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Abstract

When no universal model for a set of structures exists at a given
cardinal, then it is natural to ask how many structures of that cardinal-
ity it takes to embed them all. It is shown that at regular cardinals λ,
this covering number (or complexity) for posets of size λ omitting cer-
tain large substructures can 2λ for any reasonable value of 2λ. These
results can also be put into a global context where the complexity is
determined at every regular cardinal simultaneously.1

1 Introduction

To clarify our use of universality, we begin with the basic definitions. An
embedding (also called weak embedding) for ordered sets is an injective order-
preserving map. A strong embedding is an embedding which also preserves
incomparability. The range of a strong embedding is an isomorphic copy of
the order in the domain. For graphs, an embedding is an injective function
which preserves edges and a strong embedding is an injective function whose
range is an induced subgraph.

1Mirna Džamonja thanks EPSRC for their support through an Advanced Fellowship
and the University of Vienna and the Kurt Gödel Research Center for their kind hospitality
in October 2005. The second and third authors wish to thank the Austrian Science Fund
(FWF) for supporting this research.
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Given a set Aλ of structures each of size λ, a (strong) universal model for Aλ is
an element of Aλ which (strongly) embeds all other structures in Aλ. If there
does not exist a universal model for Aλ, then we consider its complexity, or
the smallest size of a subfamily of Aλ which embeds the rest. This subfamily
of structures is called a universal family. All of these notions have weak and
strong counterparts depending on the type of embedding used.

In this paper, assume that λ, κ are regular, uncountable cardinals such that
κ ≤ λ.

We will now define notation for types of structures which will be discussed
in this paper. As we would like to work with sets of structures rather than
classes, we will assume that the structures are representatives under isomor-
phism. Let C(λ, κ) be the set of all posets of size λ which omit (i.e. do not
contain) chains of size κ. Let Ca(λ, κ) be the set of all posets of size λ which
omit antichains of size κ.

In section 3 it is shown to be consistent with ZFC that the complexity of
C(λ, κ) and Ca(λ, κ) is 2λ where the value of 2λ can be any µ such that
cf(µ) > λ. That is, µ-many posets will be added which do not embed into
any other poset in the appropriate set. This will force the value for 2λ to
be µ. The posets built in this construction are well-founded, therefore, it is
also consistent that the complexity for well-founded posets of size λ omitting
chains or antichains of size κ is 2λ where 2λ = µ as above.

Note that obtaining maximal weak complexity (i.e. 2λ for structures of size
λ) is optimal. That is, if there does not exist a small weakly universal family,
then there certainly does not exist a strongly universal one.

In section 4, the above complexity results are shown to be consistent for all
regular λ simultaneously. These use Easton products which destroy the GCH
at all regular cardinals but in addition fix the complexity for posets as above.

Komjáth and Shelah in [3] give a similar localised result for graphs of size λ
omitting ℵ1-cliques for regular uncountable cardinals λ. Their methods were
the basis of our methods for showing consistency results at one cardinal at a
time, in particular the method of low sets is taken from [3]. That paper also
gives another consistency result where the strong complexity for such graphs
can be any ν ∈ [λ+, 2λ). The methods used for this result do not seem to
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apply to give strong complexity result for C(λ, κ) because of the difficulties
imposed by transitivity.

The techniques in this paper also give a generalised statement for graphs of
size λ omitting κ-cliques (for κ, λ as above). That is, we have the following
results.

Theorem 1.1. Let A be the set of all (representatives under isomorphism of)
graphs of size λ omitting κ-cliques. Let µ be a cardinal satisfying cf(µ) > λ.
Then:

1. (Komjáth -Shelah) for any regular ν ∈ [λ+, µ], there exists a cardinal
and cofinality preserving forcing extension such that GCH holds below
λ, 2λ = µ and the complexity of A is ν.

2. there are forcing extensions such that the results above hold for all λ
simultaneously.

The proof of (1) is omitted, but the proof of (2) can be found in section 4.

We will consider larger forcing conditions as the stronger ones. That is if p, p′

are forcing conditions with p ≥ p′ then we will say that p is stronger than
p′. All the forcings P considered in this paper will have weakest elements,
which we will call ∅P .

The results in sections 2 and 4 are due to the second and third authors. The
results in sections 3 are due to the first and third authors.

2 Weak λ-closure

If a forcing notion has the property that one can guarantee an upper bound
to any increasing sequence of limit length < λ by making careful choices of
upper bounds at earlier limit stages, then we say that the forcing is weakly
λ-closed. More precisely:

Definition 2.1. A forcing notion P is weakly λ-closed, if and only if there
exists a function F : P <λ → P such that for all limit τ < λ if 〈pα : α < τ〉 is
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a non-decreasing chain and satisfies the following:

for all limit τ ′ < τ we have pτ ′ ≥ F (〈pα : α < τ ′〉)

then the sequence 〈pα : α < τ〉 has an upper bound.

The notion of weak λ-closure is somewhat stronger than the familiar notion of
strategic λ-closure. The two notions have similar properties, but the former
is easier to work with in the context of products.

Fact 2.2. 1. If a poset is λ-closed then it is weakly λ-closed.

2. Weak λ-closure implies λ-distributivity. This is because a nondecreas-
ing sequence of conditions can be built to meet any < λ many dense
subsets.

3. If θ ≥ λ then weak θ-closure implies weak λ-closure.

4. In the definition of weak λ-closure, we may assume that if there is α < τ
such that α < β < τ implies pα = pβ then F (〈pα : α < τ ′〉) = pα for all
limit τ ′ < τ .

