Spaces of vector valued Lipschitz functions and the Daugavet property

Abraham Rueda Zoca Structures in Banach Spaces

Universidad de Granada Departamento de Análisis Matemático

UNIVERSIDAD DE GRANADA

My research is supported by MCIN/AEI/10.13039/501100011033: Grant PID2021-122126NB-C31; by Junta de Andalucía: Grant FQM-0185 and by Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22.

Collaborator

Abraham Rueda Zoca (Universidad de Granada) Spaces of vector valued Lipschitz functions and the Da

 $\operatorname{Lip}_{0}(M, X) := \{f : M \longrightarrow X \text{ such that } f \text{ is Lipschitz}, f(0) = 0\},\$

endowed with the norm $||f|| := \sup_{x \neq y} \frac{||f(x) - f(y)||}{d(x,y)}$.

 $Lip_0(M, X) := \{f : M \longrightarrow X \text{ such that } f \text{ is Lipschitz}, f(0) = 0\},\$

endowed with the norm $||f|| := \sup_{x \neq y} \frac{||f(x) - f(y)||}{d(x,y)}$. When $X = \mathbb{R}$ we simply write $\operatorname{Lip}_0(M)$.

4/19

 $Lip_0(M, X) := \{f : M \longrightarrow X \text{ such that } f \text{ is Lipschitz}, f(0) = 0\},\$

endowed with the norm $||f|| := \sup_{x \neq y} \frac{||f(x) - f(y)||}{d(x,y)}$. When $X = \mathbb{R}$ we simply write $\operatorname{Lip}_0(M)$. Given $m \in M$ we can define the evaluation mapping $\delta_m \in \operatorname{Lip}_0(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in \operatorname{Lip}_0(M)$.

 $\operatorname{Lip}_{0}(M, X) := \{f : M \longrightarrow X \text{ such that } f \text{ is Lipschitz}, f(0) = 0\},\$

endowed with the norm $||f|| := \sup_{x \neq y} \frac{||f(x) - f(y)||}{d(x,y)}$. When $X = \mathbb{R}$ we simply write $\operatorname{Lip}_{0}(M)$.

Given $m \in M$ we can define the evaluation mapping $\delta_m \in \operatorname{Lip}_0(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in \operatorname{Lip}_0(M)$. If we define $\mathcal{F}(M) := \overline{\operatorname{span}} \{\delta_m : m \in M\}$ we get that

$$\mathcal{F}(M)^* = \operatorname{Lip}_0(M).$$

 $\operatorname{Lip}_{0}(M, X) := \{f : M \longrightarrow X \text{ such that } f \text{ is Lipschitz}, f(0) = 0\},\$

endowed with the norm $||f|| := \sup_{x \neq y} \frac{||f(x) - f(y)||}{d(x,y)}$. When $X = \mathbb{R}$ we simply write $\operatorname{Lip}_{0}(M)$.

Given $m \in M$ we can define the evaluation mapping $\delta_m \in \text{Lip}_0(M)^*$ by $\delta_m(f) = f(m)$ for all $f \in \text{Lip}_0(M)$. If we define $\mathcal{F}(M) := \overline{\text{span}}\{\delta_m : m \in M\}$ we get that

$$\mathcal{F}(M)^* = \operatorname{Lip}_0(M).$$

The above space is known as the *Lipschitz-free space over M*.

Linearisation properties of $\mathcal{F}(M)$

Given a metric space *M*, a Banach space *X* and a Lispchitz map $f : M \longrightarrow X$ such that f(0) = 0, there exists a bounded operator $\hat{f} : \mathcal{F}(M) \longrightarrow X$ defined by

 $\hat{f}(\delta_m) := f(m)$

Linearisation properties of $\mathcal{F}(M)$

Given a metric space *M*, a Banach space *X* and a Lispchitz map $f : M \longrightarrow X$ such that f(0) = 0, there exists a bounded operator $\hat{f} : \mathcal{F}(M) \longrightarrow X$ defined by

$$\hat{f}(\delta_m) := f(m)$$

This operator \hat{f} satisfies that $\|\hat{f}\| = \|f\|_L$ and that the following diagram is commutative

Linearisation properties of $\mathcal{F}(M)$

Given a metric space *M*, a Banach space *X* and a Lispchitz map $f : M \longrightarrow X$ such that f(0) = 0, there exists a bounded operator $\hat{f} : \mathcal{F}(M) \longrightarrow X$ defined by

$$\hat{f}(\delta_m) := f(m)$$

This operator \hat{f} satisfies that $\|\hat{f}\| = \|f\|_L$ and that the following diagram is commutative

From here it follows that the mapping

$$\begin{array}{rcl} \operatorname{Lip}_0(M,X) & \longrightarrow & L(\mathcal{F}(M),X), \\ f & \longmapsto & \widehat{f} \end{array}$$

is an onto linear isometry, so $Lip_0(M, X) = L(\mathcal{F}(M), X)$.

Theorem

Let *M* metric with origin $0, 0 \in N \subseteq M$ and $f : N \longrightarrow \mathbb{R}$ Lipschitz. Then there exists an extension $F : M \longrightarrow \mathbb{R}$ of *f* such that $\|F\|_{\text{Lip}_0(M)} = \|f\|_{\text{Lip}_0(N)}$.

A lot of properties have been analysed in $Lip_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.).

