\ \vdots & \vdots & \ddots & \vdots \\ S(\ell^{p_1}, \ell^{p_n}) & S(\ell^{p_2}, \ell^{p_n}) & \cdots & \mathcal{K}(\ell^{p_n}) \end{bmatrix}$$

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$:

Let $i_k: \ell^{p_k} \to \ell^{p_{k+1}}$ be the inclusion map. Then

$$T = \sum_{k=1}^{n-1} J_{k+1} i_k P_k \in \mathcal{S}(X) \quad (T : (x_1, \dots, x_n) \mapsto (0, i_1 x_1, \dots, i_{n-1} x_{n-1})), \text{ and}$$

$$T^{n-1} = J_n i_{n-1} \circ \dots \circ i_1 P_1 \notin \mathcal{K}(X) \quad (T^{n-1} : (x_1, \dots, x_n) \mapsto (0, \dots, 0, i_{n-1} \cdots i_1 x_1).$$

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent. \checkmark

Lemma. Suppose $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, \mathcal{J}/\mathcal{I} is *n*-nilpotent and $\mathcal{I} \subset M \subset \mathcal{J}$ is a closed subalgebra. Then *M* is a closed *n*-subideal of $\mathcal{L}(X)$. \checkmark

Define $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{S}(X \oplus X)$ and

$$M = span\{U, \ldots, U^{n-1}\} + \mathcal{K}(X \oplus X).$$

Step 3. *M* is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$:

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent. \checkmark

Lemma. Suppose $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, \mathcal{J}/\mathcal{I} is *n*-nilpotent and $\mathcal{I} \subset M \subset \mathcal{J}$ is a closed subalgebra. Then *M* is a closed *n*-subideal of $\mathcal{L}(X)$. \checkmark Define $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{S}(X \oplus X)$ and $M = span\{U, \dots, U^{n-1}\} + \mathcal{K}(X \oplus X).$

Step 3. *M* is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$:

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent. \checkmark

Lemma. Suppose $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, \mathcal{J}/\mathcal{I} is *n*-nilpotent and $\mathcal{I} \subset M \subset \mathcal{J}$ is a closed subalgebra. Then *M* is a closed *n*-subideal of $\mathcal{L}(X)$. \checkmark Define $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{S}(X \oplus X)$ and $M = span\{U, \dots, U^{n-1}\} + \mathcal{K}(X \oplus X).$

Step 3. *M* is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$:

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define

$$X=\ell^{p_1}\oplus\cdots\oplus\ell^{p_n}.$$

Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 1. $S(X)/\mathcal{K}(X)$ is *n*-nilpotent. \checkmark

Lemma. Suppose $\mathcal{I} \subset \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals, \mathcal{J}/\mathcal{I} is *n*-nilpotent and $\mathcal{I} \subset M \subset \mathcal{J}$ is a closed subalgebra. Then *M* is a closed *n*-subideal of $\mathcal{L}(X)$. \checkmark Define $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{S}(X \oplus X)$ and $M = span\{U, \dots, U^{n-1}\} + \mathcal{K}(X \oplus X).$

Step 3. *M* is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$:

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define $X = \ell^{p_1} \oplus \cdots \oplus \ell^{p_n}$. Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$. \checkmark

Step 3. $M := span\{U, \dots, U^{n-1}\} + \mathcal{K}(X \oplus X)$ is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$, where $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix}$.

Step 4. Assume *M* is a closed (n-1)-subideal of $\mathcal{L}(X \oplus X)$:

$$M = \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{L}(X \oplus X).$$

Then

$$\begin{bmatrix} 0 & 0 \\ T^{n-1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ Id & 0 \end{bmatrix} \circ \underbrace{U \circ \cdots \circ U}_{n-1} \in M = \begin{bmatrix} span\{T, \dots, T^{n-1}\} + \mathcal{K}(X) & \mathcal{K}(X) \\ \mathcal{K}(X) & \mathcal{K}(X) \end{bmatrix},$$

so $T^{n-1} \in \mathcal{K}(X)$, which contradicts Step 2.