Claim 2.3. If P is a product forcing notion such that

P =
∏

<δ−support

〈Qi : i < δ〉

for some regular δ ≥ λ and Qi is weakly λ-closed for all i < δ, then P is
weakly λ-closed.

Proof A condition pβ ∈ P can be written as 〈qi
β : i < δ〉 where qi

β ∈ Qi for
all i < δ. To witness the weak λ-closure of Qi, there exists an appropriate
Fi : Q<λ

i → Qi. Let FP (〈pβ : β < τ〉) = 〈F0(〈q
0
β : β < τ〉), F1(〈q

1
β : β < τ〉)...〉.

By Fact 2.2(4), this does not violate < δ-support. 2

Claim 2.4. If P = 〈(Pα, Qα
˜

) : α ∈ Ord〉 is an Easton support iteration
and Qλ

˜
is weakly λ-closed for all regular λ, then for regular λ, we have that

P (≥ λ) is weakly λ-closed.

4



Proof This is similar to the product, we must compose the functions from
the Qα’s together. Let λ be a regular cardinal. We can write pβ ∈ P (≥ λ)
as pβ = 〈pi

β

˜
: i ∈ Ord〉 where each pi

β

˜
∈ Qi

˜
. Let FP (〈pβ : β < τ〉) =

〈FQ0
(〈p0

β : β < τ〉), FQ1

˜
(〈p1

β

˜
: β < τ〉)...〉, again using Fact 2.2(4) to ensure

Easton support. 2

Claim 2.5. If P = 〈(Pα, Qα
˜

) : α < µ〉 is an iteration with < δ-support for
some regular cardinal δ ≥ λ and cardinal µ and Qα is weakly λ-closed for all
α < µ, then Pα is weakly λ-closed.

Proof Similar to the proof of 2.4. 2

3 High complexity

In this section, we will show that the weak (and hence strong) complexity of
C(λ, κ) can be 2λ whose value will be forced to be µ for some µ > λ.

Theorem 3.1. Assume that M |= V = L and µ, λ, κ > ℵ0 are cardinals
such that cf(µ) > λ = cf(λ) and κ ≤ λ is regular. Then in a cardinal and
cofinality preserving forcing extension MP , GCH holds below λ and the weak
(and hence strong) complexity of C(λ, κ) is 2λ = µ.

Remark 3.2. We actually do not need the full strength of V = L, but only
GCH and 2θ when λ = θ+ and cf(θ) < κ.

Proof First we will define and prove some lemmas about certain small sub-
sets of λ in the ground model, called low subsets. We will use these facts in
the definition of our forcing extension in order to prove that the extension
preserves cofinalities.

When defining and working directly with these low sets, we will need three
cases.

1. λ = κ

2. λ > κ, λ = θ+ and cf(θ) < κ
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3. λ > κ and case 2 does not apply.

For case 1 and case 3 the low subsets of λ are the nonempty bounded subsets
of λ of size < κ and of limit order type. For case 2 we will define low sets
using 2θ:

Assume we are in case 2. Jensen has shown in [2] that, a 2θ-sequence exists
in M . Fix a 2θ-sequence 〈Cδ : δ < λ, δ limit〉 with the following properties:

1. Cδ ⊆ δ is a club of δ,

2. if γ is a limit point of Cδ, then Cγ = γ ∩ Cδ,

3. |Cδ| < θ.

Let the increasing enumeration of each Cδ be 〈cδ
ξ : ξ < type(Cδ)〉. Also, fix a

sequence of cardinals {θγ : γ < cf(θ)} strictly increasing to θ and an injective
function φα,β : [α, β) → θ for each α < β < λ.

For case 2, the low subsets of λ are nonempty sets A ⊂ λ with the following
properties:

1. |A| < κ with limit order type

2. Let δ = sup(A). There exists a γ < cf(θ) such that for all ξ < type(Cδ)
and for all a ∈ A with cδ

ξ ≤ a < cδ
ξ+1, we have φcδ

ξ
,cδ

ξ+1
(a) < θγ .

We say that A is witnessed by γ.

The next two lemmas are the reasons that we needed the existence of the 2θ-
sequence. This method allows us to only have to deal with a small number of
bounded subsets of λ. Consider in case 2 if we had simply taken all bounded
subsets of λ of size < κ of limit type as low. Then the number of low subsets
of λ would be θ<κ ≥ θcf(θ) > θ by König’s Lemma, so Lemma 3.3 would be
contradicted when α = θ and λ = θ+.

Also, the coherence of the 2θ-sequence will help us to shrink subsets of λ to
a subset whose intersection with each of its limit point is low. This will be
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important as the low sets will be used to control the growth of chains when
building sequences of increasing posets.

Lemma 3.3. Fix an ordinal α < λ. For λ > κ, the number of low subsets
of λ which are subsets of α is less than λ.

Proof For case 2, let λ = θ+ and let Aγ be the set of low subsets of λ
contained in α which are witnessed by γ. The number of low subsets of λ
contained in α is then sup{|Aγ| : γ < cf(θ)}. We will fix a γ < cf(θ) and
determine the size of Aγ.

Let A be a set of size < κ of limit type with δ = sup(A) such that δ ≤ α and
γ witnesses that A is low. The number of possibilities for A is the number
of possible subsets of φ−1

cδ
ξ
,cδ

ξ+1

(θγ) of size < κ times the number of intervals

[cδ
ξ, c

δ
ξ+1). We will calculate these values below.

