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Abstract

In this bachelor’s thesis we develop the method of forcing for proving relative
consistencies of ZFC. We will apply forcing (mostly Cohen forcing) to prove in-
dependence results about the real line. In particular we will consider the classical
cardinal invariants of bounding, splitting and almost disjointness. Also we are going
to prove similar results for the respective generalized invariants.
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Introduction

In the 1870’s Georg Cantor discovered that very ordinary set theoretic principles in-
evitably lead to different sizes of infinities by means of bijective correspondence. In
particular he showed that the set of real numbers cannot be put in a one to one corre-
spondence with the natural numbers, that is to say they are uncountable or, they have
size strictly bigger than the naturals. Another observation is that any line segment has
already the same size as the whole real number line. Further analysing sizes of various
infinite sets of reals, Cantor conjectured that every infinite subset of R is either in bijec-
tive correspondence with the natural numbers or with the real line itself. This is the so
called Continuum Hypothesis (CH). The problem of whether the Continuum Hypothesis
is true, or false, remained unsolved for nearly a century and was a major driving force
behind the development of set theory.

In the 1920’s Ernst Zermelo and Abraham Fraenkel succeeded to capture the set
theoretical principles into a general framework of axioms, the axioms of ZFC, which
was accepted by the most part of the mathematical community. In this framework the
Continuum Hypothesis could be stated formally and the rather vague question of “is
CH true?”, was turned into “is CH provable from ZFC ?”.

In 1938, Gödel ([4]) gave a partial answer by showing that ZFC cannot prove the
negation of CH (unless ZFC is inconsistent). But it was only in 1963 that the problem
was fully solved by Paul Cohen ([3]). He showed that ZFC cannot prove CH (unless
ZFC is inconsistent) and could therefore conclude that CH is independent of the axioms
of ZFC. For this he invented a method which was very different from the ones used before
and it was soon realized that it could be applied to solve many open problems from set
theory, analysis, general topology, measure theory and even algebra. This is the method
of forcing. It is now one of the major tools in set theory.

The general goal of forcing is to prove relative consistency results about the theory
of sets, for us this will be ZFC. These relative consistency results are meta-theoretical
statements about the axiomatic system ZFC, that are usually of the form “ Con(ZFC )
→ Con(ZFC + ∆) ” where ∆ is some set of statements in the language of set theory. By
Gödel’s second incompleteness theorem (see [6, IV.5]) we know that ZFC, and in particular
any weaker system (e.g. Peano Arithmetic), is not strong enough to prove the consistency
of ZFC unless it is inconsistent itself. That is why the word “relative” is important. We
will argue that if ZFC + ∆ is inconsistent then already ZFC must be inconsistent; and in
the end it will be a completely “finitary” argument in the sense that it can actually be
carried out in a “low” system as Peano Arithmetic, that is strong enough to talk about
concepts as “ ZFC ”, “proof” etc... If, assuming ZFC to be consistent, a sentence is nei-
ther provable nor disprovable we say that it is independent (or more accurately relatively
independent).

This thesis is a continuation of the author’s first bachelor’s thesis [8]. In this paper,
we are first going to develop the general method of forcing, but only sketching the most
important proofs. Our first goal will be to show the consistency of the negation of CH by
using Cohen forcing.

The main focus will then lie on the four cardinal characteristics introduced in [8].
These are the bounding number b, the dominating number d, the splitting number s and
the almost-disjointness number a. We say that f dominates g, written as g <∗ f , for
f, g ∈ ωω iff the set of n ∈ ω for which g(n) ≥ f(n) is finite. b is then the least size of a
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family of functions, that is unbounded with respect to <∗. d is the least size of a family
of functions D that is dominating with respect to <∗, that is, for any g ∈ ωω, there is a
f ∈ D so that g <∗ f . S splits X, for S,X ⊆ ω, iff X ∩ S and X \ S are infinite. s is the
least size of a family of subsets of ω that contains a splitting set S for any X. A,B are
almost disjoint, for A,B ⊆ ω, iff A∩B is finite. A family of subsets of ω is called almost
disjoint iff all elements are pairwise almost disjoint. a is the least size of an infinite almost
disjoint family which is maximal in the set of all such families with respect to inclusion
(mad family). The most important inequalities between these cardinals characteristics
are: ℵ1 ≤ b = cf(b) ≤ cf(d) ≤ d ≤ c, b ≤ a ≤ c, s ≤ d. They were shown in [8] and will
be very useful throughout this paper.

We are going to see how Cohen forcing affects these four cardinal characteristics. In
particular we will see that in a Cohen extension, when starting with a model of GCH,
a = b = s = ℵ1 < d = c, where c is the size of the continuum. In another section we
will present the method of product forcing and we will outline how iterated forcing is
used. Product forcing is then applied to control the spectrum of mad families and to get
respective consistency results. In [8], we also studied the generalized versions of b, d, s
and a for arbitrary infinite cardinals. We are going to introduce the generalized version of
Cohen forcing that allows to show similar results for them. Then we will also show that
the dominating numbers of different regular cardinals are independent. At the end we will
add some ZFC results concerning the interplay of cardinal characteristics at cardinals of
the same cofinality.
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1 FORCING

1 Forcing

1.1 Generic Extensions

In this section we briefly introduce forcing setting aside the proofs for many of the relevant
statements. We follow the exposition in [7] where most of the proofs can be found.

Definition 1.1 (Forcing poset). A forcing poset is a triple (P,≤,1) where (P,≤) is a
partially ordered set with a largest element 1 (∀p ∈ P(p ≤ 1)).
Elements of P are often called conditions; p ≤ q reads p extends q; we say that p, q ∈ P
are compatible iff there is r ∈ P extending p and q (r ≤ p, q); p and q are incompatible iff
they are not compatible, written as p⊥q.

Definition 1.2 (Filter). Let (P,≤,1) be a forcing poset. We call F (6= ∅) ⊆ P a filter on
P iff:
• Any p, q ∈ F are compatible in F , meaning ∃r ∈ F (r ≤ p, q).
• p ∈ F ∧ p ≤ q → q ∈ F

Example 1.3.
• The trivial P := {1} where ≤:= {(1,1)} is a forcing poset. P itself is a filter on P.
• Let I, J be sets. Then Fn(I, J) := {p ∈ [I×J ]<ω : p is a partial function from I to J}

together with ⊇ as order relation is a forcing poset with largest element ∅.
• For any topological space (X,O), (O\{∅},⊆, X) is a forcing poset. A filter F on this

poset then is the same as what a filter usually denotes in the context of topological
spaces if we close F with supersets (one can then ask about convergence, etc...).
• Let T be a theory in some language L and consider the set T of all consistent

extensions of T . Then (T ,⊇, T ) is a forcing poset. Given a filter F ,
⋃
F is a

consistent extension of T (one can then ask about completeness, etc...).

The idea of forcing is to, working in ZFC, start with a countable transitive model
(ctm) (M,∈) of ZFC, where ∈ is the “real” membership relation of the ZFC universe V
(that is the universe we imagine to work in), and extend it to a new model N ⊇M which
has desired properties by adjoining to M a new set G. The idea is very similar to what
algebraists do when they extend fields by adjoining roots of polynomials. In the same
way that Q[

√
2] is the smallest field extension (up to isomorphism) of Q that contains a

root of x2 − 2, N = M [G] will be the smallest transitive extension of M that contains G
and satisfies ZFC. Transitive means that if y ∈ x ∈M then y ∈M .

Notice that saying “M is a model of ZFC ” is actually ambiguous and can be under-
stood in two different ways, which are important to be distinguished. One way to read it,
is to view “M is a model of ZFC ” as a single sentence in the language of set theory that
says that the model M satisfies the axioms of ZFC. What we then mean, is that inter-
nally V “thinks” M is a model of ZFC. In particular it would mean that for V, ZFC is
consistent. Another way of reading it, is to see “M is a model of ZFC ” as a scheme that
contains all axioms of ZFC relativized to M . That is, we assert that for any axiom ϕ we
(or our “metatheory”) know about, M |= ϕ holds true in V.

These two ways of reading are really different and we will always chose the latter one.
The main reason we use transitive models is because the elements of M can then be

seen as the same as they are in V. They have the same internal set structure they have
in V and many properties are true of them in M if and only if they are true of them
in V. This is generally referred to as “absoluteness”. A big class of properties that is
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1 FORCING

absolute between transitive models are the ∆0 formulas, also called bounded formulas.
These are formulas that have only bounded quantifiers (of the form ∀x ∈ y, ∃x ∈ y) so
they can only “talk” about the internal properties of sets x1, . . . , xn and not ones related
to the whole universe. For example x being an ordinal is a property which only depends
on what sets x consists of and it is a property expressed by a bounded formula. Also
many elementary set theoretic notions as ∪, ∩, S, \, ∅ are absolute between transitive
models. Concretely this means for example that, if a = b ∩ c in M where a, b, c are sets
in M , then also a = b ∩ c in N .

The construction of N involves a forcing poset which lies in M and that we can freely
chose (depending on what we try to “force”). The G that will be adjoined will then
be a special filter on this poset. But more about that will follow. The first step of the
construction is done by defining so called “names” for the sets in N .

Definition 1.4. Let M be a ctm and (P,≤,1) ∈M a forcing poset. Then we define the
set MP of names recursively on the ordinals o(M) in M as follows:
• MP

0 := ∅
• MP

α+1 := P(MP
α × P)

• MP
η :=

⋃
α<ηM

P
α

• MP :=
⋃
α<o(M) M

P
α

Here, P(X) denotes the powerset of X inside M . We can view
⋃

as the union inside
M or outside without any difference because

⋃
is absolute for transitive models; P is not.

By this definition a name is set of pairs of names and conditions in P. An example of a
name would be ∅, or {(∅,1), ({(∅,1)},1)}.
Note that each MP

α is in M and so every name σ ∈ MP is also in M . MP is only a class
from point of view of M , but it is a set in V.

From now on M will always denote a ctm for ZFC and (P,≤,1) a forcing poset in M .
Intuitively, a name is a basic construction plan of how to build a set that says something
like: “Under condition p, i will contain a set that itself contains, under condition q, the
empty set. Also, under condition r, i contain the empty set”. This description would
correspond to the name {({(∅, q)}, p), (∅, r)}. The construction plans are available to M ,
but to really build a set from it we need to know what the conditions are.

Definition 1.5. For any set G ⊆ P we define a function val(., G) recursively on MP as
follows:
• for MP

0 there is nothing to define as MP
0 is empty

• if σ ∈ MP
α and val(., G) was already defined on MP

β for β < α then val(σ,G) :=
{val(π,G) : ∃p ∈ G[(π, p) ∈ σ]}

We often write σG for val(σ,G) for convenience.

Definition 1.6. Let G ⊆ P. Then we define

M [G] := ran(val(., G)) = {σG : σ ∈MP}

Definition 1.7. We define inductively a function .̌ : M →MP as follows:
• ∅̌ := ∅
• x̌ := {(y̌,1) : y ∈ x}

Lemma 1.8. For any filter G ⊆ P we have that:
1. ∀x ∈M(x̌G = x)
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1 FORCING

2. M ⊆M [G]
3. M [G] is transitive.
4. |M | = |M [G]|

Proof. Note that 1 ∈ G, then (1) is an easy induction. (2) follows directly from (1). (3):
If x ∈ σG ∈M [G] then by definition of σG, x is of the form πG for some name π. So there
is a name for x in M and x ∈M [G]. (4): |M | ≤ |M [G]| is clear by (2). For |M [G]| ≤ |M |
note that |M [G]| ≤ |MP| by the surjection val(., G) and MP ⊆M .