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define $X = \ell^{p_1} \oplus \cdots \oplus \ell^{p_n}$. Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$. \checkmark

Step 3. $M := span\{U, ..., U^{n-1}\} + \mathcal{K}(X \oplus X)$ is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$, where $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix}$. \checkmark

Step 4. Assume *M* is a closed (n-1)-subideal of $\mathcal{L}(X \oplus X)$:

$$M = \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{L}(X \oplus X).$$

Then

$$\begin{bmatrix} 0 & 0 \\ T^{n-1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ Id & 0 \end{bmatrix} \circ \underbrace{U \circ \cdots \circ U}_{n-1} \in M = \begin{bmatrix} span\{T, \dots, T^{n-1}\} + \mathcal{K}(X) & \mathcal{K}(X) \\ \mathcal{K}(X) & \mathcal{K}(X) \end{bmatrix},$$

so $T^{n-1} \in \mathcal{K}(X)$, which contradicts Step 2.

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define $X = \ell^{p_1} \oplus \cdots \oplus \ell^{p_n}$. Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$. \checkmark

Step 3. $M := span\{U, \dots, U^{n-1}\} + \mathcal{K}(X \oplus X)$ is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$, where $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix}$.

Step 4. Assume *M* is a closed (n-1)-subideal of $\mathcal{L}(X \oplus X)$:

$$M = \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{L}(X \oplus X).$$

Then

$$\begin{bmatrix} 0 & 0 \\ T^{n-1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ Id & 0 \end{bmatrix} \circ \underbrace{U \circ \cdots \circ U}_{n-1} \in M = \begin{bmatrix} span\{T, \dots, T^{n-1}\} + \mathcal{K}(X) & \mathcal{K}(X) \\ \mathcal{K}(X) & \mathcal{K}(X) \end{bmatrix},$$

so $T^{n-1} \in \mathcal{K}(X)$, which contradicts Step 2.

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define $X = \ell^{p_1} \oplus \cdots \oplus \ell^{p_n}$. Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$. \checkmark

Step 3. $M := span\{U, \dots, U^{n-1}\} + \mathcal{K}(X \oplus X)$ is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$, where $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix}$.

Step 4. Assume *M* is a closed (n-1)-subideal of $\mathcal{L}(X \oplus X)$:

$$M = \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{L}(X \oplus X).$$

Then

$$\begin{bmatrix} 0 & 0 \\ T^{n-1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ Id & 0 \end{bmatrix} \circ \underbrace{U \circ \cdots \circ U}_{n-1} \in M = \begin{bmatrix} span\{T, \dots, T^{n-1}\} + \mathcal{K}(X) & \mathcal{K}(X) \\ \mathcal{K}(X) & \mathcal{K}(X) \end{bmatrix},$$

so $T^{n-1} \in \mathcal{K}(X)$, which contradicts Step 2.

Let $n \ge 2$ and $1 \le p_1 < p_2 < \ldots < p_n$, and define $X = \ell^{p_1} \oplus \cdots \oplus \ell^{p_n}$. Then there is a closed n-subideal of $\mathcal{L}(X)$ which is not an (n-1)-subideal of $\mathcal{L}(X)$.

Step 2. There is $T \in \mathcal{S}(X)$ such that $T^{n-1} \notin \mathcal{K}(X)$. \checkmark

Step 3. $M := span\{U, ..., U^{n-1}\} + \mathcal{K}(X \oplus X)$ is a closed *n*-subideal of $\mathcal{L}(X \oplus X)$, where $U = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix}$. \checkmark

Step 4. Assume *M* is a closed (n-1)-subideal of $\mathcal{L}(X \oplus X)$:

$$M = \mathcal{J}_{n-1} \subset \cdots \subset \mathcal{J}_1 \subset \mathcal{L}(X \oplus X).$$

Then

$$\begin{bmatrix} 0 & 0 \\ T^{n-1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ Id & 0 \end{bmatrix} \circ \underbrace{U \circ \cdots \circ U}_{n-1} \in M = \begin{bmatrix} span\{T, \dots, T^{n-1}\} + \mathcal{K}(X) & \mathcal{K}(X) \\ \mathcal{K}(X) & \mathcal{K}(X) \end{bmatrix},$$

so $T^{n-1} \in \mathcal{K}(X)$, which contradicts Step 2.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-1} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \subset \mathcal{L}(X).$$
(3)

- Examples inside the compact operators?
- Recall: there is a Banach space Z with a large family ℑ of non-trivial closed K(Z)-subideals of L(Z).
- Question: for given n ≥ 3, is there a space X for which L(X) contains a closed n-subideal M of L(X), where J₁ = K(X) in (3), which is not an (n − 1)-subideal of L(X)?