For each ξ < type(Cδ), let Xξ = φ−1
cδ
ξ
,cδ

ξ+1

[θγ ]. Since φcδ
ξ
,cδ

ξ+1
is injective, we have

|Xξ| ≤ θγ possibilities for a ∈ Xξ. A low subset is a subset of
⋃

ξ<type(Cδ) Yξ

of size < κ, where each Yξ ⊆ Xξ. For each ξ, Xξ has at most 2θγ ≤ θγ+1

subsets, as GCH holds. Since |Cδ| < θ, certainly type(Cδ) < θ so there at
most θγ+1 · type(Cδ) < θ sets in Aγ.

Hence, over all γ < cf(θ), there are at most θ low subsets of α, which is less
than λ.

One can see that for case 3, the number of low subsets of any α < λ is less
than λ as the number of subsets of α of size < κ of limit type is |α|<κ < λ.

2

Lemma 3.4. If λ > κ and B ⊆ λ has order type κ, then there exists a
cofinal subset B′ ⊆ B such that if γ < sup(B′) is a limit point of B′ then
B′ ∩ γ is low.

Proof For case 2, let λ and B be as above and let δ = sup(B). Let
〈Cδ : δ < λ limit〉 be defined as above. Choose a cofinal subset B′ ⊆ B
such that if a, b ∈ B′ then there exists cδ

ξ such that a ≤ cδ
ξ < b. Such a

cofinal sequence exists as both B and Cδ are unbounded in δ. For all ξ such
that there is b ∈ B′ with cδ

ξ ≤ b < cδ
ξ+1, there is some αξ < cf(θ) such that
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φcδ
ξ
,cδ

ξ+1
(b) < θαξ

, since |B′| ≤ κ < cf(θ). Hence there is α < cf(θ) such that

for all b ∈ B′ where cδ
ξ ≤ b < cδ

ξ+1, we have φcδ
ξ
,cδ

ξ+1
(b) < θα.

Since B′ is cofinal in B, it is clear that type(B′) is a limit, in fact, the order
type of B′ is κ because that is the order type of B. Because of the cofinality
of B′ in B, we also know that sup(B′) = sup(B) = δ. If γ < δ is a limit
point of B′ then |B′ ∩ γ| < κ (as the order type of B′ is κ). Since γ is also a
limit point for Cδ, the coherence property of 2θ holds, namely Cγ = γ ∩ Cδ

and thus α witnesses that B′ ∩ γ is low.

For case 3, let B′ = B. If γ is a limit point of B′, then B′ ∩ γ is a subset
with size < κ of limit type. 2

We shall define our forcing notion P = P (λ, κ, µ) to be the (< λ)-support
product of µ copies of Q = Q(λ, κ), a forcing notion that will be defined
below.

Let the elements of Q be q = (δ, X,A), where

1. δ < λ is an ordinal,

2. X is a poset (X,≤X) with domain δ which omits κ-chains and in which
α ≤X β implies that α ≤ β,

3. the conditions on A are as follows:

(a) A is a family of low subsets A of λ such that A ⊆ δ and the size
of A is < λ,

(b) if A ∈ A is such that sup(A) ≤ x < δ, then A �X x.

We will assign the ordering of Q to be as follows. If q = (δ, X,A) and
q′ = (δ′, X ′,A′) are in Q, then q′ ≥Q q (i.e. q′ is stronger than q) if and only
if δ′ ≥ δ, with X a subposet of X ′ such that X = X ′ ↾δ and A = A′ ∩ [δ]<κ.
In addition, if A ∈ A and a ∈ A then a �X′ δ.

Let us observe that this ordering is transitive: if pl = (δl, Xl,Al) for l < 3
and p0 ≤ p1, p1 ≤ p2 hold, then to see that p0 ≤ p2 we have to see that for
every A ∈ A0 and a ∈ A we have a �X2

δ0. Since p0 ≤ p1 we have a �X1
δ0

but since X2 ↾δ1 = X1 this implies a �X2
δ0.
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Next we need to show that forcing with P preserves cardinalities and cofi-
nalities. We start by defining upper bounds for sequences in Q.

Definition 3.5. Given i∗ < λ and q̄ := 〈qi = (δi, Xi,Ai) : i < i∗〉 increasing
in Q, we will define the canonical upper bound for q̄ or cub(q̄) such that
cub(q̄) ≥ qi for all i < i∗. If i∗ is a successor ordinal j+1, then let cub(q̄) = qj .
Assume now that i∗ is a limit ordinal.

For λ = κ, let cub(q̄) = (δ, X,A) be such that δ = sup{δi : i < i∗} and
let X,A be the union over all i < i∗ of their respective parts in qi, (e.g.
X =

⋃
i<i∗ Xi). No extra relations are added to X.

For λ > κ, let cub(q̄) = (δ, X,A) be such that δ, X are the union over all
i < i∗ of their respective parts in qi and let A be as follows. If cf(i∗) ≥ κ,
take A =

⋃
i<i∗ Ai, otherwise we also include all low subsets of λ cofinal in

δ.

We will show that the cub of an increasing sequence of elements of Q is in
fact a condition in Q.