A lot of properties have been analysed in $Lip_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.). However, many of these properties are unknown in the vector valued case.

A lot of properties have been analysed in $Lip_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.). However, many of these properties are unknown in the vector valued case. This is the case, for instance, of the Daugavet property.

Theorem (Shvidkoy 2001)

Let X be a Banach space. The following are equivalent:

• Every rank-one continuous linear operator $T : X \longrightarrow X$ satisfies that ||T + I|| = 1 + ||T||.

A lot of properties have been analysed in $Lip_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.). However, many of these properties are unknown in the vector valued case. This is the case, for instance, of the Daugavet property.

Theorem (Shvidkoy 2001)

Let X be a Banach space. The following are equivalent:

- Every rank-one continuous linear operator $T : X \longrightarrow X$ satisfies that ||T + I|| = 1 + ||T||.
- ② For every $x \in S_X$, $\varepsilon > 0$ and w-open $\emptyset \neq W \subseteq B_X$, ∃ $y \in W$ with

$$\|\boldsymbol{x}-\boldsymbol{y}\| > 2-\varepsilon.$$

A lot of properties have been analysed in $Lip_0(M)$ as well as in its predual $\mathcal{F}(M)$ (approximation properties, the property of being an L_1 or L_∞ space, octahedrality, Daugavet property etc.). However, many of these properties are unknown in the vector valued case. This is the case, for instance, of the Daugavet property.

Theorem (Shvidkoy 2001)

Let X be a Banach space. The following are equivalent:

- Every rank-one continuous linear operator $T : X \longrightarrow X$ satisfies that ||T + I|| = 1 + ||T||.
- ② For every $x \in S_X$, $\varepsilon > 0$ and w-open $\emptyset \neq W \subseteq B_X$, ∃ $y \in W$ with

$$\|x-y\|>2-\varepsilon.$$

So For every $x^* \in S_{X^*}$, $\varepsilon > 0$ and w^* -open $\emptyset \neq W \subseteq B_{X^*}$, $\exists y^* \in W$ with

$$\|\boldsymbol{x}^* - \boldsymbol{y}^*\| > \mathbf{2} - \varepsilon$$

・ロト ・回ト ・ヨト ・ヨト

What are the Daugavet $\mathcal{F}(M)$?

Given a complete metric space *M*. When $\mathcal{F}(M)$ has the Daugavet property?

What are the Daugavet $\mathcal{F}(M)$?

Given a complete metric space *M*. When $\mathcal{F}(M)$ has the Daugavet property?

Definition Let *M* be metric.

Definition

Let *M* be metric. *M* is length if, for every $x, y \in M, x \neq y$, there exists $\alpha : [0, d(x, y) + \varepsilon] \longrightarrow M$ which is 1-Lipschitz, $\alpha(0) = y$ and $\alpha(d(x, y) + \varepsilon) = x$.

8/19

Definition

Let *M* be metric. *M* is length if, for every $x, y \in M, x \neq y$, there exists $\alpha : [0, d(x, y) + \varepsilon] \longrightarrow M$ which is 1-Lipschitz, $\alpha(0) = y$ and $\alpha(d(x, y) + \varepsilon) = x$. If $\varepsilon = 0$ can be taken, *M* is *geodesic*.

8/19

Definition

Let *M* be metric. *M* is length if, for every $x, y \in M, x \neq y$, there exists $\alpha : [0, d(x, y) + \varepsilon] \longrightarrow M$ which is 1-Lipschitz, $\alpha(0) = y$ and $\alpha(d(x, y) + \varepsilon) = x$. If $\varepsilon = 0$ can be taken, *M* is *geodesic*.

Easy (and relevant) examples of geodesic spaces are the Banach spaces.

Definition

Let *M* be metric. *M* is length if, for every $x, y \in M, x \neq y$, there exists $\alpha : [0, d(x, y) + \varepsilon] \longrightarrow M$ which is 1-Lipschitz, $\alpha(0) = y$ and $\alpha(d(x, y) + \varepsilon) = x$. If $\varepsilon = 0$ can be taken, *M* is *geodesic*.

Easy (and relevant) examples of geodesic spaces are the Banach spaces.

Theorem (V. Kadets, Y. Ivakhno and D. Werner (2007); García-Lirola, Procházka, R.Z. (2018))

Let M be a complete metric space. Then $\mathcal{F}(M)$ has the Daugavet property if, and only if, M is length.

Let $f \in S_{\text{Lip}_0(M)}$, ε and a w^{*} open $W \subseteq B_{\text{Lip}_0(M)}$.

Let $f \in S_{\operatorname{Lip}_0(M)}$, ε and a w^{*} open $W \subseteq B_{\operatorname{Lip}_0(M)}$. We look for $g \in W$ far from f.

Select any h ∈ W. There are m₁,..., m_n ∈ M and η > 0 with the following property: if g ∈ B_{Lipn(M)} satisfies |g(m_i) − h(m_i)| < η then g ∈ W.

- Select any h ∈ W. There are m₁,..., m_n ∈ M and η > 0 with the following property: if g ∈ B_{Lip₀(M)} satisfies |g(m_i) − h(m_i)| < η then g ∈ W.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: For every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $\frac{f(y) f(x_0)}{d(y, x_0)} > 1 \varepsilon$ (*M* length).