Definition 1.7 thus gives us a name for any set in M . We can also find a name for G,
which yields that G ∈M [G].

Lemma 1.9. Let Γ := {(p̌, p) : p ∈ P}. For any set G we have that ΓG := G.

Proof. ΓG := {σG : ∃p ∈ G[(σ, p) ∈ Γ]} = {p̌G : p ∈ G} = {p : p ∈ G} = G

Remember the analogy of names with construction plans. The last few lemmata
suggest that our set of conditions that we use to build our sets is a filter. In this metaphor
1 would be a condition that always holds true. Also, we can only have conditions that
are compatible and do not contradict each other. And moreover our set of conditions is
closed under implications, so p ≤ q can be read as p implies q. Note how we translated
precisely the definition of filter to our analogy.

If G is an arbitrary filter, M [G] will not necessarily satisfy ZFC. In order to make our
construction work we need to take a special kind of filter on P. This filter will usually not
exist in M but we have a name Γ for it, so that it will be an element of M [G]. Actually
if (and only if) the filter is in M our new model M [G] would be equal to M .

Definition 1.10. Let (P,≤,1) be a forcing poset. A set D ⊆ P is called dense iff
∀p ∈ P∃q ∈ D(q ≤ p).

Definition 1.11. Let M be a ctm of ZFC, (P,≤,1) a forcing poset. A filter G ⊆ P is
called P-generic over M iff it meets all dense sets in M that is G ∩ D 6= ∅ for all dense
sets D ∈M of P.

Note that “dense” is an absolute notion, so that D ∈ M is dense in M iff it is dense
in V.

To give again an intuition about the construction, you can consider dense sets as sets
of conditions that should not be omitted. You can view a dense set as a complete set of
answers to a question and one of those answers must be a right one. For each condition
there is one with more information (one that extends it) that has an answer. A generic
filter is then a consistent (=̂ filter) set of conditions that is also complete (=̂ generic) and
provides an answer to every question M could ask for.

Lemma 1.12. For any p ∈ P there is a P-generic filter G over M containing p.

Proof. As M is countable, the dense sets of P in M can be enumerated by a sequence
〈Dn〉n∈ω (in the case that there are only finitely many dense sets, they can be repeated).
Define a sequence 〈pn〉n∈ω as follows: p0 := p, pn being defined chose for pn+1 an element
of Dn with pn+1 ≤ pn. Let G := {q ∈ P : ∃n ∈ ω(q ≥ pn)}. G is then a generic filter
containing p.
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1 FORCING

Until now we have seen, that for a countable transitive model (M,∈) of ZFC (or ZF ),
an arbitrary forcing poset P in M and a filter G ⊆ P we can get a new countable transitive
model (M [G],∈). We will now show that when G is generic over M , then M [G] will also
be a model of ZFC (respectively ZF ). First we introduce a notion that will become very
important:

Definition 1.13. Let p ∈ P and ϕ be a sentence in the language {∈} ∪MP (called the
forcing language) where names in MP are constants. Then p 
 ϕ (reads “p forces ϕ”) iff
for all M -generic filters G ⊆ P that contain p, M [G] |= ϕ, where a constant σ ∈ MP is
interpreted as σG in M [G].

So a condition p forces some sentence means that it forces that it is true in the generic
model M [G]. We now understand why we call p a “condition”. We might think at this
point that the truth of some sentence ϕ in M [G] will not be likely to depend on just
one condition p that lies in G, but rather on much more complex aspects of G. So it
is intuitive to think that a single condition will not force much to hold (except logically
valid sentences). But the (maybe) astonishing truth is that any sentence is true in M [G]
because of one single condition p that is in G, and this makes forcing extremely strong
and very handy to work with (very often this p will be just 1 so that a sentence is true
for any generic G). We make this formal with the following Lemma:

Lemma 1.14 (Truth Lemma). Let G be generic over M , ϕ a sentence in the language
{∈}, σ1, . . . , σn ∈MP. Then

M [G] |= ϕ(σ1, . . . , σn)↔ ∃p ∈ G[p 
 ϕ(σ1, . . . , σn)]

The notion of forcing is a notion that we defined inside V. Actually it also depends on
M and P but they are usually clear from context so that we content ourself with p 
 ϕ.
The next very useful Lemma tells us that in fact the notion of forcing for some fixed
sentence ϕ is definable within M , so that M can already “talk” about if something will
be true in its generic extension depending on some condition p.

Lemma 1.15 (Definability Lemma). For any formula ϕ(x1, . . . , xn) of the language {∈},
there is a sentence ψ(q, y1, . . . , yn) of the language {∈} so that for any names σ1, . . . , σn
and p ∈ P:

M |= ψ(p, σ1, . . . , σn)↔ p 
 ϕ(σ1, . . . , σn)

We will usually write p 
∗ ϕ(σ1, . . . , σn) for that sentence ψ(p, σ1, . . . , σ1).

Again, the formula p 
∗ ϕ(σ1, . . . , σn) depends in fact on the additional parameter P
(P containing the whole information on the poset as 1 and ≤).
Lemma 1.14 and Lemma 1.15 are proved simultaneously. We give a sketch of how the
proof is done:

Proof. (Sketch) We prove Lemma 1.14 and Lemma 1.15 simultaneously by induction on
the complexity of ϕ. When ϕ is atomic (this is in fact the most difficult part), it is of
the form x1 = x2 or x1 ∈ x2. One can define relations recursively on MP by formulas
ψ=(p, x1, x2) and ψ∈(p, x1, x2) that hold iff p 
 x1 = x2, respectively p 
 x1 ∈ x2.
Within this same recursion you can also prove the Truth Lemma for atomic formulas.
The induction step for ∧ is very easy: If p 
∗ ϕ1 and p 
∗ ϕ2 are defined, then we can
define p 
∗ ϕ1 ∧ ϕ2 as p 
∗ ϕ1 ∧ p 
∗ ϕ2. If the Truth Lemma is known for ϕ1 and ϕ2,
then the one for ϕ1 ∧ ϕ2 is trivial (use that G is a filter). For ¬ we define p 
∗ ¬ϕ as
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1 FORCING

¬∃q ≤ p(q 
∗ ϕ), for p 
∗ ∀xϕ(x) we take ∀σ ∈MP[p 
∗ ϕ(σ)]. MP is of course a proper
class in M but “σ ∈ MP” is definable in M (namely by ∃α(σ ∈ MP

α)). In this proof we
make often use of the genericity of G.

A key point in the proof is that forcing allows us in some sense to imitate first order
logic. Remember our analogy filter =̂ consistent and generic =̂ complete. Now that we
have the truth and definability lemma we can suggest to identify a condition with all
the formulas that it forces. The generic filter then corresponds to the complete theory
of the new model. This idea of taking a structure (poset) that is able to imitate first
order logic and makes it possible to prove the truth and definability lemma is probably
one of the main ideas and intuitions in the development of forcing. There are actually
many other kinds of structures for which it is possible to develop forcing and they all have
this key feature of imitating logic. You then have similar analogies as: implication =̂ ≤,
contradiction =̂ ⊥ and you can define something like dense sets, generic filters, etc. ...
Such structures can be boolean algebras, latices, topological spaces, ... Partial orders are
a nice choice because they are in some sense the minimal structure you need for forcing.

We are now ready to prove that M [G] satisfies the axioms of ZFC (or ZF ).

Theorem 1.16. If M |= ZF then for any generic G, M [G] |= ZF. If M |= ZFC then for
any generic G, M [G] |= ZFC.

Proof. (Sketch) We just check every axiom: Extensionality holds because M [G] is transi-
tive by Lemma 1.8. Foundation holds in M [G] because it already holds in V. All other
axioms state that some specific sets of some form exist. They are proven by finding names
in M for them. For example given σG ∈M [G],

⋃
dom(σ) is a name for a superset of

⋃
σG

proving the axiom of Union in M [G]. Similarly one can find a name for the Powerset and
Pairing axioms. For Comprehension and Replacement you need the Definability and the
Truth Lemma for being able to define a suitable name in M . For example for Compre-
hension you might take the name: {(τ, p) : τ ∈ dom(σ) : p 
∗ τ ∈ σ ∧ ϕ(τ)}. Infinity
is clear because ω ∈ M [G] and being ω is an absolute notion. The Axiom of Choice is
proved by finding for every set a name for a well order, using an existing well order in M
(note that “well order” is also absolute).

Lemma 1.17. Let G be generic, then M [G] is the smallest transitive model of ZFC ex-
tending M and containing G. That is, for any transitive N 3 G extending M and
satisfying ZFC, M [G] ⊆ N .

Proof. Let N be such a model. Then as MP
α ∈ N for any α ∈ M and G ∈ N , also

val(σ,G) ∈ N for any σ ∈ MP. This is because ZFC proves that there is a function
val(., G) on each MP

α and val(., G) is ∆0 (y = val(., G) iff y is a function with domain
MP

α and ∀σ ∈ MP
α [y(σ) = {y(τ) : ∃p ∈ G[(τ, p) ∈ σ]}]), thus absolute for transitive

models.

Note that Lemma 1.17 actually tells us that the notion M [G] does not depend on P,
but really only on M and G.

Lemma 1.18. For any generic G, o(M) = o(M [G]).

Proof. Being an ordinal is absolute for transitive models so o(M) ⊆ o(M [G]). It is easy
to see by induction that for any name σ, rank(σ) ≥ rank(σG) (rank is also absolute so
we don’t have to relativize it to some model). Now assume σ is a name for some ordinal
in M [G]. Then rank(σ) ≥ rank(σG) = σG. But rank(σ) ∈ M and thus by transitivity
σG ∈M .
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1 FORCING

Yet we don’t know much about our new model M [G]. We know that it has the same
ordinals as M , but what about the cardinals? Being an ordinal is absolute, but in the
definition of cardinal we make a quantification over the whole model (for any ordinal
below κ, there is no bijection from κ to that ordinal). The only cardinal that always
stays one is ω, because being the first limit ordinal is absolute as already mentioned. The
next lemma provides a nice example of a simple forcing poset that collapses an arbitrary
uncountable cardinal κ. A poset collapses a cardinal κ means that κ won’t be a cardinal
in the generic model any more.

Lemma 1.19. Let κ be an infinite cardinal in M , Q := Fn(ω, κ) as in Example 1.3,
G ⊆ Q generic over M . Then M [G] |= |κ̌| = ω̌.

This is a nice first density argument to begin with. Note that we could have omitted
theˇin ω̌ above, then ω would just have meant “the first limit ordinal”, which is named
by ω̌. Very often theˇ’s are actually not used when it should be clear what is meant.

Proof. We will show that
⋃
G is a function that maps ω onto κ so that κ will be countable

in the new model M [G]. The first easy observation is that
⋃
G ⊆ ω × κ. Next we see

that ∀n ∈ ω[n ∈ dom(
⋃
G)]. This is because for each n, Dn := {p ∈ Q : n ∈ dom(p)} is

dense (for any q ∈ Q, if n ∈ dom(q), then q ∈ Dn, and else q ≥ q ∪ {(n, 0)} ∈ Dn) and so
G intersects each Dn.
Now assume that (n, α) 6= (n, β) ∈

⋃
G; this is not possible because G was a filter and

conditions p and q containing those pairs respectively would be incompatible.
The last step is to show that

⋃
G is onto. For that define Eα := {p ∈ Q : α ∈ ran(p)} for

each α ∈ κ. Then each Eα is dense (for any q ∈ Q, if α ∈ ran(q), then q ∈ Eα, and else
q ≥ q∪{(max ran(q)+1, α)} ∈ Eα) and so G intersects all of them and ran(

⋃
G) = κ.