Claim 3.6. If α∗ < λ and q̄ := 〈qα = (δα, Xα,Aα) : α < α∗〉 is a sequence in
Q such that for all limit α < α∗ we have qα is the cub of 〈qβ : β < α〉, then
cub(q̄) = (δ, X,A) ∈ Q is an upper bound of the sequence q̄.

Proof The proof is by induction on α∗, assuming that the statement holds
for all sequences of length less than α∗. In particular we may assume that q̄
is increasing in Q.

If α∗ is a successor ordinal then this is trivial, hence we shall now assume
that α∗ is a limit.

One can see that for all α < α∗ we have δα < λ and Xα has domain δα,
hence by the regularity of λ it follows that δ < λ, and it is also clear that the
domain of X is δ. We know that A is a family of low subsets of λ because all
the sets that comprise each Aα are low. If cf(α∗) ≥ κ then |A| < λ because
α∗ < λ and |Aα| < λ for all α < α∗ as qα ∈ Q. If cf(α∗) < κ then there are
< λ low sets cofinal in δ by Lemma 3.3, so we still have |A| < λ.

For requirement 3b, if cf(α∗) < κ and A ∈ A, then either A is cofinal in δ
and so sup(A) = δ or A is also in Aα for some α < α∗. Thus, in the former
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case there is no x such that sup(A) ≤ x < δ, so that the requirement is
trivially met. In the latter case the same can be seen by observing that for
all β ′ ∈ [β, α∗) we have A ∈ Aβ′ and using that δ = sup{δα : α < α∗}. If
cf(α∗) ≥ κ, then for each A ∈ A there exists an α < α∗ such that A ∈ Aα so
the requirement is met similarly as above.

The only remaining difficulty that might arise is if we added a κ-chain in
some poset Xα. Let α ≤ α∗ be the minimal ordinal such that there exists
a κ-chain T of X in δα. Note that the domain of T is necessarily cofinal in
δα. By shrinking T if necessary we may assume that the order type of it is
exactly κ.

We must have that cf(α) = κ as this is the only point where such a chain
could be added. If λ = κ, then this cannot occur as α∗ < λ. Assuming then
that λ > κ, by Lemma 3.4, there exists a cofinal T ′ ⊆ T such that if γ < δα is
a limit point of T ′, then T ′∩γ is low. There exists a limit ordinal β < α such
that δβ is a limit point of T ′ and hence cf(β) 6= κ (since the order type of T ′

is κ). Such a β can be found as both the set of limit points of an unbounded
subset of δα (namely T ′) and the set of {δβ : β < α} form clubs in δα, by
the assumption on q̄. By our construction T ′ ∩ δβ ∈ Aβ because it is low, so
T ′ ∩ δβ could not have been extended to a κ-chain later by requirement 3b
on q′β for β ′ > β.

We still need to show that qα ≤ cub(q̄) for α < α∗. Note that when cf(α∗) ≥ κ
we have A∩ [δα]<κ = Aα because [δα]<κ does not include any Y cofinal in δ.
The rest is clear from the definition of cub(q̄). 2

Lemma 3.7. Q is weakly λ-closed.

Proof The function F witnessing the weak closure will be the cub oper-
ator defined above. Suppose that we are given a sequence q̄ = 〈qα =
(δα, Xα,Aα) : α < α∗〉 in Q for some α∗ < λ, and this sequence satisfies
that for all limit τ < α∗ we have qτ ≥ cub(〈qα : α < τ〉). If α∗ is a successor
ordinal α + 1 then clearly qα is an upper bound of the sequence, so let us
assume that α∗ is a limit. We can then define a sequence q̄′ of length α∗ such
that for q′0 = q0 and qα+1 = qα, while for α limit we have q′α is the cub of
〈q′β : β < α〉. Then q̄ is cofinal in q̄′ and any upper bound for q̄′ is an upper
bound for q̄. The existence of such an upper bound follows by Claim 3.6. 2
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Note that by Claim 2.3, the forcing P is also weakly λ-closed.

Lemma 3.8. The forcing notion P is λ+-cc.

Proof Suppose {pα : α < λ+} is a sequence in P . We know that λ is regular
and for all α < λ+ we have |α<λ| < λ+. Also, for all p ∈ P , we know that
|ran(p)| < λ since p has < λ non-trivial elements. So, by the ∆-System
Lemma, there exists an X ⊆ λ+ such that |X| = λ+ and {Dom(pα) : α ∈ X}
forms a ∆-system with some root r. Since |Q| = λ and λ<λ = λ, there are
fewer than λ+ possibilities for pα ↾ r so there exists a Y ⊆ X with |Y | = λ+

such that for all α, β ∈ Y , we have pα ↾ r = pβ ↾ r. Now for all α ∈ Y , the
pα’s are compatible, which shows that the original sequence could not have
formed an antichain. 2

Let GP be P -generic over M . If in M [GP ] the complexity of C(λ, κ) is < µ,
then there exists a family F of posets that witnesses this. This subfamily is
added by a < µ sized sub-product of P , call it R. (Note that R may be a
cofinal sub-product of P in case µ is singular.) By the product lemma (see
e.g. [4]), if we let GR and GP/R be the generics for R and P/R respectively,
then M [GR][GP/R] = M [GP/R][GR] = M [GP ]. It is enough to show that
forcing with Q over M [GR] introduces a poset Y that cannot be embedded
into any poset in M [GR] of size λ which omits κ-chains. Then we can take
one copy of Q from P/R and we shall have in M [GP ] that F is not a universal
family. So let us show the required property of Q.