- Select any h ∈ W. There are m₁,..., m_n ∈ M and η > 0 with the following property: if g ∈ B_{Lip₀(M)} satisfies |g(m_i) − h(m_i)| < η then g ∈ W.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: For every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $\frac{f(y) f(x_0)}{d(y, x_0)} > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n\} \cup B(x_0, r_0) \longrightarrow \mathbb{R}$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$.

- Select any h ∈ W. There are m₁,..., m_n ∈ M and η > 0 with the following property: if g ∈ B_{Lip₀(M)} satisfies |g(m_i) − h(m_i)| < η then g ∈ W.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: For every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $\frac{f(y) f(x_0)}{d(y, x_0)} > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n\} \cup B(x_0, r_0) \longrightarrow \mathbb{R}$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend my McShane.

- Select any h ∈ W. There are m₁,..., m_n ∈ M and η > 0 with the following property: if g ∈ B_{Lip₀(M)} satisfies |g(m_i) − h(m_i)| < η then g ∈ W.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: For every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $\frac{f(y) f(x_0)}{d(y, x_0)} > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n\} \cup B(x_0, r_0) \longrightarrow \mathbb{R}$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend my McShane.
- Given $r \ll r_0$ find $y \in B(x_0, r)$ such that $\frac{f(y) f(x_0)}{d(y, x_0)} > 1 \varepsilon$, and define $\psi(z) = 0$ on $M \setminus B(x_0, r_0) \cup \{x_0\}$ and $\psi(y) := d(y, x_0)$.

- Select any h ∈ W. There are m₁,..., m_n ∈ M and η > 0 with the following property: if g ∈ B_{Lip₀(M)} satisfies |g(m_i) − h(m_i)| < η then g ∈ W.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: For every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $\frac{f(y) f(x_0)}{d(y, x_0)} > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n\} \cup B(x_0, r_0) \longrightarrow \mathbb{R}$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend my McShane.
- Given $r \ll r_0$ find $y \in B(x_0, r)$ such that $\frac{f(y)-f(x_0)}{d(y,x_0)} > 1 \varepsilon$, and define $\psi(z) = 0$ on $M \setminus B(x_0, r_0) \cup \{x_0\}$ and $\psi(y) := d(y, x_0)$. Extend by McShane.
- If φ(m_i) ≈ h(m_i), ||φ|| ≈ 1 and r/r₀ ≈ 0 enough, then g := φ+ψ/||φ+ψ|| does the trick.

Let $f \in S_{\text{Lip}_0(M)}$, ε and a w^{*} open $W \subseteq B_{\text{Lip}_0(M)}$. We look for $g \in W$ far from f.

- Select any h ∈ W. There are m₁,..., m_n ∈ M and η > 0 with the following property: if g ∈ B_{Lip₀(M)} satisfies |g(m_i) − h(m_i)| < η then g ∈ W.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: For every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $\frac{f(y) f(x_0)}{d(y, x_0)} > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n\} \cup B(x_0, r_0) \longrightarrow \mathbb{R}$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend my McShane.
- Given $r \ll r_0$ find $y \in B(x_0, r)$ such that $\frac{f(y) f(x_0)}{d(y,x_0)} > 1 \varepsilon$, and define $\psi(z) = 0$ on $M \setminus B(x_0, r_0) \cup \{x_0\}$ and $\psi(y) := d(y, x_0)$. Extend by McShane.
- If φ(m_i) ≈ h(m_i), ||φ|| ≈ 1 and r/r₀ ≈ 0 enough, then g := φ+ψ/||φ+ψ|| does the trick.

Where does this "proof" fail for $Lip_0(M, X)$?

Daugavet property in the predual of $Lip_0(M, X)$

Where does the above "proof" fail for $Lip_0(M, X)$?

Daugavet property in the predual of $Lip_0(M, X)$

Where does the above "proof" fail for $Lip_0(M, X)$?

• Is $Lip_0(M, X)$ a dual space?

Daugavet property in the predual of $Lip_0(M, X)$

Where does the above "proof" fail for $Lip_0(M, X)$?

- Is $Lip_0(M, X)$ a dual space?
- McShane extension theorem is false for vector-valued functions!
First question: $Lip_0(M, X^*)$ is a dual space

Given *M* and *Z*, we said that $Lip_0(M, Z^*) = L(\mathcal{F}(M), Z^*)$.

First question: $Lip_0(M, X^*)$ is a dual space

Given *M* and *Z*, we said that $Lip_0(M, Z^*) = L(\mathcal{F}(M), Z^*)$. The latter is well known to be a dual space.

Given *M* and *Z*, we said that $Lip_0(M, Z^*) = L(\mathcal{F}(M), Z^*)$. The latter is well known to be a dual space.

Denote by $X \widehat{\otimes}_{\pi} Y$ the *projective tensor product* of *X* and *Y*, which is defined as the completion of $X \otimes Y$ under the norm

$$||z|| := \inf \left\{ \sum_{i=1}^n ||x_i|| ||y_i|| : z = \sum_{i=1}^n x_i \otimes y_i \right\}.$$

Given *M* and *Z*, we said that $Lip_0(M, Z^*) = L(\mathcal{F}(M), Z^*)$. The latter is well known to be a dual space.

