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1. Aim of talk/notation

e Aim of talk: to describe examples and properties of non-trivial closed
subideals and closed n-subideals of the Banach algebra £(X) of bounded
linear operators on a Banach space X.

e The talk is based on

* H.-O. Tylli & H. Wirzenius: Exotic closed subideals of algebras of
bounded operators, Proc. Amer. Math. Soc. 152 (2024).

* H.-O. Tylli & H. Wirzenius: Structure of closed subideals of L(X), in
preparation.

e Notation: Let X, Y be co-dim. (real or complex) Banach spaces, and
denote

LX,Y) =
S(X, Y) = { strictly singular operators X — Y'}.
K(X,Y) = { compact operators X — Y}.
A(X,Y) = { approximable operators X — Y} := F(X, Y), where

F(X,Y) = { bounded finite rank operators X — Y} and closure in
operator norm.

= { bounded linear operators X — Y}.

o F(X,Y)C AX,Y) CK(X,Y) CS8(X,Y)CL(X,Y).

e For X = Y write £(X) := L(X, X) etc.
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Reason: 6 above is of the form
6(S)=USU™" (SeT)

for some linear isomorphism U € £(X) by (Chernoff '73).

o (Tylli & W. '22) There is a Banach space X (failing the approximation
property) with an uncountable family § of distinct closed ideals of K(X),
where none of the ideals Z € § are ideals of £(X).

e Question (Schechtman): Are the ideals in § pairwise non-isomorphic as
Banach algebras?

o (Tylli & W. '24) Z and J are isomorphic as Banach algebras for all
Z,J €3

* Conclusion: the above observation (1) fails for closed subideals of
L(X).
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3. Closed subideals

Definition
Let J,Z C L(X) be closed subalgebras. Then [J is called a closed subideal (or
a closed Z-subideal) of L(X) if

J CZcCL(X)

where J is an ideal of Z, and T is an ideal of L(X). J is a non-trivial subideal
if J is not an ideal of L(X).

v
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v

e (Fong & Radjavi '83) Examples of non-trivial, but non-closed,
KC(£%)-subideals of £(¢?). (Terminology due to Patnaik & Weiss '13.)

e Remark: If the closed ideal Z C £(X) has an approximate identity, then
there are no non-trivial closed Z-subideals of £(X).
(A net (Us) C Z is an approximate identity if S = lima UaS = lima SUs
forall S € Z.)
* Consequence: If H is a Hilbert space, then there are no non-trivial
closed subideals of £(H). Reason: every closed ideal Z C L(H) has
an approximate identity.
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e If X =1(P, 1< p<ooorX=cy then L(X) does not have any non-trivial
closed subideals. Reason:
(i) In these cases IC(X) is the unique non-trivial closed ideal of £(X),
and X has the approximation property, so A(X) = K(X).
(ii) General fact for any X: If Z is a closed subideal of £(X), then
A(X)CZ.
e How about non-trivial closed subideals of £(X) for X = L?(0,1), where
1<p<oo, p#2or X=C(0,1)? In these cases, £(X) has plenty of
closed ideals.

Theorem (Tylli & W. 2024)

Let X = LP(0,1) for 1 < p < oo and p # 2. Then there are large families (even
of size 2°) of non-trivial closed S(X)-subideals J C S(X) C L(X) that,
respectively

(i) are pairwise non-isomorphic as Banach algebras, or

(ii) contains pairs of isomorphic Banach algebras.
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5. Generalization: closed n-subideals

Definition 1

Let Z be a closed subalgebra of £(X) and n € N. We call Z a closed n-subideal
of L(X) if there are closed subalgebras Jo, ..., Jn» of £L(X) such that

I=InCTn-1C---C T CJ=L(X) (2)

where Jk is an ideal of Jx—1 forall k=1,...,n.
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any closed subalgebra T C M C J is a closed n-subideal of L(X).
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7. Example of closed n-subideal

Letn>2and1 < p1 < p2<...< pn and define
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Then there is a closed n-subideal of L(X) which is not an (n — 1)-subideal of
L(X).
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Step 2. There is T € S(X) such that T"~! ¢ K(X):

Let ix : #Pk — (Pk+1 be the inclusion map. Then
n—1

T = ZJk+1ikPk e S8(X) (T (X1, ey Xn) (O,ilxl,...,i,,_lxn_l)), and

k=1
TV = Jpin—10--0itPL @ K(X) (T (xty.veyXn) = (0,000, 0, in—1 -+ i1x1).
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8. Closed n-subideals of L(X): Example, Il
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T 0

Define U = [O 0

] € S(X @ X) and
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T 0

Define U = [O 0

] € S(X @ X) and

M = span{U,...,U" "} + K(X @ X).

Step 3. M is a closed n-subideal of £(X & X):

M is a closed subalgebra such that K(X & X) C M C S(X @ X) and thus M is
a closed n-subideal of £(X @ X) by Step 1 and the lemma.
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9. Example of closed n-subideal, 11l

Let n>2and1<p1 < p><...<pn and define X =P @ --- @ (P". Then
there is a closed n-subideal of L(X) which is not an (n — 1)-subideal of L(X).

Step 2. There is T € S(X) such that T"" ¢ K(X). v

Step 3. M :=span{U,...,U" '} + K(X @ X) is a closed n-subideal of
T 0

L(X & X), where U = [0 0]. v
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9. Example of closed n-subideal, 11l

Letn>2and1<p1 < p2<...<pn and define X =P+ @ --- @ LP". Then
there is a closed n-subideal of L(X) which is not an (n — 1)-subideal of L(X).

Step 2. There is T € S(X) such that T"" ¢ K(X). v
Step 3. M :=span{U,...,U" '} + K(X @ X) is a closed n-subideal of
T O

L(X & X), where U = [0 O]' v

Step 4. Assume M is a closed (n — 1)-subideal of £L(X & X):
M=J,1C---CT CLXSX).

Then

{TL 8} _ L?:/ g}owe M — {span{T,...IéZ;)_l}JrlC(X) E&(g ’

n—1
so T"~! € K(X), which contradicts Step 2.

Conclusion: There is a closed n-subideal of £L(X @ X) which is not an
(n — 1)-subideal. Since X ~ X @ X the same holds for £(X).
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closed n-subideal M of L(X), where J1 = QN ,(X) in (3), which is not an
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1 Tx|| < (3222, % (x)[P) "/ for all x € X. (Persson & Pietsch '69)
* Fact: QN (X, Y) C K(X,Y).
Thank you for your attention!
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