If G ⊆ Q is generic for Q then let Y = YG =
⋃
{X : (δ, X,A) ∈ G} be

such that for all x, y ∈ Y we have x ≤Y y if and only if for some X with
(δ, X,A) ∈ G we have x ≤X y.

Lemma 3.9. For any generic G, the set Y = YG as defined above is a poset
of size λ which omits κ-chains.

Proof We start with a density argument to show that Y has size λ.

Claim 3.10. For every γ < λ the set Dγ = {(δ, X,A) ∈ Q : δ > γ} is dense
in Q.

Proof Given a condition q = (δ, X,A) ∈ Q, suppose that δ ≤ γ. Let Z be
the poset extending X whose universe is γ +1 such that for all ε in [δ, γ +1)
we have that ε is not comparable to any other element of Z.
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Then Z is a poset which omits κ-chains. We wish to show that q′ =
(γ + 1, Z,A) is a condition in Dγ and that it extends q.

If A ∈ A satisfies sup(A) ≤ x ≤ γ for some x ∈ Z then either x ∈ X so
A 6≤Z x or x > δ and again A 6≤Z x. Also, δ is not comparable with any
other element of Z so taken together these observations show that q′ is as
required. 2

By the claim above, we know for any generic G that Y has size λ. It is also
a poset by genericity. Now we will show that Y omits κ-chains.

If λ = κ, we will assume that q ∈ Q and T
˜

are such that q 
 “T
˜

is an increas-
ing κ-chain in Y ”. We will choose an increasing sequence 〈qn : n < ω〉 such
that q0 = q and let qn+1 = (δn+1, Xn+1,An+1) be such that qn+1 
 “tn ∈ T

˜and δn < tn < δn+1”. This can be done because each r = (δ, X,A) ∈ Q
satisfies r 
 “Y

˜
↾δ = X”. Hence, if it is also the case that r ≥ q, then r 
 “T

˜is a κ-chain in Y
˜

” and so r 
 “(∃α > δ)α ∈ T
˜

”. Applying this to r = qn, we
may find qn′ ≥ qn and tn > δn such that qn′ 
 “tn ∈ T

˜
”. Then by extending

qn′ to qn+1 if necessary, we may by Claim 3.10 assume that δn+1 > tn.

Let t̄ = {tn : n < ω}. Now let q′ = (δ, X,A) be such that δ = lim{δn : n < ω}
with X =

⋃
{Xn : n < ω} and A =

⋃
{An : n < ω}∪{t̄}. As sup{tn : n < ω}

= sup{δn : n < ω} we know that sup(t̄) = δ. Therefore, there does not exist
x such that sup(t̄) ≤X x < δ and thus requirement 3b holds for t̄ ∈ A. The
rest of the requirements hold by similar arguments to those in Claim 3.6.
Thus we have that q′ ∈ Q.

We claim that q′ 
 “T
˜
⊆ δ”. This is equivalent to the statement that for all

r ≥ q′ with r ∈ Q, we have that r does not force “T * δ”. We will suppose
otherwise and arrive at a contradiction.

Let r = (ξ, Z,B) with r ≥ q′ and let β > δ be such that r 
 “β ∈ T
˜

”.
Without loss of generality ξ > β. We know that t̄ ∈ A so it is also the case
that t̄ ∈ B. Since δ < β, we also must have that t̄ �Z β by requirement 3b
of B for r ∈ Q. However, since r forces β ∈ T

˜
, r must force that t̄ ≤T β and

Z ⊆ Y .

So we proved that q′ 
 “T
˜
⊆ δ”. (Note that this does not imply that q′ forces

T to be countable as the elements of t̄ are not necessarily the only elements
of T ). Since δ < λ = κ, we proved that q′ forces that T

˜
has size < κ, which
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is a contradiction.

If λ > κ, then Q does not add any new κ-sequences since it is weakly λ-closed.
Therefore, Q could not have added a κ-chain. 2

Lemma 3.11. The poset Y does not embed into any poset in the ground
model which has size λ and omits κ-chains.

Proof Suppose that there exists q ∈ Q such that q 
 “f
˜

: Y
˜

→ Z is an
embedding” where Z in the ground model is a poset of size λ which omits
κ-chains”.

By induction on α < κ, we will construct an increasing sequence 〈qα =
(δα, Xα,Aα) : α < κ〉 and a function g as follows. Let q0 = q and let qα+1 


“f
˜
(δα) = g(α)”. For α a limit ordinal, define an intermediate condition

q′α = (δ′α = supβ<α δβ, X
′

α =
⋃

β<α Xβ,A′

α =
⋃

β<α Aβ). It is easily seen that
qβ ≤ q′α for all β < α. Let qα = (δα, Xα,Aα) such that δα = δ′α + 1 and
Aα = A′

α. In Xα let δβ ≤Xα δ′α for β < α, let δ′β ≤Xα δ′α for all β < α
limit, let Xα inherit all the relations from X ′

α, and finally take the transitive
closure. Note that this does not affect X ′

α as we are only adding pairs (x, y)
in which y = δ′α and δ′α 6∈ X ′

α ∪
⋃
A′

α.

We must see that qα is a condition. The proof is by induction on the limit
α.

It is easy to see that all the requirements for qα to be in Q are met, except
for requirement 3b which requires some argument.

Requirement 3b can fail for qα if there exists A ∈ Aα with A ⊆ δα and
sup(A) ≤ x ≤ δ′α for some x ∈ Xα and A ≤Xα x. This breaks into three
cases.