Denote by $X \widehat{\otimes}_{\pi} Y$ the *projective tensor product* of *X* and *Y*, which is defined as the completion of $X \otimes Y$ under the norm

$$||z|| := \inf \left\{ \sum_{i=1}^n ||x_i|| ||y_i|| : z = \sum_{i=1}^n x_i \otimes y_i \right\}.$$

In general, $(X \widehat{\otimes}_{\pi} Y)^* = L(X, Y^*)$ (isometrically!) under the action $T(x \otimes y) := T(x)(y), x \in X$ and $y \in Y$ (+Linearity).

Given *M* and *Z*, we said that $Lip_0(M, Z^*) = L(\mathcal{F}(M), Z^*)$. The latter is well known to be a dual space.

Denote by $X \widehat{\otimes}_{\pi} Y$ the *projective tensor product* of *X* and *Y*, which is defined as the completion of $X \otimes Y$ under the norm

$$||z|| := \inf \left\{ \sum_{i=1}^n ||x_i|| ||y_i|| : z = \sum_{i=1}^n x_i \otimes y_i \right\}.$$

In general, $(X \widehat{\otimes}_{\pi} Y)^* = L(X, Y^*)$ (isometrically!) under the action $T(x \otimes y) := T(x)(y), x \in X$ and $y \in Y$ (+Linearity). Elements of the form $z = \sum_{i=1}^{n} x_i \otimes y_i$ are dense.

Let $f \in S_{\operatorname{Lip}_0(M,X^*)}, \varepsilon$ and a w^{*} open $W \subseteq B_{\operatorname{Lip}_0(M,X^*)}$.

Let $f \in S_{\text{Lip}_0(M,X^*)}$, ε and a w^{*} open $W \subseteq B_{\text{Lip}_0(M,X^*)}$. We look for $g \in W$ far from f.

• Select any $h \in W$.

Let $f \in S_{\text{Lip}_0(M,X^*)}$, ε and a w^{*} open $W \subseteq B_{\text{Lip}_0(M,X^*)}$. We look for $g \in W$ far from f.

Select any h∈ W. There are m₁,..., m_n ∈ M, x₁,..., x_n ∈ X and η > 0 with the following property: if g ∈ B_{Lip₀(M,X*)} satisfies |g(m_i)(x_i) − h(m_i)(x_i)| < η then g ∈ W.

- Select any $h \in W$. There are $m_1, \ldots, m_n \in M, x_1, \ldots, x_n \in X$ and $\eta > 0$ with the following property: if $g \in B_{\text{Lip}_0(M,X^*)}$ satisfies $|g(m_i)(x_i) h(m_i)(x_i)| < \eta$ then $g \in W$.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: there exists $x^* \in S_{X^*}$ such that for every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $x^* \left(\frac{f(y) f(x_0)}{d(y, x_0)}\right) > 1 \varepsilon$ (*M* length).

- Select any $h \in W$. There are $m_1, \ldots, m_n \in M, x_1, \ldots, x_n \in X$ and $\eta > 0$ with the following property: if $g \in B_{\text{Lip}_0(M,X^*)}$ satisfies $|g(m_i)(x_i) h(m_i)(x_i)| < \eta$ then $g \in W$.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: there exists $x^* \in S_{X^*}$ such that for every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $x^* \left(\frac{f(y) f(x_0)}{d(y, x_0)}\right) > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n, x_0\} \longrightarrow X^*$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend by McShane.

- Select any $h \in W$. There are $m_1, \ldots, m_n \in M, x_1, \ldots, x_n \in X$ and $\eta > 0$ with the following property: if $g \in B_{Lip_0(M,X^*)}$ satisfies $|g(m_i)(x_i) h(m_i)(x_i)| < \eta$ then $g \in W$.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: there exists $x^* \in S_{X^*}$ such that for every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $x^* \left(\frac{f(y) f(x_0)}{d(y, x_0)}\right) > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n, x_0\} \longrightarrow X^*$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend by McShane.
- Given $r \ll r_0$ find $y \in B(x_0, r)$ such that $\frac{\|f(y) f(x_0)\|}{d(y, x_0)} > 1 \varepsilon$, and define $\psi(z) = 0$ on $M \setminus B(x_0, r_0) \cup \{x_0\}$ and $\psi(y) := d(y, x_0)x^*$ for some $x^* \in S_{X^*}$. Extend by McShane.

- Select any $h \in W$. There are $m_1, \ldots, m_n \in M, x_1, \ldots, x_n \in X$ and $\eta > 0$ with the following property: if $g \in B_{Lip_0(M,X^*)}$ satisfies $|g(m_i)(x_i) h(m_i)(x_i)| < \eta$ then $g \in W$.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: there exists $x^* \in S_{X^*}$ such that for every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $x^* \left(\frac{f(y) f(x_0)}{d(y, x_0)}\right) > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n, x_0\} \longrightarrow X^*$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend by McShane.
- Given $r \ll r_0$ find $y \in B(x_0, r)$ such that $\frac{\|f(y) f(x_0)\|}{d(y,x_0)} > 1 \varepsilon$, and define $\psi(z) = 0$ on $M \setminus B(x_0, r_0) \cup \{x_0\}$ and $\psi(y) := d(y, x_0)x^*$ for some $x^* \in S_{X^*}$. Extend by McShane. Use functions of the form $\psi(z) := t(z)x^*$ for some $t \in B_{\text{Lip}_0(M)}$.