Example

Let $n \ge 2$ and $2(n-1) . Let <math>\mathcal{QN}_p$ denote the quasi p-nuclear operators. Then there is a closed subspace $X \subseteq c_0$ for which $\mathcal{L}(X)$ contains a closed n-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \overline{\mathcal{QN}_p(X)}$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$.

• $T \in \mathcal{L}(X, Y)$ is quasi *p*-nuclear if there is $(x_k^*) \subset \ell^p(X^*)$ such that $||Tx|| \leq \left(\sum_{k=1}^{\infty} |x_k^*(x)|^p\right)^{1/p}$ for all $x \in X$. (Persson & Pietsch '69) * Fact: $\mathcal{QN}_p(X, Y) \subset \mathcal{K}(X, Y)$.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-1} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \subset \mathcal{L}(X).$$
(3)

• Examples inside the compact operators?

- Recall: there is a Banach space Z with a large family ℑ of non-trivial closed K(Z)-subideals of L(Z).
- Question: for given $n \ge 3$, is there a space X for which $\mathcal{L}(X)$ contains a closed *n*-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \mathcal{K}(X)$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$?

Example

Let $n \ge 2$ and $2(n-1) . Let <math>\mathcal{QN}_p$ denote the quasi p-nuclear operators. Then there is a closed subspace $X \subseteq c_0$ for which $\mathcal{L}(X)$ contains a closed n-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \overline{\mathcal{QN}_p(X)}$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$.

• $T \in \mathcal{L}(X, Y)$ is quasi *p*-nuclear if there is $(x_k^*) \subset \ell^p(X^*)$ such that $||Tx|| \leq \left(\sum_{k=1}^{\infty} |x_k^*(x)|^p\right)^{1/p}$ for all $x \in X$. (Persson & Pietsch '69) * Fact: $\mathcal{QN}_p(X, Y) \subset \mathcal{K}(X, Y)$.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-1} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \subset \mathcal{L}(X).$$
(3)

- Examples inside the compact operators?
- Recall: there is a Banach space Z with a large family ℑ of non-trivial closed K(Z)-subideals of L(Z).
- Question: for given $n \ge 3$, is there a space X for which $\mathcal{L}(X)$ contains a closed *n*-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \mathcal{K}(X)$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$?

Example

Let $n \ge 2$ and $2(n-1) . Let <math>\mathcal{QN}_p$ denote the quasi p-nuclear operators. Then there is a closed subspace $X \subseteq c_0$ for which $\mathcal{L}(X)$ contains a closed n-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \overline{\mathcal{QN}_p(X)}$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$.

• $T \in \mathcal{L}(X, Y)$ is quasi *p*-nuclear if there is $(x_k^*) \subset \ell^p(X^*)$ such that $||Tx|| \leq \left(\sum_{k=1}^{\infty} |x_k^*(x)|^p\right)^{1/p}$ for all $x \in X$. (Persson & Pietsch '69) * Fact: $\mathcal{QN}_p(X, Y) \subset \mathcal{K}(X, Y)$.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-1} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \subset \mathcal{L}(X).$$
(3)

- Examples inside the compact operators?
- Recall: there is a Banach space Z with a large family ℑ of non-trivial closed K(Z)-subideals of L(Z).
- Question: for given n ≥ 3, is there a space X for which L(X) contains a closed n-subideal M of L(X), where J₁ = K(X) in (3), which is not an (n − 1)-subideal of L(X)?

Example

Let $n \ge 2$ and $2(n-1) . Let <math>QN_p$ denote the quasi p-nuclear operators. Then there is a closed subspace $X \subseteq c_0$ for which $\mathcal{L}(X)$ contains a closed n-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \overline{QN_p(X)}$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$.