Remember that M is countable, so that in fact, seen from V, all ordinals in M are
countable. So the possibility of collapsing a cardinal is not at all counter-intuitive.

We can generalize Lemma 1.19 to the following:

Lemma 1.20. Let I be an infinite set, J another set, Q := Fn(I, J) , G ⊆ Q generic
over M . Then M [G] |=

⋃
G̊ is a function from I onto J .

For a set x in M [G], we denote with x̊ a name for x in M .
Very often we don’t want cardinals to be collapsed, because then the sizes of sets

in M stay the same in M [G], which helps us working over M [G] and its combinatorial
properties. We will now define a property of P that is sufficient for not collapsing any
cardinals.

Definition 1.21. A ⊆ P is called an antichain iff ∀p, q ∈ A[p⊥q]. We say P has the ccc
(countable chain condition) iff every antichain in P is at most countable.

Lemma 1.22. If P has the ccc than P does not collapse cardinals, i.e. it preserves
cardinals. Furthermore (ℵα)M = (ℵα)M [G] for any α and any generic G.

In general if t is a term in our (extended) language of set theory which contains all
the well-defined notions as ∅,P ,R,ℵ0, ω1, . . . then (t)M denotes the unique object in M
that interprets t.
We are almost ready for forcing 2ℵ0 6= ℵ1.

10



1 FORCING

1.2 Cohen Forcing and the negation of CH

Lemma 1.23. Cκ := Fn(κ× ω, ω) has the ccc.

The forcing poset Cκ will give us a model in which 2ℵ0 ≥ κ yielding ¬CH when κ > ℵ1.
The idea behind this is that a generic over Cκ will give a function from κ× ω to ω which
codes κ many different functions ω → ω, raising the size of 2ℵ0 . As κ still stays the same
cardinal greater than ℵ1, ωω will have size greater than ℵ1.

Theorem 1.24. Let (κ ≥ ℵ2)M , then for Cκ we have that 1 
 ¬CH.

Proof. Let G be generic. Then by Lemma 1.20
⋃
G ∈M [G] is a function from κ×ω to ω.

Furthermore we have that for all α, β ∈ κ there is a n ∈ ω so that
⋃
G(α, n) 6=

⋃
G(β, n),

the funtions fα(n) :=
⋃
G(α, n) are thus pairwise distinct and

⋃
G is an injection. This

is because the sets Eα,β := {p ∈ Cκ : ∃n ∈ ω[p(α, n) 6= p(β, n)]} are dense. It is now clear
that in M [G], 2ℵ0 ≥ |κ| = κ > ℵ1.

Theorem 1.24 gives us a lower bound on 2ℵ0 in M [G], sufficient for having ¬CH, but
it does not tell us what will be the exact value of it. We will now try to get an upper
bound.

Definition 1.25. Let τ be a P name. We call σ a nice name for a subset of τ iff
dom(σ) ⊆ dom(τ) and for all (ϑ, q) 6= (ϑ, p) ∈ σ, q ⊥ p.

A nice name is then a name where for any ϑ ∈ dom(σ), {p ∈ P : (ϑ, p) ∈ σ} is an
antichain. The “nice” thing about nice names is that any subset σG ⊆ τG is named by a
nice name and the number of these nice names for a subset of τ can be decided in M .

Lemma 1.26. Let τ be a P name. Then for any name σ, there is a nice name ϑ for a
subset of τ , so that 1 
 σ ⊆ τ → σ = ϑ.

Lemma 1.27. If P (|P| > 1) has the ccc and τ is a P name, G is generic, then in M [G],
|P(τG)| ≤ (|P|ℵ0·| dom(τ)|)M .

Proof. We estimate the number of nice names for a subset of τ in M . As P has the
ccc, there are at most |P|ℵ0 many antichains. Thinking of a nice name as a function that
assigns to each σ in its domain an antichain of conditions, we get at most λ := |P|ℵ0·| dom(τ)|

many nice names.
We then have a function f : λ → N(τ), where N(τ) stays for the nice names of subsets
of τ , that lists all nice names. Furthermore in M [G] we can get a function g that assigns
to each α ∈ λ f(α)G as G ∈M [G]. By Lemma 1.26 we get that ran(g) ⊇ P(τG).

Theorem 1.28. Let (κ ≥ ℵ1)M , G Cκ generic, then M [G] |= κ ≤ 2ℵ0 ≤ (κℵ0)M . In
particular, if κℵ0 = κ in M then M [G] |= 2ℵ0 = κ.

We will generally refer to Cκ as Cohen forcing named by Paul Cohen who first intro-
duced forcing. We say that Cκ adds κ-many Cohen reals. Functions ω → ω, or ω → 2 or
subsets of ω are often called “reals” due to their one to one correspondence to the real
numbers. We will also use the notation CI for the forcing poset Fn(I × ω, ω) for any set
I in the ground model and C for Fn(ω, ω).

Lemma 1.29. Let J0 ⊆ I be sets in M and let J1 := I \ J0. If G is CI generic over M ,
then G�J0

1 is CJ0 generic over M . Furthermore, G�J1 is CJ1 generic over M [G�J0].

1G�J0 means {p�J0 : p ∈ G}

11
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Note that the notion CI is absolute for transitive models of ZFC.

Proof. It easy to see that G�J0 is a filter on CJ0 . Let D ∈ M be dense in CJ0 . Then
D′ := {p∪ q : p ∈ D, q ∈ CJ1} is dense in CI (p = p�J0 ∪ p�J1, let q ∈ D extend p�J0 then
p ≤ q ∪ p�J1). Let p ∈ G ∩D′, then p�J0 ∈ (G�J0) ∩D.

Now let D ∈M [G�J0] be dense in CJ1 . Let D̊ be a CJ0 name for D and q ∈ G�J0 that
forces that D̊ is dense. We define E := {p ∈ CI : p ⊥ q ∨ p�J0 
CJ0 p�J1 ∈ D̊}. E ∈ M
by the Definability Lemma.

Also E is dense in CI . Because let r ∈ CI with r ≤ q. As r�J0 
 D̊ is dense, in
particular r�J0 
 ∃t ≤ r�J1, t ∈ D̊ and so there is p ≤ r�J0, p ∈ CJ0 and t ≤ r�J1, t ∈ CJ1

with p 
 t ∈ D̊. p ∪ t ∈ E and extends r.
So E ∩ G 6= ∅. Let p ∈ E ∩ G. Then p and q must be compatible as q ∈ G�J0 ⊆ G,

so p�J0 
 p�J1 ∈ D̊, p�J0 ∈ G�J0 and p�J1 ∈ G�J1, which means that p�J1 ∈ D ∩ (G�J1).
So G�J1 is generic.

The next Lemma is a consequence of Lemma 1.29, which tells us that in some sense
Cohen forcing is commutative and it can be split up in different parts. This will be very
useful later on.

Lemma 1.30 (Product Lemma). Let J ⊆ I be sets in M , G CI generic over M . Then
M [G] = M [G�J ][G�(I \ J)].

Proof. We can argue only in terms of Lemma 1.17, forgetting about the forcing poset:
M [G] is the smallest ctm of ZFC containg G, M [G�J ][G�(I \ J)] also contains G (G =
G�J ∪G�(I \ J)) is a ctm of ZFC by Lemma 1.29, so M [G] ⊆M [G�J ][G�(I \ J)]. M [G]
on the other hand contains G�J and G�(I \ J). Thus M [G�J ] ⊆ M [G] and in a second
step M [G�J ][G�(I \ J)] ⊆M [G].

Lemma 1.31. Let G be CI generic, Å be a name for a subset of some set X ∈ M ,
then there is a J ⊆ I in M of size at most |X| · ℵ0 and a name ϑ ∈ MCJ such that
valCI (Å, G) = valCJ (ϑ,G�J).

Proof. Let ϑ be a nice name for Å as in Lemma 1.26. It has the form ϑ =
⋃
σ∈X̌{σ}×Aσ,

where Aσ is an antichain. Let J =
⋃
σ∈X̌

⋃
p∈Aσ dom(p). By the ccc J has size at most

|X| · ℵ0 and as ϑ is a nice name for Å and valCI (Å, G) ⊆ X we have valCI (Å, G) =
valCI (ϑ,G) = valCJ (ϑ,G�J).

1.3 Dense embeddings

What we want to investigate next, is how different forcing posets are related; can two
different posets produce the same generic extension? When are posets “equivalent”?

Definition 1.32. P is called atomless iff ∀p ∈ P∃q, r ∈ P(q, r ≤ p ∧ q ⊥ r).

It is easy to see that Cκ is atomless. Actually all interesting posets will usually be
atomless because of the following observation:

Lemma 1.33. Let G be generic. If G ∈ M , then M = M [G]. If P is atomless then
G /∈ M and M ( M [G]. If P is not atomless (that is, has an atom), then there is a
generic G ∈M .

12
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Proof. If G ∈M , then val(., G) would be definable in M , so M [G] ⊆M . If P is atomless
and G ∈ M then P \G ∈ M which is dense (use that P is atomless) and can not be met
by G.
Let a ∈ P, so that ∀p, q ≤ a, p 6⊥ q. Then a↑↓ = {p ∈ P : ∃q ≤ a(q ≤ p)} is generic over
M .

For example forcing with a linear order is not at all useful because we would not get
a proper extension (indeed the generic would be the whole poset). It is also easy to see
that finite posets will never return a proper extension.

Definition 1.34. Let P,Q be forcing posets. A function i : P → Q is called a dense
embedding iff
• i(1P) = 1Q
• ∀q, p ∈ P(q ≤ p→ i(q) ≤ i(p))
• ∀q, p ∈ P(q ⊥ p→ i(q) ⊥ i(p))
• i(P) is dense in Q

Example 1.35.
• The identity on any forcing poset is a dense embedding
• Consider C = Fn(ω, ω) and T := ω<ω. Then the natural inclusion of T into C is a

dense embedding.
• If Q and P are isomorphic, then an isomorphism provides a dense embedding.

If two posets are isomorphic (in M) then it is clear and not surprising that one can
get the same extensions with one as with the other. They are basically the same. But
the next Lemma tells us that dense embeddings are already sufficient for them to be
“equivalent”.

Lemma 1.36. Let i be a dense embedding from P to Q, G Q generic. Then i−1(G)
is P generic and M [G] = M [i−1(G)]. If H is P generic, then i(H)↑ is Q generic and
M [H] = M [i(H)↑].

Proof. Let p, q ∈ i−1(G), then q ⊥ p→ i(q) ⊥ i(p) ∈ G so p and q are compatible. That
p and q have a common extension in i−1(G) will follow from i−1(G) being generic. Also
if r ≥ q ∈ i−1(G) then i(r) ≥ i(q) and so i(r) ∈ G, thus r ∈ i−1(G). Let D be dense
in P. Then i(D) is dense in Q. Indeed, let q ∈ Q, then as i(P) is dense, there is some
r ∈ P with i(r) ≤ q. For r there is a p ∈ D with p ≤ r and thus D 3 i(p) ≤ i(r) ≤ q.
We now have that G ∩ i(D) 6= ∅, and therefore i−1(G) ∩ D 6= ∅ (take p ∈ P with
i(p) ∈ G ∩ i(D)). To see that for any p, q ∈ i−1(G) there is r ∈ i−1(G) extending them,
note that {s : s ≤ p, q ∨ s ⊥ p ∨ s ⊥ q} is dense.