- Select any $h \in W$. There are $m_1, \ldots, m_n \in M, x_1, \ldots, x_n \in X$ and $\eta > 0$ with the following property: if $g \in B_{Lip_0(M,X^*)}$ satisfies $|g(m_i)(x_i) h(m_i)(x_i)| < \eta$ then $g \in W$.
- There exists $x_0 \in M \setminus \{m_1, \ldots, m_n\}$ with the following property: there exists $x^* \in S_{X^*}$ such that for every r > 0 there exists $y \in M$ with $0 < d(x_0, y) < r$ and $x^* \left(\frac{f(y) f(x_0)}{d(y, x_0)}\right) > 1 \varepsilon$ (*M* length).
- Define a function $\varphi := \{0, m_1, \dots, m_n, x_0\} \longrightarrow X^*$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend by McShane.
- Given $r \ll r_0$ find $y \in B(x_0, r)$ such that $\frac{\|f(y) f(x_0)\|}{d(y,x_0)} > 1 \varepsilon$, and define $\psi(z) = 0$ on $M \setminus B(x_0, r_0) \cup \{x_0\}$ and $\psi(y) := d(y, x_0)x^*$ for some $x^* \in S_{X^*}$. Extend by McShane. Use functions of the form $\psi(z) := t(z)x^*$ for some $t \in B_{\text{Lip}_0(M)}$.
- If $\varphi(m_i) \approx h(m_i)$, $\|\varphi\| \approx 1$ and $\frac{r}{r_0} \approx 0$ enough, then $g := \frac{\varphi + \psi}{\|\varphi + \psi\|}$ does the trick.

• Define a function $\varphi := \{0, m_1, \dots, m_n, x_0\} \longrightarrow X^*$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend by McShane.

• Define a function $\varphi := \{0, m_1, \dots, m_n, x_0\} \longrightarrow X^*$ such that $\varphi(m_i) \approx h(m_i)$ and φ is constant at $B(x_0, r_0)$ for r_0 small enough and $\|\varphi\| \approx 1$. Extend by McShane.

We need to find, given *h*, a function \tilde{h} such that $\tilde{h}(m_i) \approx h(m_i)$, *h* constant (flat) at some $B(x_0, r)$ (*r* small) and $||h|| \approx 1$.

Let X be Banach and 0 < a < b.

Let X be Banach and 0 < a < b. Let $f : X \longrightarrow X$

$$f(x) := \begin{cases} 0 & \text{if } \|x\| \le a, \\ \frac{b}{b-a} \left(1 - \frac{a}{\|x\|}\right) x & \text{if } a \le \|x\| \le b, \\ x & \text{if } b \le \|x\|, \end{cases}$$

Let X be Banach and 0 < a < b. Let $f : X \longrightarrow X$

$$f(x) := \left\{egin{array}{cc} 0 & ext{if } \|x\| \leq a, \ rac{b}{b-a} \left(1-rac{a}{\|x\|}
ight)x & ext{if } a \leq \|x\| \leq b, \ x & ext{if } b \leq \|x\|, \end{array}
ight.$$

 $\|f\| \leq \frac{b}{b-a}.$

14/19

 $\|f\| \leq \frac{b}{b-a}$.

Let X be Banach and 0 < a < b. Let $f : X \longrightarrow X$

$$f(x) := \begin{cases} 0 & \text{if } \|x\| \le a, \\ \frac{b}{b-a} \left(1 - \frac{a}{\|x\|}\right) x & \text{if } a \le \|x\| \le b, \\ x & \text{if } b \le \|x\|, \end{cases}$$

Then, given $x_0 \in X$, $R, \varepsilon > 0$ there exists $\delta > 0$ and $\psi : X \longrightarrow X$ such that $\psi(x) = x$ if $x \notin B(x_0, R)$, $\psi(z) = x_0, z \in B(x_0, \delta)$ and $\|\psi\| \le 1 + \varepsilon$.

Given $h \in B_{\text{Lip}_0(M,X^*)}$ and $m_1, \ldots, m_n, x_0 \in M$.

Given $h \in B_{\text{Lip}_0(M,X^*)}$ and $m_1, \ldots, m_n, x_0 \in M$. Assume, up to a perturbation argument, that $h(x_0) \neq h(m_i)$ $1 \le i \le n$.

Given $h \in B_{\text{Lip}_0(M,X^*)}$ and $m_1, \ldots, m_n, x_0 \in M$. Assume, up to a perturbation argument, that $h(x_0) \neq h(m_i)$ $1 \leq i \leq n$. So $h(m_i) \notin B(h(x_0), r)$ for r small.

Given $h \in B_{\text{Lip}_0(M,X^*)}$ and $m_1, \ldots, m_n, x_0 \in M$. Assume, up to a perturbation argument, that $h(x_0) \neq h(m_i)$ $1 \leq i \leq n$. So $h(m_i) \notin B(h(x_0), r)$ for r small. Take $\psi : X^* \longrightarrow X^*$ with $\psi(x^*) = x^*$ for $x^* \notin B(h(x_0), r)$ and $\psi(z) = \psi(h(x_0))$ $z \in$ some ball around $h(x_0)$ and $\|\psi\| \approx 1$.