We cannot have that sup(A) ≥ δ′α as by the definition of q′α for α limit, there
are no sets A ∈ Aα cofinal in δ′α.

If sup(A) ≤ x < δ′α then there exists β < α such that A ∈ Aβ and x ∈ Xβ as
α is a limit. However, this contradicts qβ being a condition.

The last case to check is if sup(A) < δ′α and x = δ′α. We will assume this
is the case and arrive at a contradiction. Nothing in Xα is connected to x
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except {δβ : β < α}, {δ′β : β < α limit} and points below the δβ’s which we
had to connect by transitivity. If A ≤Xα x then for every a ∈ A there must
be δβa = δβ such that a ≤Xα δβ, for some β < α. On the other hand, since α
is a limit ordinal and sup(A) < δ′α, then by the definition of Aα there exists
ξ < α such that A ∈ Aξ and hence sup(A) ≤ δξ. Let ξ be the first such
ordinal. By the fact that 〈qβ : β < α〉 is increasing and by the definition of
≤Q, we must have that for every a ∈ A the inequality βa < ξ holds. The
first possibility is that supa∈A βa = ξ. If this is the case then ξ < α is a
limit. Then by the definition of qξ we have that for all a ∈ A, δβa ≤Xξ

δ′ξ
and in particular A ≤Xξ

δ′ξ. This contradicts the inductive hypothesis that

qξ is a condition. Hence we must have β
def
= supa∈A βa < ξ. Since for every

a ∈ A we have a ≤Xα δβa then in particular a ≤ δβa as ordinals, and hence
sup(A) ≤ δβ . However, Aξ ∩ [δβ]<κ = Aβ, so A ∈ Aβ, contradicting the
choice of ξ.

Now that we have shown that qα is a condition it is also easy to show that
qβ ≤Q qα for all β < α. Hence we can define the sequence 〈qα : α < κ〉, but
then {g(α) : α < κ limit} will be a κ-chain in Z, a contradiction. 2

We have now exhibited a poset of size λ which omits κ-chains in the extension
and which does not embed into any such poset in M [GR]. This shows that
the complexity of C(λ, κ) is at least µ. It now only remains to show that
2λ = µ in MP since 2λ is the maximal complexity of a set of structures of
size λ.

Each poset Y is a subset of λ and we introduced µ many of them. Hence in
the extension 2λ ≥ µ.

Every subset of λ in MP has a nice name, that is a name of the form
{〈α, Kα〉 : α < λ} where each Kα is an antichain of P . By definition |P | = µ
and we have shown that P is λ+-cc, so it has at most µλ = µ antichains.
Hence, there are at most µ nice names for subsets of λ and thus 2λ ≤ µ. 2

Theorem 3.12. Assume that M |= V = L and µ, λ, κ > ℵ0 are cardinals
such that cf(µ) > λ = cf(λ) and κ ≤ λ regular. Then in a cofinality pre-
serving forcing extension MP , GCH holds below λ and the weak (and hence
strong) complexity of Ca(λ, κ) is 2λ = µ.

Proof The proof of this theorem is essentially the same as the one above
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except for one thing: Condition 3b in the definition of Q needs to be changed.
The new version should read:

3b′. if A ∈ A and sup(A) ≤ x < δ then A is comparable to x.

Then in the lemmas (in particular Lemmas 3.7, 3.9 and 3.11 and Claim 3.10),
replace A ≤ x with A >< x and A � x with “A is comparable to x”. 2

4 Global results

Theorem 4.1. Assume V = L. To each uncountable regular cardinal λ
definably associate a regular uncountable cardinal κ(λ) ≤ λ and a cardinal
F (λ) such that cf(F (λ)) > λ and λ < θ implies F (λ) ≤ F (θ). Then there
exists a definable, ZFC-preserving and cofinality preserving class forcing no-
tion P such that in LP the complexity of C(λ, κ(λ)) is F (λ) = 2λ for each
regular uncountable λ.

Remark 4.2. As before, we do not need the full strength of V = L, but
only GCH and 2θ when λ = θ+ and cf(θ) < κ(λ).

Proof We shall define a forcing notion P (λ, F (λ), κ(λ)) to be the (< λ)-
support product of F (λ) copies of Q(λ, κ(λ)), forcing notions that were de-
fined in section 3. The relevant properties of these forcings are summarised
below.

Fact 4.3. 1. The cardinality of Q(λ, κ(λ)) is λ.

2. If λ = κ(λ), then Q(λ, κ(λ)) is (< κ(λ))-closed. If λ > κ(λ), then
forcing with Q(λ, κ(λ)) is weakly κ(λ)-closed. Similar statements hold
for P (λ, F (λ), κ(λ)).

3. The forcing notion P (λ, F (λ), κ(λ)) is λ+-cc.

P will be a product forcing notion of all P (λ, F (λ), κ(λ)) made with Easton
support. Recall that Easton support means that the support is bounded at
inaccessibles. We use the notation P (< λ) to denote the part of the product
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made over θ < λ and P (≥ λ) for the remainder of the product. Similarly, we
use G(< λ) and G(≥ λ) for the corresponding generics.

Lemma 4.4. P (≥ λ) is weakly λ-closed.

Proof Holds by Claim 2.4. 2

Lemma 4.5. If λ is Mahlo or the successor of a regular cardinal, then P (< λ)
is λ-cc.