To see that that i(H)↑ is Q a filter is very similar. For genericity, consider D′ ⊆ P,
D′ := {p ∈ P : ∃q ∈ D(i(p) ≤ q)} for D dense in Q.

Now note that, as i ∈ M , i−1(G) ∈ M [G] so M [i−1(G)] ⊆ M [G]. For M [G] ⊆
M [i−1(G)] we observe that G = i(i−1(G))↑. The argument for M [H] = M [i(H)↑] is also
similar.

Being densely embeddable to another poset is not a symmetric relation, so it can
happen that there is an embedding only in one direction, but this already is sufficient for
them to yield the same extensions.

Lemma 1.37. Let Q be a countable (in M) atomless forcing poset and let T := ω<ω.
Then there is a dense embedding i : T→ Q in M .

13
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Proof. First we observe that for any p ∈ Q there is an infinite maximal antichain below p
(maximal in p↓). As Q is atomless, we can recursively chose incompatible ak+1, bk+1 that
extend bk, starting with b0 := p. Then 〈ak〉 is an infinite antichain as desired. It remains
to make it maximal (in p↓). (♠)

Also, having a q compatible with p we can find such an antichain, so that some element
of it extends q. Having r ≤ p, q apply (♠) for r and make the result maximal in p↓. (♣)

Fix an enumeration of Q: 〈qn〉. We recursively define an embedding as desired. First
we let i0 := {(∅,1Q)}. At every step dom(in) \ dom(in−1) = ωn and in(ωn) will be a
maximal antichain (maximal in all Q). in being defined, we have that as in(ωn) is a
maximal antichain, for some p ∈ ωn, in(p) is compatible with qn. Chose an antichain 〈ak〉
maximal below in(p) as described at (♣) and extend in with {(p∪{(n+1, k)}, ak) : k ∈ ω}.
For the other elements of in(ωn) extend in likewise using antichains as described at (♠)
to get in+1. The property of dom(in+1) \ dom(in) = ωn+1 and in(ωn+1) being a maximal
antichain is then preserved.

It is then easy to check that
⋃
n∈ω in is a dense embedding.

This Lemma is very useful. What it tells us is that all atomless countable forcing
posets are equivalent.

Remark 1.38. There is no dense embedding 2<ω → T. A way to see this is to note that
in 2<ω everybody (except ∅) extends {(0, 0)} or {(0, 1)}. But for two elements in T that
are not equal to 1 = ∅ we find a third one that is incompatible with both. Note that
{(0, 0)} or {(0, 1)} cannot map on 1. Still there is a dense embedding T→ 2<ω

1.4 The logic behind Forcing

Here we want to clarify how the results from the last sections can be used to obtain
relative consistency results as presented in the introduction.

What we have done so far is we have shown that from a transitive model M that
satisfies all ZFC axioms we can get a new transitive model N of ZFC that will eventually
satisfy some other specific set of sentences ∆. What we actually want to do is we want
to prove that ∆ does not produce any contradiction relative to ZFC. So what one might
do is just to take N as a counterexample. There are major problems with this approach.
First of all we cannot assume from nothing there is even a model M of ZFC to begin with,
so we cannot construct our counterexample. Of course we assume ZFC to be consistent
and thus by the Completeness Theorem a model of ZFC should exist. But even then
it is not guaranteed that such a model is transitive, which is very important for the
construction. The next inelegant thing is that if we want to argue entirely with models
and the Completeness Theorem we will produce a relative consistency proof inside ZFC,
which is much more than we actually need. As already mentioned in the introduction, it
is possible to carry out a proof in any system like Peano Arithmetic that can formalize
predicate logic, define ZFC, and develop enough proof theory. We will refer to this system
as “our metatheory” and we will carefully explain how the proof is done.

In Lemmata 1.14 and 1.15 (Truth and Definability Lemma) all assumption about
M was that it is a ctm of ZFC. In the language of set theory this can be expressed
by a single sentence. We can define the notion of “axiom of ZFC ”, what a model is
and say that M is a ctm that satisfies ZFC and infer the Truth and the Definability
Lemma. As already mentioned in the beginning this is actually not what we want. It
is important to notice that when we proved the two Lemmata we really only needed M

14
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to satisfy finitely many axioms that can explicitly be written down in our metatheory
(as Peano Arithmetic for example). So we can show that for some ϕi ∈ ZFC, ZFC `
∀M∀P

[∧
i≤n ϕ

M
i ∧M is a ctm → defM,P ∧ truthM,P

]
, where ϕMi is the formula M |= ϕi

(this can also be the relativization of ϕi to M as defined in [7][I.16]) and defM,P, truthM,P
are the Definability and the Truth Lemma.

Next, in Theorem 1.16 we showed that if M |= ZFC, also M [G] |= ZFC. Again we
notice that every time we checked an axiom of ZFC for M [G] we only used finitely many
axioms in M , so Theorem 1.16 can be translated into the following, which is provable in
our metatheory:

Theorem 1.39. For any constant, term or defined notion c let ZFCc := {ϕc : ϕ ∈
ZFC} ∪ {c is a ctm}. Let M be a constant symbol. Then we have that for any ϕ ∈ ZFC,
ZFC + ZFCM ` ∀P∀G [G is P generic over M →M [G] |= ϕ].

Now from ZFCM , we can prove that there exists a forcing poset Cκ in M (or any
forcing poset that we are considering), by countability of M it follows that there is a
generic G over M , we then get a ctm M [G] and everything we did so far (this includes all
absoluteness results that come from M and M [G] being transitive) leads to (for example)
M [G] |= ¬CH.

For now we avoided the problem that ZFC does not provide a model M , by just
adding a constant for M and axioms that state that M is a ctm of ZFC (the ZFC from
the metatheory and not what ZFC thinks is ZFC ). This then lets us get a model of ¬CH
for example.

The last ingredient we need for our final proof is the following theorem, which is again
provable in our metatheory.

Theorem 1.40 (Reflection Principle). For any finite Σ ⊆ ZFC, we have that ZFC `
∃M(M is a ctm of Σ).

For a reference, see [7][II.5]. For our metatheory, a finite subset of ZFC can be
a natural number nΣ (if our metatheory is arithmetical) coding a string of axioms of
ZFC for example. The sentence ∃M(M is a ctm of Σ) is then another natural number
definable from nΣ (or rather the term or the notion denoting nΣ in our specific theory).

Remember what our final goal is: We have a set of sentences ∆ and we want to be con-
vinced in our favorite, finitist metatheory, that Con(ZFC)→ Con(ZFC + ∆). For this of
course, ∆ must be meaningful for us, that is, it must have a representation in our metathe-
ory, by a term or a defined notion (most of the time ∆ will consist of a single sentence).
The argument then goes as follows: Assume that ZFC + ∆ is actually inconsistent, then
we know that there is a finite subset Σ of ZFC+∆ which already provides a contradiction
(finite subset means again the code of a finite subset ...). In particular we can define in
ZFC this specific finite subset of ZFC+∆ by a formula plus we can define the contradiction
and get that ZFC ` [Σ is inconsistent]. We know that ZFC proves the soundness of first
order logic and conclude that ZFC ` ¬∃N [N |= Σ]. But we also know that ZFC+ZFCM `
∃N [N |= Σ] (this involves the whole forcing construction and the arguments of why ∆
holds in N = M [G]). We can therefore deduce that ZFC + ZFCM is inconsistent and
in particular there are finitely many ϕi ∈ ZFC so that ZFC + M is a ctm +

∧
i≤n ϕ

M
i is

inconsistent. But by Theorem 1.40 ZFC ` ∃M
[
M is a ctm +

∧
i≤n ϕ

M
i

]
, so ZFC itself is

inconsistent – a contradiction.
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Again we indicate that an important thing to keep in mind when doing forcing to
get relative consistency is that we do not assume M to satisfy ZFC as seen from inside
V, but rather that every single ZFC axiom that our metatheory knows about, holds in
M . This means that in the V we consider we are not allowed to use that M or M [G]
satisfies all of ZFC at once. But every time we need a specific axiom of ZFC to hold in
M [G] we can freely make use of it. For example, if we could use that in V, M [G] satisfies
ZFC then in particular, in V, Con(ZFC) is true. This is an arithmetical statement and
by absoluteness M [G] will also satisfy it. But we cannot infer the relative consistency
of Con(ZFC). In fact, if we would prove Con(ZFC) → Con(ZFC + Con(ZFC)), then as
ZFC + Con(ZFC) ` Con(ZFC) and the proof of Con(ZFC)→ Con(ZFC + Con(ZFC)) can
be translated to a proof from ZFC+Con(ZFC), we would obtain that ZFC+Con(ZFC) `
Con(ZFC + Con(ZFC)), which by Gödel’s Second Incompleteness Theorem (that our
metatheory knows about) means that ZFC + Con(ZFC) and furthermore ZFC are incon-
sistent.

A good way to think about forcing, that avoids such insecurities as described above
is the following. Consider the language L := {∈, G, V } where G is a constant and V a
unary relation symbol and let ϕ(x) be a formula that says that x is some specific forcing
poset (for example Cℵ27). Then we can consider the theory ZFC(V [G]), which is ZFC plus
the assertion that V denotes a transitive class plus ZFC relativized to V plus a state-
ment saying that the universe corresponds V [G], where G is x generic over V and ϕ(x)V .
Then for this theory, the Definability and the Truth Lemma become a provable scheme
and every statement in the language {∈} provable from this theory is consistent with ZFC.

A last consideration we want to elaborate on is that often we will require M to satisfy
more than just ZFC, especially we may need that M satisfies some set of sentences ∆ of
that we already have shown its consistency with ZFC. In that case we can carry out our
construction in the theory ZFC+∆+ZFCM +∆M (where ∆M of course means {ϕM : ϕ ∈
∆}). Using the following stronger Reflection Principle, we can then apply the exact same
argument and combine Con(ZFC)→ Con(ZFC+∆) and Con(ZFC+∆)→ Con(ZFC+Θ)
to Con(ZFC)→ Con(ZFC + Θ), where Θ is what we are forcing.

Theorem 1.41. For any sentences 〈ϕi〉i≤n of the language {∈}, we have that ZFC `
∃M [M is a ctm ∧

∧
i≤n(ϕMi ↔ ϕi)].
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2 Effects of Cohen Forcing on b, s, d and a

We now will see how Cohen forcing affects the classical cardinal invariants b, s, d, a and
their corresponding families. We begin with the bounding and the splitting number.

2.1 Bounding and splitting families

First we investigate properties the generic objects in the Cohen extension have with
respect to eventual dominance and splitting.

No function from the ground model will dominate a generic real:

Lemma 2.1. Let G be CI generic over M for any I ∈M . Let h :=
⋃
G. Then a generic

function fi(n) := h(i, n) for i ∈ M is not dominated by any g ∈ (ωω)M . We say that the
fi’s are unbounded over the ground model.

Proof. Let g ∈ (ωω)M . For any i ∈ I, the sets Dn := {p ∈ CI : ∃m > n[p(i,m) > g(m)]}
for n ∈ ω are dense and so G intersects all of these yielding ∀n ∈ ω∃m > n[fi(m) > g(m)].
Thus g does not dominate fi.