• $T \in \mathcal{L}(X, Y)$ is quasi *p*-nuclear if there is $(x_k^*) \subset \ell^p(X^*)$ such that $||Tx|| \leq \left(\sum_{k=1}^{\infty} |x_k^*(x)|^p\right)^{1/p}$ for all $x \in X$. (Persson & Pietsch '69) * Fact: $\mathcal{QN}_p(X, Y) \subset \mathcal{K}(X, Y)$.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-1} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \subset \mathcal{L}(X).$$
(3)

- Examples inside the compact operators?
- Recall: there is a Banach space Z with a large family 3 of non-trivial closed K(Z)-subideals of L(Z).
- Question: for given $n \ge 3$, is there a space X for which $\mathcal{L}(X)$ contains a closed *n*-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \mathcal{K}(X)$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$?

Example

Let $n \ge 2$ and $2(n-1) . Let <math>\mathcal{QN}_p$ denote the quasi p-nuclear operators. Then there is a closed subspace $X \subset c_0$ for which $\mathcal{L}(X)$ contains a closed n-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \overline{\mathcal{QN}_p(X)}$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$.

• $T \in \mathcal{L}(X, Y)$ is quasi *p*-nuclear if there is $(x_k^*) \subset \ell^p(X^*)$ such that $||Tx|| \leq \left(\sum_{k=1}^{\infty} |x_k^*(x)|^p\right)^{1/p}$ for all $x \in X$. (Persson & Pietsch '69) \star Fact: $\mathcal{QN}_p(X, Y) \subset \mathcal{K}(X, Y)$.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-1} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \subset \mathcal{L}(X).$$
(3)

- Examples inside the compact operators?
- Recall: there is a Banach space Z with a large family 3 of non-trivial closed K(Z)-subideals of L(Z).
- Question: for given $n \ge 3$, is there a space X for which $\mathcal{L}(X)$ contains a closed *n*-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \mathcal{K}(X)$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$?

Example

Let $n \ge 2$ and $2(n-1) . Let <math>\mathcal{QN}_p$ denote the quasi p-nuclear operators. Then there is a closed subspace $X \subset c_0$ for which $\mathcal{L}(X)$ contains a closed n-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \overline{\mathcal{QN}_p(X)}$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$.

• $T \in \mathcal{L}(X, Y)$ is quasi *p*-nuclear if there is $(x_k^*) \subset \ell^p(X^*)$ such that $||Tx|| \leq \left(\sum_{k=1}^{\infty} |x_k^*(x)|^p\right)^{1/p}$ for all $x \in X$. (Persson & Pietsch '69) * Fact: $\mathcal{QN}_p(X, Y) \subset \mathcal{K}(X, Y)$.

• Recall: \mathcal{I} is a closed *n*-subideal of $\mathcal{L}(X)$ if

$$\mathcal{I} \stackrel{cl.ideal}{\subset} \mathcal{J}_{n-1} \stackrel{cl.ideal}{\subset} \cdots \stackrel{cl.ideal}{\subset} \mathcal{J}_1 \subset \mathcal{L}(X).$$
(3)

- Examples inside the compact operators?
- Recall: there is a Banach space Z with a large family 3 of non-trivial closed K(Z)-subideals of L(Z).
- Question: for given $n \ge 3$, is there a space X for which $\mathcal{L}(X)$ contains a closed *n*-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \mathcal{K}(X)$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$?

Example

Let $n \ge 2$ and $2(n-1) . Let <math>\mathcal{QN}_p$ denote the quasi p-nuclear operators. Then there is a closed subspace $X \subset c_0$ for which $\mathcal{L}(X)$ contains a closed n-subideal \mathcal{M} of $\mathcal{L}(X)$, where $\mathcal{J}_1 = \overline{\mathcal{QN}_p(X)}$ in (3), which is not an (n-1)-subideal of $\mathcal{L}(X)$.

• $T \in \mathcal{L}(X, Y)$ is quasi *p*-nuclear if there is $(x_k^*) \subset \ell^p(X^*)$ such that $||Tx|| \leq \left(\sum_{k=1}^{\infty} |x_k^*(x)|^p\right)^{1/p}$ for all $x \in X$. (Persson & Pietsch '69) * Fact: $\mathcal{QN}_p(X, Y) \subset \mathcal{K}(X, Y)$.