15/19

Given $h \in B_{\text{Lip}_0(M,X^*)}$ and $m_1, \ldots, m_n, x_0 \in M$. Assume, up to a perturbation argument, that $h(x_0) \neq h(m_i)$ $1 \leq i \leq n$. So $h(m_i) \notin B(h(x_0), r)$ for r small. Take $\psi : X^* \longrightarrow X^*$ with $\psi(x^*) = x^*$ for $x^* \notin B(h(x_0), r)$ and $\psi(z) = \psi(h(x_0))$ $z \in$ some ball around $h(x_0)$ and $\|\psi\| \approx 1$. $\tilde{h} = \psi \circ h$ Given $h \in B_{\text{Lip}_0(M,X^*)}$ and $m_1, \ldots, m_n, x_0 \in M$. Assume, up to a perturbation argument, that $h(x_0) \neq h(m_i)$ $1 \leq i \leq n$. So $h(m_i) \notin B(h(x_0), r)$ for r small. Take $\psi : X^* \longrightarrow X^*$ with $\psi(x^*) = x^*$ for $x^* \notin B(h(x_0), r)$ and $\psi(z) = \psi(h(x_0))$ $z \in$ some ball around $h(x_0)$ and $\|\psi\| \approx 1$. $\tilde{h} = \psi \circ h$ satisfies $\tilde{h}(m_i) = h(m_i)$, \tilde{h} is flat at some ball centered at x_0 and $\|\tilde{h}\| \leq \|\psi\| \|h\| \leq \|\psi\| \approx 1$. Given $h \in B_{\text{Lip}_0(M,X^*)}$ and $m_1, \ldots, m_n, x_0 \in M$. Assume, up to a perturbation argument, that $h(x_0) \neq h(m_i) \ 1 \leq i \leq n$. So $h(m_i) \notin B(h(x_0), r)$ for r small. Take $\psi : X^* \longrightarrow X^*$ with $\psi(x^*) = x^*$ for $x^* \notin B(h(x_0), r)$ and $\psi(z) = \psi(h(x_0))$ $z \in$ some ball around $h(x_0)$ and $\|\psi\| \approx 1$. $\tilde{h} = \psi \circ h$ satisfies $\tilde{h}(m_i) = h(m_i)$, \tilde{h} is flat at some ball centered at x_0 and $\|\tilde{h}\| \leq \|\psi\| \|h\| \leq \|\psi\| \approx 1$.

Theorem (R. Medina and A. R. Z. (2025))

If M is length then $\mathcal{F}(M)\widehat{\otimes}_{\pi}X$ has the Daugavet property.

Given $h \in B_{\text{Lip}_0(M,X^*)}$ and $m_1, \ldots, m_n, x_0 \in M$. Assume, up to a perturbation argument, that $h(x_0) \neq h(m_i) \ 1 \leq i \leq n$. So $h(m_i) \notin B(h(x_0), r)$ for r small. Take $\psi : X^* \longrightarrow X^*$ with $\psi(x^*) = x^*$ for $x^* \notin B(h(x_0), r)$ and $\psi(z) = \psi(h(x_0))$ $z \in$ some ball around $h(x_0)$ and $\|\psi\| \approx 1$. $\tilde{h} = \psi \circ h$ satisfies $\tilde{h}(m_i) = h(m_i)$, \tilde{h} is flat at some ball centered at x_0 and $\|\tilde{h}\| \leq \|\psi\| \|h\| \leq \|\psi\| \approx 1$.

Theorem (R. Medina and A. R. Z. (2025))

If M is length then $\mathcal{F}(M)\widehat{\otimes}_{\pi}X$ has the Daugavet property.

This solved an open question by García-Lirola, Procházka and R.Z. 2018.

Theorem (V. Kadets, Y. Ivakhno and D. Werner (2007); García-Lirola, Procházka, R.Z. (2018))

Let *M* be a complete metric space. Then $\mathcal{F}(M)$ has the Daugavet property if, and only if, *M* is length and if, and only if, Lip₀(*M*) has the Daugavet property.

Theorem (V. Kadets, Y. Ivakhno and D. Werner (2007); García-Lirola, Procházka, R.Z. (2018))

Let *M* be a complete metric space. Then $\mathcal{F}(M)$ has the Daugavet property if, and only if, *M* is length and if, and only if, Lip₀(*M*) has the Daugavet property.

 $M \text{ length} \Rightarrow \text{Lip}_0(M, X) \text{ Daugavet } \forall X?$

Theorem (V. Kadets, Y. Ivakhno and D. Werner (2007); García-Lirola, Procházka, R.Z. (2018))

Let *M* be a complete metric space. Then $\mathcal{F}(M)$ has the Daugavet property if, and only if, *M* is length and if, and only if, Lip₀(*M*) has the Daugavet property.

M length \Rightarrow Lip₀(*M*, *X*) Daugavet \forall *X*? Yes.

M length \Rightarrow Lip₀(M, X) Daugavet

Sketch:

æ

M length \Rightarrow Lip₀(M, X) Daugavet

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$.

M length \Rightarrow Lip₀(M, X) Daugavet

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$. We find $(g_n) \to g$ weakly, $\|f + g_n\| > 2 - \eta$ for every n and $\|g_n\| \to 1$.

$M \text{ length} \Rightarrow \text{Lip}_0(M, X) \text{ Daugavet}$

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$. We find $(g_n) \to g$ weakly, $\|f + g_n\| > 2 - \eta$ for every n and $\|g_n\| \to 1$.

Find {x_n} ⊆ M points where ||f_{|B(x_n,r)}|| > 1 − η holds for every n ∈ N (M length).