On the other hand, by a similar argument it is easy to see that a generic real will not
dominate any function from the ground model.

Lemma 2.2. Let fi be a generic real as in Lemma 2.1, then for any g ∈ (ωω)M , g 6<∗ fi.

Proof. For g ∈ (ωω)M the sets Dn := {p ∈ CI : ∃m > n[p(i,m) ≤ g(m)]} are dense so G
intersects all of them and we have that |{m ∈ ω : g(m) ≥ fi(m)}| = ℵ0, so g 6<∗ fi.

Note that if we used ≤∗ (that is, f ≤∗ g iff |{n ∈ ω : g(n) < f(n)}| < ℵ0) instead of
<∗, the above Lemma is false (take for example g ≡ 0 which is always dominated) and
must be modified to:

Lemma 2.3. Let fi be a generic real as in Lemma 2.1, then for any g ∈ (ωω)M so that
|{n ∈ ω : g(n) > 0}| = ℵ0, g 6≤∗ fi.

More generally we have that:

Lemma 2.4. Let fi be a generic real as in Lemma 2.1, then for any n ∈ ω, |{m ∈ ω :
fi(m) = n}| = ℵ0. Or even |{m ∈ X : fi(m) = n}| = ℵ0 for any X ∈ ([ω]ω)M .

Now for splitting we have very similar results. Until now the generic filter G was used
to code functions ω → ω, but it can also be used to code subsets of ω by taking the
preimage of 0 (or any other natural number) of a generic function. By Lemma 2.4 these
sets are infinite. We will see how they behave with respect to splitting.

Lemma 2.5. Let G be CI generic over M for any I ∈ M , h :=
⋃
G. Then the generic

sets Si := {n ∈ ω : h(i, n) = 0} for i ∈ I split all infinite ground model subsets of ω and
they are split by all infinite ground model subsets that have infinite complement.

Proof. Let X ∈ ([ω]ω)M and i ∈ I. By Lemma 2.4, |{m ∈ X : fi(m) = 0}| = ℵ0 and
|{m ∈ X : fi(m) 6= 0}| = ℵ0, so |Si ∩X| = ℵ0 and |X \ Si| = ℵ0. On the other hand, if
ω \X ∈ [ω]ω also |{m ∈ ω \X : fi(m) = 0}| = ℵ0, thus |Si \X| = ℵ0.

The next theorem tells us what the values of b and s will be in M [G].
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Theorem 2.6. Let G be Cκ generic over M for any uncountable κ. Then M [G] |= b =
s = ℵ1.

Proof. Let h :=
⋃
G and fi(n) := h(i, n) for i ∈ κ. Then the family {fi : i < ω1} is

unbounded in M [G]. Because let g ∈ M [G], then by Lemma 1.31 there is a countable
J ⊆ κ, so that g ∈ M [G�J ]. By Lemma 1.30, M [G] = M [G�J ][G�(κ \ J)]. But then by
Lemma 2.1 if i ∈ ω1 \ J , fi is unbounded over M [G�J ] and g does not dominate fi. Let
Si = {n ∈ ω : fi(n) = 0} for i ∈ κ, then {Si : i < ω1} is a splitting family in M [G], by
the same argument, applying Lemma 2.5.

If we choose κ > ℵ1 we get the relative consistency of b = s < c.
By Lemma 2.1 we know that a dominating family in M will not be dominating in

M [G] anymore, however unbounded families will stay unbounded.

Lemma 2.7. For any countable forcing poset P, G P generic over M , if B is unbounded
in M then B is unbounded in M [G].

Proof. Let f̊ be a name for a function in M [G], so by the Truth Lemma (Lemma 1.14)
∃p ∈ G[p 
 f̊ is a function ω → ω]. Fix such a p and enumerate p↓ := {q ∈ P : q ≤ p}
by 〈pi〉i∈ω. In M we define functions gi as follows: gi(n) := min{m ∈ ω : ∃q ≤ pi[q 

f̊(n) = m]}. Note that this is well-defined as pi 
 f̊ is a function ω → ω and so for
some q ≤ pi and some m, q 
 f̊(n) = m. The family {gi : i ∈ ω} is countable and
thus bounded in M by some g. As B is unbounded in M , there is some b ∈ B so that
b 6<∗ g. We will show that also b 6<∗ f . For this we observe that for all n ∈ ω the set
{q : q 
 ∃k ≥ n[b(k) ≥ g(k) > f̊(k)]} is dense below p. Take any pi ≤ p. Then there is
a m ≥ n so that ∀k ≥ m[g(k) > gi(k)]. Furthermore there is a k ≥ m with b(k) ≥ g(k)
and some q ≤ pi, with q 
 gi(k) = f̊(k) and so q 
 b(k) ≥ g(k) > f̊(k). So in particular
p 
 ∃k ≥ n[b(k) > f̊(k)] for all n ∈ ω and so p 
 ∀n ∈ ω∃k ≥ n[b(k) > f̊(k)], which
means M [G] |= b 6<∗ f . This can be done for any f ∈ M [G] and so B is unbounded in
M [G].

Lemma 2.8. Let G be CI generic for any set I ∈M , B unbounded in M , then B is also
unbounded in M [G].

Proof. Let f̊ be a name for a function f ∈ ωω in M [G]. Then f ⊆ ω × ω ∈ M , so by
Lemma 1.31 there is a set J ⊆ I with |J | ≤ ℵ0 and a name ϑ so that f = valCI (f̊ , G) =
valCJ (ϑ,G�J). CJ is then countable andG�J is CJ generic (Lemma 1.29), so by Lemma 2.7
B is unbounded in M [G�J ] and so f ∈M [G�J ] cannot dominate B (“<∗” is absolute for
transitive models).

2.2 Dominating and almost disjointness

Theorem 2.9. Let G be Cκ generic over M for any uncountable κ. Then M [G] |= d ≥ κ.
In particular, if κℵ0 = κ in M , then M [G] |= d = c

Proof. Assume there is a dominating family D of size λ less then κ, then the family can
be enumerated by a function h : λ × ω → ω. h is a subset of λ × ω × ω and thus by
Lemma 1.31 h ∈ M [G�J ] for some J ⊆ κ of size λ. So D ⊆ M [G�J ] but then D cannot
be dominating in M [G] = M [G�J ][G�(κ\J)], as the generic functions added by G�(κ\J)
are unbounded over M [G�J ]. The rest follows directly from Theorem 1.28.
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2 EFFECTS OF COHEN FORCING ON b, s, d AND a

Proposition 2.10. Let M satisfy CH and let P be a countable forcing poset in M . Then
there is a mad family A ⊆ [ω]ω ∩M that is still mad in M [G] for any generic G.

Proof. We will construct such a mad family in M recursively. First we observe that by
CH and the countability of P there are ℵ1 many nice names for a subset of ω ((|P|ℵ0)ℵ0 =
ℵ1). We can thus enumerate the ordered pairs (τξ, pξ) of nice names for a subset of ω and
conditions in P with ξ ∈ [ω, ω1). Let 〈An〉n∈ω be any almost disjoint family of size ω (for
example a partition). Aδ for δ < ξ being defined we continue as follows:
• If pξ 
 ∀δ < ξ(|τξ ∩ Aδ| < ω) ∧ |τξ| = ℵ0, we define a set Aξ that “imitates” τξ

as follows. First enumerate pξ↓ × ω by (qα, nα), α ∈ ω, and also reorder ξ by an
ω-sequence 〈δα〉α∈ω. For every α ∈ ω we then chose an aα ≥ nα with the property:
There is an s ≤ qα with s 
 aα ∈ τξ \ (

⋃
β<αAδβ). This is possible because pξ and

therefore qα force that τξ is almost disjoint from
⋃
β<αAδβ . Let Aξ := {aα : α ∈ ω}.

Note that Aξ is almost disjoint from all Aδ, δ < ξ.
• Else let Aξ = ∅.
A := {Aξ : ξ ∈ ω1} \ {∅} is then a mad family in M [G] for any generic G. Because

assume there is a X ∈ [ω]ω∩M [G] that is almost disjoint from A, then there is a nice name
τ , a condition p ∈ G and some ξ with (τ, p) = (τξ, pξ), so that pξ 
 ∀δ < ξ(|τξ ∩Aδ| < ω).
The construction of Aξ then yields that |Aξ ∩ X| = ω. This is because for any n ∈ ω
the set {s : s 
 ∃m ≥ n(m ∈ Aξ ∩ τξ)} is dense below p. Indeed, let q ≤ p then
(q, n) ∈ pξ↓ × ω and there is some s and some a ≥ n such that s 
 a ∈ τξ ∩ Aξ. Thus
∀n ∈ ω[pξ 
 ∃m ≥ n(m ∈ Aξ ∩ τξ)] and thus pξ 
 |Aξ ∩ τξ| = ω and in particular
M [G] |= |Aξ ∩X| = ω – we have arrived at a contradiction.

To see that A is mad in M , note that “almost disjoint” is absolute.

Theorem 2.11. Let M satisfy CH and let κ > (ℵ1)M be a cardinal in M . Let G be Cκ

generic over M , then M [G] |= a = ℵ1 < c

Proof. Let T := (ω<ω)M as in Lemma 1.37. Then by Proposition 2.10 there is a mad
family A of size (ℵ1)M that stays mad in M [H] for any T generic H. Such a family will
also stay mad in M [G]. By absolutness it will be almost disjoint in M [G]. Now assume
there is a X ∈ M [G] that witnesses that A is not mad in M [G]. Then by Lemma 1.31
there is a countable J ⊆ Cκ so that X ∈ M [G�J ]. As CJ is countable, by Lemma 1.37,
there is a dense embedding i : T→ CJ . But then by Lemma 1.36 M [G�J ] = M [i−1(G�J)]
and i−1(G�J) is T generic and so A must be mad in M [i−1(G�J)]. But X ∈M [i−1(G�J)]
– a contradiction.

In M [G] there is now a mad family of size ℵ1 and so M [G] |= a = ℵ1 < κ ≤ c (by the
ccc κ > ℵ1).

In Theorem 2.11 we used that M satisfies the CH. For being able to produce a relative
consistency from the last result, we need a proof of CH being consistent. This is usually
covered in any course on axiomatic set theory as in [7, II.6], using Gödel’s constructible
universe from [4]. Nevertheless we will provide a forcing argument for Con(ZFC ) →
Con(ZFC + CH ) in Example 4.9.

The results from this section then yield the following relative consistency:

Theorem 2.12. Con(ZFC)→ Con(ZFC + b = s = a < d = c).
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3 Further posets

3.1 Products and Iterations

In this section we want to present very brievly the general method of product forcing and
an outline to the basic idea of iterated forcing.

Remember how we proved many results from the last section. We very often used that
Cohen forcing could somehow be split up into two parts. Small objects of our extension
already existed in a smaller model over which we have a generic. The reason for this is
that Cohen forcing looks like what is called a product.

Definition 3.1. Let P and Q be forcing posets. Then their product is defined as P×Q
together with 1 := (1P,1Q) and (p, q) ≤ (p′, q′) iff p ≤ p′ and q ≤ q′.

Example 3.2. Cκ
∼= CI × CJ whenever J and I partition κ.

Theorem 3.3. Let P,Q ∈ M . If G is P × Q generic over M , then K := dom(G) is
P generic over M and H := ran(G) is Q generic over M [K]. Furthermore M [G] =
M [K][H] = M [K ×H].