Proof Works by standard ∆-system arguments. See Jech [1] for details. 2

Unfortunately, when λ is the successor of a singular cardinal or a non-Mahlo
inaccessible, we only have that P (< λ) is λ+-cc.

Let G be P -generic over L.

Lemma 4.6. L[G] satisfies that the complexity of posets of size λ omitting
κ(λ) chains is F (λ) for all regular uncountable λ.

Proof Since P is a product, we can split L[G] = L[G(≥ λ)][G(< λ)]. By
doing the larger forcing first, nothing is changed below λ. In particular, GCH
and square still hold below λ and no new sequences of size < λ were added,
so forcing over L[G(≥ λ)] is the same, from the point of view of the smaller
forcing, as forcing over the ground model.

However, once we do the small forcing, we want to see that the complexity
calculations achieved by large forcing are not changed by the small forcing.
We can do this by anticipating a maximal antichain of conditions in the small
forcing when we do the complexity proof for the large forcing.

If GQ ⊆ Q(λ, κ(λ)) is generic for Q(λ, κ(λ)) then let Y = Y (GQ) =
⋃
{X :

(δ, X,A) ∈ GQ} be such that for all x, y ∈ Y we have x ≤Y y iff for some X
with (δ, X,A) ∈ GQ we have x ≤X y. By Lemma 3.9, we know that for any
generic GQ, the set Y = Y (GQ) as defined above is a poset of size λ which
omits κ(λ)-chains.

We also have that the poset Y does not embed into any ground model poset
of size λ which omits κ(λ)-chains. We strengthen this argument below to
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show that Y does not embed into any poset of size λ which omits κ(λ)-
chains and which exists in L[G(< λ)]. In particular, we will show that if
there exists a condition in P (λ, F (λ), κ(λ)) which forces an embedding from
Y into a poset in L[G(< λ)], then we can find a sequence of conditions in
P (< λ) × P (λ, F (λ), κ(λ)) which “decides” the embedding.

By the product lemma we can look at conditions from P (< λ) × Q(λ, κ(λ))
instead of P (< λ) × P (λ, F (λ), κ(λ)).

Assume that there exists q ∈ Q(λ, κ(λ)) such that over the ground model
LP (<λ), q 
 “f

˜
: Y
˜
→ Z is an embedding of Y

˜
into some ground model poset

Z of size λ which omits κ(λ)-chains”.

By induction on α < κ(λ), we will construct an increasing sequence 〈qα =
(δα, Xα,Aα) : α < κ(λ)〉 which, together with a maximal antichain of con-
ditions from P (< λ), “decides” the values of the embedding. We will deal
with the cases where λ is Mahlo or the successor of a regular cardinal first,
as the maximal antichains of P (< λ) have size < λ.

Let q0 = q. For α limit, let δα = sup{δβ : β < α} with Xα =
⋃
{Xβ : β < α}

and Aα =
⋃
{Aα : β < α}. After each limit stage α, let q′α be an intermediate

condition (δα +1, X+
α ,Aα) such that X+

α = Xα ∪{δα} and for β < α we have
δβ ≤X+

α
δα and take the transitive closure. Note that this does not affect Xα

as we are only adding relations to δα and δα 6∈ Xα. Then we will continue
constructing qα+1 by extending q′α as below.

For α+1, we build the condition qα+1 by induction. Choose any p0 ∈ P (< λ)
and q0

α+1 such that (q0
α+1, p0) 
“f

˜
(δα) = gp0

(α)” for some gp0
(α) ∈ Z. Then

choose p1 ∈ P (< λ) and q1
α+1 ≥ q0

α+1 such that p1 is incompatible with p0

and (q1
α+1, p1) 
 “f

˜
(δα) = gp1

(α)” for some gp1
(α) ∈ Z. Note that by the

choice of q we have that (q, ∅) forces that f
˜

is an embedding of the sort
required, hence certainly (q0

α, p1) forces this. At limit ordinals γ, let qγ
α+1 be

the cub(〈qβ
α+1 : β < γ〉).

Continue choosing incompatible elements from P (< λ) until a maximal an-
tichain Aα is reached. Let qα+1 = cub(〈qβ

α+1 : β < β∗〉) for some β∗ < λ,
which is the length of the maximal antichain chosen.

By Lemma 3.11 all qα are conditions in Q(λ, κ(λ)). Let G(< λ) be P (< λ)-
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generic and for each α choose pα ∈ G(< λ) ∩ Aα. Then 〈gpα(α) : α < κ(λ)〉
is a κ(λ)-chain through Z in V [G(< λ)], a contradiction.

The non-Mahlo inaccessible and successor of a singular cases can be further
reduced to two subcases. The first is when κ(λ) < λ. When λ is the successor
of a singular, we have that κ(λ)++ < λ as κ(λ) is regular and λ = µ+ for
some singular limit cardinal µ and thus κ(λ) must be less than µ. If λ is
inaccessible, then it is a limit cardinal, so κ(λ)++ < λ.

Thus, the forcing can be split somewhere between κ(λ) and λ, say at κ(λ)++.
Since κ(λ)++ is the successor of a regular cardinal, P (< κ(λ)++) is κ(λ)++-cc
and P (≥ κ(λ)++) is κ(λ)+++-distributive. We may proceed as above since
the conditions qα only need to be defined for α < κ(λ).