$M \text{ length} \Rightarrow \text{Lip}_0(M, X) \text{ Daugavet}$

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$. We find $(g_n) \to g$ weakly, $\|f + g_n\| > 2 - \eta$ for every n and $\|g_n\| \to 1$.

Find {x_n} ⊆ M points where ||f_{|B(x_n,r)}|| > 1 − η holds for every n ∈ N (M length). Select r_n > 0 such that B(x_n, r_n) are pairwise disjoint.
$M \text{ length} \Rightarrow \text{Lip}_0(M, X) \text{ Daugavet}$

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$. We find $(g_n) \to g$ weakly, $\|f + g_n\| > 2 - \eta$ for every n and $\|g_n\| \to 1$.

- Find {x_n} ⊆ M points where ||f_{|B(x_n,r)}|| > 1 − η holds for every n ∈ N (M length). Select r_n > 0 such that B(x_n, r_n) are pairwise disjoint.
- As before take $\psi_n \in \text{Lip}_0(M, X)$ with $\psi_n = g$ on $M \setminus B(x_n, r_n)$ and ψ_n flat at $B(x_n, \delta_n)$ for δ_n small enough, $\|\psi_n\| \to 1$.

$M \text{ length} \Rightarrow \text{Lip}_0(M, X) \text{ Daugavet}$

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$. We find $(g_n) \to g$ weakly, $||f + g_n|| > 2 - \eta$ for every n and $||g_n|| \to 1$.

- Find {x_n} ⊆ M points where ||f_{|B(x_n,r)}|| > 1 − η holds for every n ∈ N (M length). Select r_n > 0 such that B(x_n, r_n) are pairwise disjoint.
- As before take $\psi_n \in \text{Lip}_0(M, X)$ with $\psi_n = g$ on $M \setminus B(x_n, r_n)$ and ψ_n flat at $B(x_n, \delta_n)$ for δ_n small enough, $\|\psi_n\| \to 1$.
- Find $y_n \neq x_n$ with $d(x_n, y_n) \approx 0$ and $y_n^* \in S_{X^*}$ with $\frac{y_n^*(f(x_n)) y_n^*(f(y_n))}{d(x_n, y_n)} = \frac{\|f(y_n) f(x_n)\|}{d(x_n, y_n)} > 1 \eta.$

M length \Rightarrow Lip₀(M, X) Daugavet

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$. We find $(g_n) \to g$ weakly, $||f + g_n|| > 2 - \eta$ for every n and $||g_n|| \to 1$.

- Find {x_n} ⊆ M points where ||f_{|B(x_n,r)}|| > 1 − η holds for every n ∈ N (M length). Select r_n > 0 such that B(x_n, r_n) are pairwise disjoint.
- As before take $\psi_n \in \text{Lip}_0(M, X)$ with $\psi_n = g$ on $M \setminus B(x_n, r_n)$ and ψ_n flat at $B(x_n, \delta_n)$ for δ_n small enough, $\|\psi_n\| \to 1$.
- Find $y_n \neq x_n$ with $d(x_n, y_n) \approx 0$ and $y_n^* \in S_{X^*}$ with $\frac{y_n^*(f(x_n)) y_n^*(f(y_n))}{d(x_n, y_n)} = \frac{\|f(y_n) f(x_n)\|}{d(x_n, y_n)} > 1 \eta.$
- Let $\varphi_n := s_n \otimes y_n^*$, where $s_n : M \longrightarrow \mathbb{R}$ satisfies $s_n(y_n) s_n(x_n) = d(x_n, y_n)$ and $s_n = 0$ on $M \setminus B(x_n, s_n)$.
- The seq. $(\psi_n g)$ and (φ_n) are pairwise disjoint support

M length \Rightarrow Lip₀(M, X) Daugavet

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$. We find $(g_n) \to g$ weakly, $||f + g_n|| > 2 - \eta$ for every n and $||g_n|| \to 1$.

- Find {x_n} ⊆ M points where ||f_{|B(x_n,r)}|| > 1 − η holds for every n ∈ N (M length). Select r_n > 0 such that B(x_n, r_n) are pairwise disjoint.
- As before take $\psi_n \in \text{Lip}_0(M, X)$ with $\psi_n = g$ on $M \setminus B(x_n, r_n)$ and ψ_n flat at $B(x_n, \delta_n)$ for δ_n small enough, $\|\psi_n\| \to 1$.
- Find $y_n \neq x_n$ with $d(x_n, y_n) \approx 0$ and $y_n^* \in S_{X^*}$ with $\frac{y_n^*(f(x_n)) y_n^*(f(y_n))}{d(x_n, y_n)} = \frac{\|f(y_n) f(x_n)\|}{d(x_n, y_n)} > 1 \eta.$
- Let $\varphi_n := s_n \otimes y_n^*$, where $s_n : M \longrightarrow \mathbb{R}$ satisfies $s_n(y_n) s_n(x_n) = d(x_n, y_n)$ and $s_n = 0$ on $M \setminus B(x_n, s_n)$.
- The seq. (ψ_n g) and (φ_n) are pairwise disjoint support, so they are weakly null by a result of (B. Cascales et al, 2019).

M length \Rightarrow Lip₀(M, X) Daugavet

Sketch: Let $f \in S_{\text{Lip}_0(M,X)}$, $g \in B_{\text{Lip}_0(M,X)}$ and $\eta > 0$. We find $(g_n) \to g$ weakly, $||f + g_n|| > 2 - \eta$ for every n and $||g_n|| \to 1$.