Theorem 3.4. Let P,Q ∈M . If K is P generic over M and H is Q generic over M [K]
then K ×H is P×Q generic over M and M [K][H] = M [K ×H].

These theorems are proved very similarly to Lemma 1.30.
What the last two theorems tell us, is that forcing twice is actually equivalent to forcing

only once, but an important assumption there, is that the second poset already lives in
M . This was always the case when we used the Cohen poset because CI is absolute. We
can do even more then only forcing twice. If Pξ is a sequence of forcing posets, then its
product

∏
Pξ is defined in the analogous way (so 〈pξ〉 ≤ 〈qξ〉 iff pξ ≤ qξ for all ξ). We

can then split it up into
∏

ξ≤α Pξ ×
∏

ξ>α Pξ and the two theorems hold. Another choice
would be the finite support product which consists only of those sequences 〈pξ〉 which are
6= 1 only finitely often.

To give an intuition about products, consider the following example that we already
know, but seen from a different perspective: Assume we want to make d large. We know
that C adds an unbounded real and thus destroys all dominating families from the ground
model. But in M [G] there are new small dominating families. So we do the same again
to get M [G][G′]. But still there are new dominating families appearing. A natural idea
would be to define a chain of models M0 = M ⊆M1 = M [G] ⊆ · · · ⊆Mω2 so that a small
dominating family should already have appeared in one of those initial models and would
have been destroyed. The problem is that there is no good way of defining the limit of
such models. The union of models of ZFC does not have to be a model of ZFC again.
So what we do, is we take the finite support product of ω2 copies of C. This poset is
isomorphic to Cω2 and in the end we only force once over that poset, without taking care
about limit steps. This is extremely nice because it lets us carry out the typical arguments
we would do when we would have a chain of models, but without ever really iterating
the forcing procedure. All we need in our arguments, is that locally we can split up our
model into two forcings.

In the above description the posets Pξ all live in M . Now assume that we have a
poset P in M and then in M [G] we want to force with a Q which did not already exist
in M . Then P×Q makes no sense in M . But there is still a way to make sense of it and
that is where iterated forcing comes into play. We really only want to give an outline to
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3 FURTHER POSETS

how iterated forcing approximately works and so we won’t be careful about questions of
coding, for example.

Definition 3.5. Let P be a forcing poset and Q̊ a P-name for a forcing poset (that is
1 
 Q̊ is a forcing poset). Then their product is defined as P ∗ Q̊ := {(p, q̊) : p ∈ P, q̊ ∈
dom(Q̊), p 
 q̊ ∈ Q̊} and (p, q̊) ≤ (p′, q̊′) iff p ≤ p′ and p 
 q ≤ q′.

One can easily prove analogous statements as for products (for example you have to
change H to {q : ∃p ∈ P[(p, q̊) ∈ K]}). Now to define an iteration we cannot just take a
product as before but we have to make a recursion to get a sequence 〈Pξ〉ξ≤α of posets.
For finite suport iteration (fsi) this usually goes as follows:

For P0 just take a forcing poset you want to begin with. If Pξ is defined we take

Pξ+1 := Pξ ∗ Q̊ξ where Q̊ξ is a Pξ name for a poset. At limits we take Pµ =
⋃
ξ<µ Pξ.

Conditions in Pµ can be considered as µ-sequences of conditions where only finitely many
are 6= 1. ≤ is then defined in the same way as usual. Non finite support iterations can
be defined by changing the construction appropriately at the limit steps.

We give an overview of how we can get b = ω2 = c (and therefore a = d = ω2). There
is a way to define a poset that destroys unbounded families by adding a dominating real
(called the Hechler poset H). But the notion of Hechler poset is not absolute so that we
cannot take a product as for d. What we do, is we define the finite support iteration,
〈Pξ〉ξ≤ω2 , where at successor steps we take the product with a name for the Hechler poset.
When we force with Pω2 we can argue in the usual way. First of all our poset is ccc (this
is because we took the fsi of ccc posets). c ≤ ω2 by the counting of nice names. Assume
there is an unbounded family of size ω1, then it must appear in some initial forcing with
Pξ, but its unboundedness is destroyed by Pξ+1. It was shown by Baumgartner and Dordal
(see [1]) that s = ω1 in this construction.

3.2 The spectrum of mad families

In this section we want to consider not only what the least size of a mad family is, but what
the possible sizes of mad families are in general. For splitting, unbounded or dominating
families this question is clearly uninteresting. We will show that it is consistent to have
mad families of any size. For this we will introduce a ccc forcing poset that adds such a
mad family. The original idea comes from Hechler’s [5].

Definition 3.6. For any set I we define the poset HI to be the set Fn(I, [ω]<ω) together
with the order q ≤ p iff
• dom(q) ⊇ dom(p)
• for any i ∈ dom(p), q(i) ⊇ p(i)
• for any i, j ∈ dom(p), q(i) ∩ q(j) = p(i) ∩ p(j)

Lemma 3.7. HI is ccc.

Proof. Note that if p� dom(p)∩dom(q) = q� dom(p)∩dom(q), then p and q are compatible.
Assume B is an uncountable set of conditions in HI . By the ∆-root Lemma (see [7, Lemma
III.2.6]) there is an uncountable A ⊆ B and a R ⊆ I so that dom(p) ∩ dom(q) = R for
any p 6= q ∈ A. But the number of functions R → [ω]<ω is countable (R is finite), so at
least two p, q must coincide on R and thus must be compatible.

We will consider Hκ where κ is any uncountable cardinal. For any generic G and α ∈ κ
we let Aα :=

⋃
p∈G p(α) (where p(α) := ∅, when α /∈ dom(p)). By the typical density
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3 FURTHER POSETS

argument it is clear that every Aα is infinite. Also A := {Aα : α ∈ κ} is almost disjoint.
Because if α, β ∈ κ there is some p ∈ G with α, β ∈ dom(p) and then Aα∩Aβ = p(α)∩p(β).
Furthermore A is maximal in M [G]:

Proposition 3.8. The family A := {Aα : α ∈ κ} is maximal in M [G].

Proof. Let X be an infinite subset of ω in M [G]. We are going to show that X cannot be
almost disjoint from A. Let X̊ be a nice name for X. First notice that X̊ is countable by
the ccc. Thus there is some α ∈ κ, so that α is not in the domain of any condition occurring
in X̊. Now assume p ∈ G is a condition that forces X̊ ∩Aα ⊆ n for n ∈ ω and Aβ ∩X ⊆ n

for β ∈ dom(p) (this is possible because dom(p) is finite). Let (q, ǩ) ∈ X̊ so that k ≥ n
and q ∈ G. Then we define the condition r as follows: dom(r) = dom(p)∪ dom(q)∪ {α},
for β ∈ dom(p) ∪ dom(q) we define r(β) := q(β) ∪ p(β) and r(α) := p(α) ∪ {k}. We
have that r ≤ q. This is because q and p are compatible and because α /∈ dom(r). Also
r ≤ p, again because p and q are compatible and because for any β ∈ dom(p) ∪ dom(q),
r(α) ∩ r(β) = p(α) ∩ p(β). This is, because k /∈ p(β), as p ∈ G and n ≤ k was chosen
so that Aβ ∩ X ⊆ n. But now r 
 k ∈ Aα and also r 
 k ∈ X̊. We have arrived at a

contraction, as we assumed that p 
 X̊ ∩ Aα ⊆ n.

All in all we get that:

Theorem 3.9. If G is Hκ generic over M , where κ is an uncountable cardinal, then in
M [G] there is mad family of size κ.

At first sight, it is not clear how to refute a theorem as: If a < κ < c, then there is no
mad family of size κ. We can show that this is indeed not the case and that the spectrum
of mad families can be very wide. For this we use the poset Hκ for various κ and take
their finite support product. In the end we get mad families for all these κ.

Definition 3.10. Fix a set C of uncountable cardinals. Then we let P :=
∏<ω

κ∈C Hκ be
the finite support product of those Hκ for κ ∈ C.

Lemma 3.11. P is ccc.

Proof. We can view the elements of P as finite partial functions from {(κ, α) : κ ∈ C, α ∈
κ} to [ω]<ω. Then we can apply the same argument as for Hκ.

Theorem 3.12. If G is P generic over M , then there is, for any κ ∈ C, a mad family of
size κ in M [G].

Proof. Let κ ∈ C. Then P ∼=
∏<ω

λ∈C\{κ}Hλ × Hκ, so we can view M [G] as N [K] where
M ⊆ N and K is Hκ generic over N . Note that Hκ is an absolute notion, so the Hκ of
M (the one we actually force with) is the Hκ of N . But then by Theorem 3.9 there is a
mad family of size κ in N [K] = M [G].

If we start with an appropriate ground model (say with GCH ) and if supC has un-
countable cofinality then in M [G], c = supC by the usual counting of nice names. In
particular we can get the following:

Theorem 3.13. If λ ∈ M has uncountable cofinality and λℵ0 = λ in M , then there is a
forcing extension in which c = λ and for any cardinal κ ∈ [ℵ1, λ] there is a mad family of
size κ.
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4 GENERALIZED BOUNDING, SPLITTING AND ALMOST DISJOINTNESS

4 Generalized bounding, splitting and almost dis-

jointness

4.1 Generalized Cohen Forcing

The use of Cohen Forcing was to make the continuum very large so that CH fails. Addi-
tionally Cohen Forcing had various effects on the structure of the real line. In this section
we aim to generalize Cohen Forcing in order to make the Continuum Hypothesis false at
an arbitrary cardinal. This means that we want to generalize the ideas from Section 1.2
to get 2ℵα > ℵα+1 for arbitrary ℵα. Again the forcing poset we will use, will have sim-
ilar effects on the cardinal characteristics at ℵα. As before, we will focus on bounding,
splitting and almost disjointness.

The forcing poset we used (or rather an isomorphic poset to the one we used) to raise
the continuum at ℵ0 was Fn(κ× ω, 2), which can be interpreted as finite approximations
to a κ-sequence of subsets of ω. A natural way to generalize this idea for some arbitrary
ℵα, would be to take Fn(κ × ℵα, 2) (κ > ℵα+1) to make 2ℵα bigger than ℵα+1. It is not
very difficult to see that this really works. In fact you can notice that Fn(κ × ℵα, 2) is
actually isomorphic to Fn(κ×ω, 2) and then it is trivial that κ ≤ 2ℵ0 ≤ 2ℵα in the generic
extension. But there is something very inelegant in doing this; namely that when we want
to raise the continuum at ℵα, we simultaneously blow it up at all infinite cardinals below
to the same high level and “damage” the universe at regions where we don’t want to.
What would be more satisfying, is to be able to operate only at single levels that we are
interested in. This would give us the possibility to change the structures of the continua
(the respective invariants, etc...) in a very independent way and it would provide a wider
range of possible consistency results. For example it would then be possible to let CH fail
first only at some specific cardinal. From the forcing idea given above, it is not clear why
2λ > λ+ should not imply 2κ > κ+ for λ ≥ κ.

The forcing posets we will use are the following:

Definition 4.1. Let λ be an infinite cardinal and I, J sets, then we define Fnλ(I, J) :=
{p ∈ [I × J ]<λ : p is a partial function I → J}, the poset with the order ⊇, and 1 := ∅
as usual. Furthermore, if κ is an infinite cardinal and I ∈ M some index set, we let
Cκ,I := Fnκ(I × κ, κ).