If λ is the successor of a singular or a non-Mahlo inaccessible and κ(λ) = λ,
then we cannot cut the forcing below λ and P (< λ) only has the λ+-cc. We
would still like to build the conditions qα together with a maximal antichain
on P (< λ). The idea here is to dovetail the building of conditions so that
at each stage α, the value for gp(α) is decided for < λ many p in a maximal
antichain and the rest of the values are decided at later stages. This in itself
would be easy enough, but we want this process not only to have size λ, but
also order type λ, as we only have weak closure under sequences of length
< λ.

To this end, we take an elementary submodel M of some large H(θ) = Lθ

which has size λ, includes all relevant information and is closed under < λ-
sequences. Enumerate the elements of M in order type λ. So we can list all
the elements of P (< λ) ∩ M as 〈pi : i < λ〉.

Assume that there exists q ∈ Q(λ, λ) such that q 
 “f
˜

: Y
˜

→ Z is an
embedding of Y

˜
into some ground model poset Z of size λ which omits λ-

chains”. We may assume that q ∈ M .

By induction on α < λ, we will construct an increasing sequence 〈qα =
(δα, Xα,Aα) : α < λ〉 which, together with a maximal antichain of conditions
from P (< λ), decides the values of the embedding. The entire construction
will take place inside of M . In order to accomplish the dovetailing process,
let α = 〈α0, α1〉 be a pairing function on ordinals < λ.

Let q0 = q and at limit stages α, build qα in the same way as in the case where
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λ is the successor of a regular cardinal, including building the intermediate
condition q′α.

For α + 1, we will build the condition qi
α+1 by induction on i ≤ α, and set

qα+1 = qα
α+1. For i = 0 set q0

α+1 = ∅. At successor stages i + 1, extend pi and
qi
α+1 inside M to p′i+1 and qi+1

α+1 such that (p′i+1, q
i+1
α+1) 
 “f

˜
(δα0

) = gp′i+1
(α0)”

for some gp′i+1
(α0) ∈ Z.

At limit stages i, let qi
α+1 be the cub of 〈qj

α+1 : j < i〉.

Now we note that the conditions in M are predense in P (< λ): Let p∗ =
〈rβ : β < λ〉 be a condition in P (< λ) (not necessarily in M), where we
assume rβ ∈ P (β). Let p∗ ↾ M = 〈rβ ↾ M : β ∈ M ∩ λ〉 where rβ ↾ M =
〈sγ ↾M : γ ∈ supp(rβ) ∩ M〉 and

sγ ↾M = (δγ ∩ M, Xγ ↾M,Aγ ↾M)
= (δγ, Xγ,Aγ),

well-defined as M is closed under < λ sequences. Thus p∗ ↾M ∈ P (< λ)∩M ,
and clearly p∗ ↾M is compatible with p∗. By the same argument, any predense
subset of P (< λ) ∩ M is predense in P (< λ).

Now choose some generic G for P (< λ). Let Dα0
be the set of all p′ ∈

M ∩P (< λ) such that (p′, qα) forces a value for f
˜
(δα0

) for some α < λ. Then
Dα0

is predense in P (< λ) for all α0 < λ. Thus, for each α0 we may choose
p′α0

∈ G(< λ) ∩ Dα0
. However, we have 〈gp′α0

(α0) : α0 < λ〉 is a λ-chain

through Z in L[G(< λ)], a contradiction. 2

We have now exhibited a poset of size λ which omits κ(λ)-chains in the
extension which does not embed into any such poset in the ground model.
This shows that the complexity of C(λ, κ(λ)) is ≥ F (λ). It now remains to
be seen that 2λ = F (λ) in the extension. It was shown in Section 3 that
in each MP (λ,F (λ),κ(λ)) the size of 2λ is exactly F (λ). Since in each forcing
P (λ, F (λ), κ(λ)) no new subsets of λ were added, this fact remains true in
MP . 2

We can get a similar global result for the low complexity given in [3]. Even
though the forcing at each regular cardinal is an iteration, the global forcing
will still be in the form of a product.
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Theorem 4.7. Assume GCH. To each uncountable regular cardinal λ de-
finably associate cardinals F (λ), κ(λ), ν(λ) such that κ(λ) ≤ λ is regular,
ν(λ) ∈ [λ+, F (λ)] and cf(F (λ)), cf(ν(λ)) > λ and λ < θ implies F (λ) ≤ F (θ).
Then there exists a ZFC-preserving, cofinality preserving class forcing notion
P such that in V P the strong complexity of graphs of size λ which omit cliques
of size κ(λ) is ν(λ) and F (λ) = 2λ for each regular uncountable λ.

Proof Let P (λ, κ(λ), ν(λ), F (λ)) be the iterated forcing notion of length ν(λ)
in [3, Theorem 4]. Namely, this is the forcing which adds a universal family
of size ν(λ) for graphs of size λ omitting κ(λ)-cliques where 2λ is forced to be
F (λ). The forcing notion P will be the Easton support product of Pα for all
α ∈ Ord such that Pα = P (α, κ(α), ν(α), F (α)) if α is a regular uncountable
cardinal and trivial otherwise.

Each forcing P (λ, κ(λ), ν(λ), F (λ)) is weakly λ-closed and satisfies the λ+-cc.

By Claim 2.4, P (≥ λ) is weakly λ-closed for λ regular uncountable. Also, if
λ is a successor of a regular or Mahlo then P (< λ) has the λ-cc.

The only thing left to check is that we have not changed the complexity at
each λ when doing the smaller forcing. This proceeds exactly like the proof
of Theorem 4.1.
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