- Find {x_n} ⊆ M points where ||f_{|B(x_n,r)}|| > 1 − η holds for every n ∈ N (M length). Select r_n > 0 such that B(x_n, r_n) are pairwise disjoint.
- As before take $\psi_n \in \text{Lip}_0(M, X)$ with $\psi_n = g$ on $M \setminus B(x_n, r_n)$ and ψ_n flat at $B(x_n, \delta_n)$ for δ_n small enough, $\|\psi_n\| \to 1$.
- Find $y_n \neq x_n$ with $d(x_n, y_n) \approx 0$ and $y_n^* \in S_{X^*}$ with $\frac{y_n^*(f(x_n)) y_n^*(f(y_n))}{d(x_n, y_n)} = \frac{\|f(y_n) f(x_n)\|}{d(x_n, y_n)} > 1 \eta.$
- Let $\varphi_n := s_n \otimes y_n^*$, where $s_n : M \longrightarrow \mathbb{R}$ satisfies $s_n(y_n) s_n(x_n) = d(x_n, y_n)$ and $s_n = 0$ on $M \setminus B(x_n, s_n)$.
- The seq. (ψ_n g) and (φ_n) are pairwise disjoint support, so they are weakly null by a result of (B. Cascales et al, 2019).
- Finally, if $0 < d(x_n, y_n) \lll s_n \lll r_n$, taking $g_n := \frac{\psi_n + \varphi_n}{\|\psi_n + \varphi_n\|}$ we get $g_n \to g$ weakly and $\|f g_n\| \ge 2 \eta$.

Definition (Local perturbation of the identity (LPIP))

We say that *M* has the LPIP if $\forall m_1, \ldots, m_n, x_0 \in M$ and $\varepsilon > 0$ there exists a Lipschitz map $\varphi : M \longrightarrow M$ satisfying:

$$\|\varphi\| \le \mathbf{1} + \varepsilon,$$

- 2 $d(\varphi(m_i), m_i) < \varepsilon$ for all $1 \le i \le n$ and,
- **(a)** there exists $\eta > 0$ such that $\varphi(z) = x_0$ at $B(x_0, \eta)$.

Definition (Local perturbation of the identity (LPIP))

We say that *M* has the LPIP if $\forall m_1, \ldots, m_n, x_0 \in M$ and $\varepsilon > 0$ there exists a Lipschitz map $\varphi : M \longrightarrow M$ satisfying:

$$\|\varphi\| \le \mathbf{1} + \varepsilon,$$

- 2 $d(\varphi(m_i), m_i) < \varepsilon$ for all $1 \le i \le n$ and,
- **(a)** there exists $\eta > 0$ such that $\varphi(z) = x_0$ at $B(x_0, \eta)$.

R. Smith kindly provided us Talimdjioski result.

Definition (Local perturbation of the identity (LPIP))

We say that *M* has the LPIP if $\forall m_1, \ldots, m_n, x_0 \in M$ and $\varepsilon > 0$ there exists a Lipschitz map $\varphi : M \longrightarrow M$ satisfying:

$$\|\varphi\| \le \mathbf{1} + \varepsilon,$$

- 2 $d(\varphi(m_i), m_i) < \varepsilon$ for all $1 \le i \le n$ and,
- **(a)** there exists $\eta > 0$ such that $\varphi(z) = x_0$ at $B(x_0, \eta)$.

R. Smith kindly provided us Talimdjioski result. This allowed us to prove the Daugavet on $Lip_0(M, X)$ if *M* is length.

Definition (Local perturbation of the identity (LPIP))

We say that *M* has the LPIP if $\forall m_1, \ldots, m_n, x_0 \in M$ and $\varepsilon > 0$ there exists a Lipschitz map $\varphi : M \longrightarrow M$ satisfying:

$$\|\varphi\| \le \mathbf{1} + \varepsilon,$$

2)
$$d(\varphi(m_i), m_i) < \varepsilon$$
 for all $1 \le i \le n$ and,

(a) there exists $\eta > 0$ such that $\varphi(z) = x_0$ at $B(x_0, \eta)$.

R. Smith kindly provided us Talimdjioski result. This allowed us to prove the Daugavet on $Lip_0(M, X)$ if *M* is length. This altruist gesture shows that science progresses when it is based on cooperation and not on competition.

References

- B. Cascales, R. Chiclana, L. García-Lirola, M. Martín and A. Rueda Zoca, On strongly norm-attaining Lipschitz maps, J. Funct. Anal. 277 (2019), 1677–1717.
- L. García-Lirola, A. Procházka and A. Rueda Zoca, *A characterisation of the Daugavet property in spaces of Lipschitz functions*, J. Math. Anal. Appl. **464** (2018), 473–492.
- Y. Ivakhno, V. Kadets and D. Werner, *The Daugavet property for spaces of Lipschitz functions*, Math. Scand. **101** (2007), 261-279.
- R. Medina and A. Rueda Zoca, A characterisation of the Daugavet property in spaces of vector-valued Lipschitz functions, J. Funct. Anal. 289 (2025), article 110896.
- R. Shvidkoy, *Geometric aspects of the Daugavet property*, J. Funct. Anal.
 176 (2000), 198–212.
- F. Talimdjioski, *Lipschitz-free spaces and approximation properties*, PhD thesis, University College Dublin. School of Mathematics and Statistics (2024).