Definition 4.2. Let λ be an infinite cardinal and P a forcing poset. We say that P has
the λ chain condition (λ-cc) iff every antichain in P has size less than λ.

The ccc is then the ℵ1-cc. There are some remarks that can be made about this
generalized notion of ccc. First of all the λ-cc clearly implies the θ-cc for θ ≥ λ. We
will generally be interested in the smallest such λ (this is called the Suslin number of P,
denoted as S(P)). S(P) will never be ℵ0 and also S(P) will be regular unless S(P) is finite
(but in that case M [G] = M).

Lemma 4.3. Fnλ(I, J) has the (|J |<λ)+-cc.

Remember that the ccc implies that cardinals are preserved. This result can easily be
generalized to the following for the λ-cc. The full proof can be found in [7, IV.7].

Theorem 4.4. If P has the λ-cc, then P preserves cardinals greater or equal to λ.
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4 GENERALIZED BOUNDING, SPLITTING AND ALMOST DISJOINTNESS

To preserve cardinals ≥ λ, just means that if α ≥ λ is a cardinal in M , then it is still
one in M [G]. Having the λ-cc is good in the sense that being a cardinal becomes absolute
for ordinals ≥ λ. But what happens bellow λ? If our goal is to make the CH false first
at say ℵ3 but everything bellow collapses to ω, then we end up with (ℵ3)M = (ℵ1)M [G].
To handle what happens bellow λ we use the following notion:

Definition 4.5. P is called λ-closed iff every decreasing sequence 〈pξ〉ξ<δ for any δ < λ
has a lower bound.

The use of this notion is made clear by the following Lemma:

Lemma 4.6. Let P be λ-closed (in M of course), A,B ∈M with |A| < λ. Then (BA)M =
(BA)M [G].

Proof. (BA)M ⊆ (BA)M [G] is clear by absolutness. For (BA)M [G] ⊆ (BA)M fix f ∈
(BA)M [G] and enumerate A by 〈aξ〉ξ<κ (κ = |A| < λ). By the Truth Lemma there is

some p ∈ G so that p 
 f̊ : A → B. Let q ≤ p and define sequences 〈qξ〉ξ<κ, 〈bξ〉ξ<κ
recursively as follows: chose q0 ≤ q such that q0 
 f̊(a0) = b̌ for some b ∈ B and let
b0 = b. qξ being defined for ξ < δ, chose r ≤ qξ for all ξ < δ (use λ-closed) and then let

qδ ≤ r be such that qδ 
 f̊(aδ) = b̌ for some b ∈ B and let bδ = b. 〈qξ〉ξ<κ then still has
an upper bound r and we get the function h ∈ (BA)M , with h(aξ) = bξ. In particular our

construction yields r 
 f̊ = ȟ. r does not have to be an element of G but notice that, as
q ≤ p was arbitrary, the set D := {r ∈ P : ∃h ∈ (BA)M(r 
 f̊ = ȟ)} is dense below p. As
p was in G, we have that G ∩D 6= ∅ and thus there is some r ∈ G and some h ∈ (BA)M

with r 
 f̊ = ȟ. In particular, f = h ∈ (BA)M .

In particular κκ is unchanged for κ < λ, so no κ-reals are added.

Lemma 4.7. Fnλ(I, J) is cf(λ)-closed. In particular, if λ is regular, Fnλ(I, J) is λ-closed.

Proof. Just take
⋃
ξ<δ pξ for a sequence 〈pξ〉ξ<δ where δ < cf(λ).

Theorem 4.8. Let λ be regular, |J | ≤ λ and 2<λ = λ in M . Then Fnλ(I, J) preserves
(all) cardinals. In particular, for every α ∈ o(M), (ℵα)M = (ℵα)M [G].

Proof. By Lemma 4.3, Fnλ(I, J) has the (|J |<λ)+ ≤ ((2<λ)<λ)+ = (2<λ)+ = λ+-cc (use
regularity) and thus the Lemma follows for cardinals ≥ λ+ by Theorem 4.4. For a cardinal
κ ≤ λ, notice that κ not being a cardinal would be witnessed by a bijection f : δ → κ for
some δ < κ, which by Lemma 4.6 would be in M .

In the first section we used Cohen forcing to make the Continuum large. We now
give an example of how to force the Continuum Hypothesis, which completes the proof of
Theorem 2.12.

Example 4.9. Let G be Fnℵ1(ℵ1, c) generic over M , then M [G] |= CH.

Proof. Fnℵ1(ℵ1, c) is ℵ1-closed and thus (ℵ02)M = (ℵ02)M [G]. Also (ℵ1)M = (ℵ1)M [G],
because no bijection from a smaller ordinal to (ℵ1)M could have been added and so it
stays the next cardinal after ω (also no ordinal between ω and ℵ1 can become a cardinal
because of downwards absolutness).

⋃
G is a function from (ℵ1)M onto (c)M . Furthermore

we get a function from (ℵ1)M [G] = (ℵ1)M onto (ℵ02)M [G] and thus in M [G], c = ℵ1.
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We now give an example of forcing the negation of the CH first at a ℵ7. For this
we begin with a model of GCH. This is legitimated as GCH was shown to be consistent
with ZFC by Gödel (see [4]). For GCH there is no simple forcing extension as presented
in this thesis (it can be done with a proper class poset that simultaneously collapses
continua). The advantage of starting with GCH (or even with the stronger V = L) is
that the combinatorics and especially cardinal arithmetic are easier to handle with these
assumptions.

Example 4.10. Let M satisfy GCH, G be Fnℵ7(ℵ9×ℵ7, 2) generic over M , then M [G] |=
2ℵ7 = ℵ9 ∧ ∀n 6= 7(2ℵn = ℵn+1).

Proof. As usual G codes an injection of ℵ9 into (ℵ72)M [G]. Fnℵ7(ℵ9 × ℵ7, 2) is ℵ7-closed
and thus ∀n < 7(2ℵn = ℵn+1) follows. The poset has the ℵ7-cc and furthermore there are
at most (ℵ9

ℵ6)ℵ6·κ ≤ κ+ nice names for subsets of κ (κ ≥ ℵ8). All in all we can conclude
the above statement.

Generalized Cohen forcing has similar “product-like” properties as the usual Cohen
forcing, that will be useful for determining the structure of the reals in M [G]. The proofs
for the for the following three Lemmata are the same as for Lemma 1.29, 1.30 and 1.31.

Lemma 4.11. Let I ∈ M , J0, J1 a partition of I in M . If G is Cκ,I generic over M ,
then G�J0 is Cκ,J0 generic over M and G�J1 is (Cκ,J1)

M generic over M [G].

It is important to notice that Cκ,J1 is not necessarily absolute between M and M [G]
unless κ is regular. When κ is collapsed, then Cκ,J1 doesn’t even mean anything in M [G].
That is why we wrote (Cκ,J1)

M .

Lemma 4.12. Let I ∈ M , J0, J1 a partition of I in M , G Cκ,I generic over M . Then
M [G] = M [G�J0][G�J1].

Lemma 4.13. Let G be Cκ,I generic over M , Å a name for a subset in M [G] of some
set X ∈ M , then there is a J ⊆ I in M of size at most |X| · (κ<κ) and a Cκ,J name ϑ

such that val(Å, G) = val(ϑ,G�J).

4.2 Applications of generalized Cohen Forcing

We want to use the generalized Cohen forcing to obtain similar results for b(κ), s(κ), d(κ)
and a(κ) as in Section 2, where κ is an uncountable infinite cardinal. Most of the time
we will require κ also to be regular. One reason for this is that, when κ is singular, Cκ,λ

is only cf(κ)-closed and so Cκ,λ does not have to preserve cardinals. Even the contrary
is the case, namely that κ will always collapse to its cofinality. So if we want to get
some relative consistency about the cardinal characteristics at a singular cardinal using
the Cohen forcing, in the generic extension we will end up again with a regular cardinal
(or rather an ordinal which has regular cardinality). Also, when κ is collapsed the notion
of <∗ in κκ is not necessarily absolute anymore.

Proposition 4.14. Let κ ∈ M be a singular cardinal in M . Let G be Cκ,λ generic for
any λ. Then in M [G], |κ| = cf(κ).

Proof. First of all we note that cf(κ) is really a cardinal in M [G] by cf(κ)-closedness. Let
h :=

⋃
G, then h is a total function λ×κ→ κ. Let f : κ→ κ be defined by f(α) = h(0, α).

Let 〈αi〉i<cf(κ) be a strictly increasing cofinal sequence of regular cardinals in κ (in M).
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Then we can define a surjection g : cf(κ) → κ, where g(i) := α if f([β, αi)) = {α} for
some β (α is then unique) and 0 else. To see that g is a surjection, just consider the
following dense sets: Dα := {p ∈ Cκ,λ : p(0, [β, αi)) = {α} for some β and i}.

Let’s get back to the cardinal characteristics. From now on κ will always be a regular
cardinal if not explicitly stated otherwise. We remind the reader also that, then κ is still
a regular cardinal in M [G] when forcing with Cκ,λ and it stays the same ℵα. We will very
often use the following in our arguments:

Lemma 4.15. If N ⊇ M is a transitive extension of M which preserves the cardinals
≤ κ, then the notions of bounding, splitting and almost disjointness at κ are absolute for
N and M . More precisely, if f, g ∈ (κκ)M and A,B ∈ (P(κ))M , then (f <∗ g)M iff
(f <∗ g)N , (A splits B)M iff (A splits B)N and (|A ∩B| < κ)M iff (|A ∩B| < κ)N .

The analogues of Lemmata 2.1-2.5 can now be proven in the very same way:

Lemma 4.16. Let G be Cκ,I generic for some I ∈M . Let h :=
⋃
G. Then any function

fi, where fi(α) := h(i, α), is unbounded over M , that is, no f ∈ (κκ)M dominates fi.

Lemma 4.17. Let fi be as in Lemma 4.16, then for any g ∈ (κκ)M , g 6<∗ fi.

Lemma 4.18. Let fi be as in Lemma 4.16, then for any g ∈ (κκ)M so that |{α ∈ κ :
g(α) > 0}| = κ, g 6≤∗ fi.

Lemma 4.19. Let fi be as in Lemma 4.16, then for any α ∈ κ, |{β ∈ κ : fi(β) = α}| = κ.
Or even |{β ∈ X : fi(β) = α}| = κ for any X ∈ ([κ]κ)M .

Lemma 4.20. The generic sets Si := {α ∈ κ : fi(α) = 0} for i ∈ I split all sets in
([κ]κ)M and are split by all sets X ∈ ([κ]κ)M , where |κ \X| = κ.

We want to add at this point that the statements made in the last five Lemmata all
have to be read relativized to M [G]. Saying a set has cardinality κ will always be false
in V, unless κ = ω, because for V, κ is merely a countable ordinal. We didn’t have this
problem in Lemmata 2.1-2.5. It should always be clear whether a statement is made in
M , M [G] or V.

Theorem 4.21. Let M satisfy κ<κ = κ (for example via the GCH). Let λ ≥ κ+, G Cκ,λ

generic. Then M [G] |= b(κ) = s(κ) = κ+.

Proof. Cκ,λ is κ-closed and has the (κ<κ)+ = κ+-cc and thus it preserves cardinals.
Let h :=

⋃
G and fi(α) := h(i, α) for i ∈ λ as always. Then B := {fi : i < κ+} is an

unbounded family of size κ+ in M [G]. Because let g ∈M [G], then g ⊆ κ× κ, so there is
a J ⊆ λ of size |κ×κ| ·κ = κ in M so that g ∈M [G�J ] by Lemma 4.13. As |J | = κ, there
is some i < κ+ so that i /∈ J ; that is i ∈ λ \ J . Then fi ∈ M [G�J ][G�(λ \ J)] = M [G]
and in particular fi is unbounded over M [G�J ], so fi 6<∗ g and B must be unbounded
in M [G]. For splitting, define Si := {α ∈ κ : fi(α) = 0}, then S := {Si : i < κ+} is a
splitting family by the same argument.

Lemma 4.22. For any κ-closed poset P of size κ, G P generic over M , if B ⊆ κκ is
unbounded in M , then B is unbounded in M [G].
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Proof. Let f ∈ (κκ)M [G], f̊ a P name for f . Let p ∈ G with p 
 f̊ ∈ κκ and enumerate
p↓ by 〈pi〉i∈κ (conditions may be repeated). We define functions gi ∈ (κκ)M as follows:
gi(κ) := min{β ∈ κ : ∃q ≤ pi[q 
 gi(α) = β]}. The family {gi : i < κ} has size at most κ
and thus is bounded in M by some g. B is unbounded and thus for some b ∈ B, b 6<∗ g.
For every α the sets {q : q 
 ∃β ≥ α[b(β) ≥ g(β) > f̊(β)]} is dense below p. Then for
any α ∈ κ, p 
 ∃β ≥ α[b(β > f̊(β)] and so M [G] |= b 6<∗ f .

Remark 4.23. If a P as in the last Lemma that is additionally atomless (i.e. useful)
exists, than κ<κ = κ must hold. This is, because one can by a recursion construct a copy
of κ<κ in P.

Lemma 4.24. Let I ∈M , G Cκ,I generic over M . Let M satisfy κ<κ = κ. If B ⊆ (κκ)M

is unbounded in M , then it stays unbounded in M [G].

Proof. If f is in (κκ)M [G], then f ∈M [G�J ] for some J ⊆ J of size κ. G�J is generic over
Cκ,J which has size κ<κ = κ and is κ-closed. Thus B is unbounded in M [G�J ] and f is
not a bound for B.

Theorem 4.25. Let M satisfy κ<κ = κ. Let λ ≥ κ+, G Cκ,λ generic. Then M [G] |=
d(κ) ≥ λ. If λκ = λ, then M [G] |= d(κ) = 2κ = λ.

Proof. Cκ,λ is κ-closed and has the (κ<κ)+ = κ+-cc and thus it preserves cardinals.
Assume there is a dominating family D of size λ∗ < λ. Then it can be enumerated in

M [G] by a function h : λ∗×κ→ κ. This is a subset of λ∗×κ×κ and thus by Lemma 4.13,
h ∈M [G�J ], where J ⊆ λ has size at most λ∗. We then have M [G�J ][G�(λ \ J)] = M [G]
and in particular there are unbounded κ-reals over M [G�J ] in M [G], but then D cannot
be dominating.

If there are at most λκ = λ nice names for κ-reals, we get λ = 2κ ≤ d(κ) ≤ 2κ.

Remark 4.26. Theorem 4.25 actually also holds when κ<κ > κ. In that case, the size
of J , namely λ∗ · κ<κ will still equal to λ∗ because λ∗ must be greater than κ<κ, as κ<κ

collapses to κ in M [G] (a generic real f ∈ κκ can code a surjection by identifying functions
of the form f�[α, α + δ) with elements in κ<κ) and D cannot have size κ.

It is clear that ?(κ) < ?(λ) is consistent for κ < λ regular when ? is any of the four
cardinal characteristics. Also, clearly 2κ ≤ 2λ. So it is natural to ask if we can have
?(λ) < ?(κ). In the Cohen extensions, when starting with a model of GCH, b(κ) =
s(κ) < b(λ) = s(λ) for κ < λ regular, they are just equal to κ+ and λ+ respectively. But
for d(κ) the situation is different:

Theorem 4.27. Let κ < λ be regular cardinals and let κ′, λ′ be such that cf(κ′) > κ and
cf(λ′) > λ. Then there is a forcing extension in which d(κ) = κ′, d(λ) = λ′.

First a Lemma that will be useful:

Lemma 4.28 (Approximation Lemma). If P has the κ+-cc, G is P generic over M ,
f : A→ B is a function in M [G], where A,B are sets in M . Then there is F : A→ [B]≤κ

in M such that f(a) ∈ F (a) for every a ∈ A.

Proof. For p ∈ G that forces f : A → B, we let F (a) := {b ∈ B : ∃q ≤ p[q 
 f(a) =
b]}.
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This approximation Lemma is usually used for the proof that κ+-cc posets preserve
cardinals above κ.

Proof of Theorem 4.27. Start with M |= GCH. First force with Cλ,λ′ to get a model
N = M [G]. Then we have that in M , (λ′)λ = λ′ and so by Theorem 4.25, N |= d(λ) = λ′.
Now take Cκ,κ′ in N and let K be Cκ,κ′ generic over N . We check if the asumptions of
Theorem 4.25 are still met. In N , κ<κ is still equal to κ as Cλ,λ′ was λ(> κ)-closed. And
(κ′)κ is still equal to κ′ by the same argument. Also κ is still regular. Thus N [K] |=
d(κ) = κ′ and cardinals are still preserved. We have to argue that d(λ) has not changed.
First of all, dominating families in N , stay dominating. Because let f ∈ (λλ)N [K], then by
Lemma 4.28 there is F : λ → [λ]≤κ in N so that f(α) ∈ F (α). Define h(α) := supF (α).
This is well-defined as λ is regular. But now, any function that dominates h also dominates
f . Next, for any dominating family in N [K] there is a dominating family in N of the same
size. A dominating family can be seen as a function d : µ×λ→ λ. By the same argument
as before we can get a family of size less or equal in N , which is also dominating. Thus
(d(λ))N [K] = (d(λ))N = λ′.

We now get that for arbitrary regular λ, κ everything is possible: d(κ) < d(λ), d(κ) =
d(λ) and d(λ) < d(κ). For example we have the consistency of d(ω1) = ℵ3 < d = ℵ7.
Moreover we have shown d(κ) can be separated from 2κ when κ is uncountable. Something
similar works for b if we use the fsi poset presented at the end of section 3.1.

We now move to mad families.

Proposition 4.29. Let M satisfy GCH and let P be a κ-closed forcing poset of size κ in
M . Then there is a mad family A ⊆ [κ]κ ∩M of size κ+ that is still mad in M [G] for
any generic G.

Proof. By the GCH the number of nice names for subsets of κ is bounded by (κκ)κ = κ+

(P clearly has the κ+-cc). Let us enumerate the ordered pairs (τξ, pξ) of nice names for a
subset of κ and conditions in P with ξ ∈ [κ, κ+). We start with an almost disjoint family
〈Ai〉i∈κ of size κ (say a partition of κ). If Aδ are defined for δ < ξ, we continue as follows:
• If pξ 
 ∀δ < ξ(|Aδ∩τξ| < κ)∧|τξ| = κ, we imitate τξ by Aξ as follows. We enumerate
pξ↓ × κ by (qα, iα), α ∈ κ. We also reorder ξ by 〈δα〉α∈κ. For α ∈ κ we chose an
aα ≥ iα, so that there is some s ≤ qα with s 
 aα ∈ τξ \ (

⋃
β<αAδβ). This is possible

because qα ≤ pξ force that τξ ∩ (
⋃
β<αAδβ) has size smaller than κ (by κ-closedness,

κ stays a regular cardinal). Let Aξ := {aα : α ∈ κ}. Aξ is then of size κ as it is
unbounded in κ and κ is regular. Aξ also is almost disjoint from all Aδ, δ < ξ.
• Else let Aξ = ∅
We let A := {Aξ : ξ ∈ κ+} \ {∅}. Assume X ∈ [κ]κ ∩M [G] is almost disjoint from A.

Then there is a nice name τ , a condition p ∈ G and some ξ ∈ [κ, κ+) with (τ, p) = (τξ, pξ),
such that pξ 
 ∀δ < ξ(|τξ ∩ Aδ| < κ) ∧ |τξ| = κ. But then X cannot be almost disjoint
from Aξ, because for any i ∈ κ, D := {s ∈ P : s 
 ∃j ≥ i(j ∈ τξ ∩ Aξ)} is dense below p.
We get that p 
 |τξ ∩ Aξ| = κ because of the regularity of κ. So M [G] |= |X ∩ Aξ| = κ.
X cannot be almost disjoint from A. A is almost disjoint in both M and M [G] because
of the absoluteness of “almost disjointness” and it is maximal in M by maximality in
M [G].

Theorem 4.30. Let M satisfy GCH and λ ≥ κ+. Let G be Cκ,λ generic over M , then
M [G] |= a(κ) = κ+.
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Proof. By the GCH, Cκ,κ is a κ-closed forcing poset of size κ. Thus we can apply the last
proposition to get a mad A that stays mad when forcing over Cκ,κ. Let X ∈ [κ]κ ∩M [G].
Then there is some J ⊆ λ of size κ in M with X ∈ M [G�J ]. But then Cκ,κ and CJ,κ are
isomorphic and X ∈M [i−1(G�J)] = M [G�J ] where i is an isomorphism from Cκ,κ to CJ,κ

in M . Thus X is almost disjoint from A and A must be maximal in M [G].

The results from this section yield for example the following consistency result:

Theorem 4.31. Con(ZFC)→ Con(ZFC + b(ℵ2) = s(ℵ2) = a(ℵ2) = ℵ3 < d(ℵ2) = 2ℵ2 =
ℵ17).

We want to add that the results of section 3.2 about the spectrum of mad families can
easily be generalized to any regular cardinal.

4.3 Some results for singular cardinals

In [8] we considered bounding, splitting and almost-disjointness also for singular cardinals.
For λ a singular cardinal and f, g ∈ λλ, we say that f dominates g whenever |{α ∈ λ :
f(α) ≤ g(α)}| < λ. S splits X means that |S ∩X| = λ and |X \ S| = λ. A,B are almost
disjoint iff |A ∩ B| < λ. The definitions of d(λ), b(λ), s(λ) are the same as for regular
cardinals. a(λ) is the least size of a mad family ≥ cf(λ). In this section, we want to add
some results concerning the relationship between these invariants for different λ.

Lemma 4.32. Let λ be singular, then a(λ) ≤ a(cf(λ)) and s(λ) ≤ s(cf(λ)).

Proof. Let κ := cf(λ), 〈αi〉i<κ an increasing cofinal sequence of cardinals in λ and let
〈Xi〉i<κ be a partition of λ so that |Xi| = αi for each i ∈ κ.

For any set A ∈ [κ]κ we define Ã ∈ [λ]λ as Ã =
⋃
i∈AXi.

Let A ⊆ [κ]κ be a κ-mad family. Then we define Ã := {Ã : A ∈ A}. We then have
that Ã ⊆ [λ]λ and Ã is almost disjoint (Ã ∩ B̃ =

⋃
i∈A∩BXi). Now assume X ∈ [λ]λ is

almost disjoint from Ã. For any i ∈ κ define yi := min{j ∈ κ : |X ∩Xj| ≥ αi}. This is
well defined because if |X ∩Xj| < αi for all j ∈ κ, then |X| = |

⋃
j∈κX ∩Xj| ≤ αi ·κ < λ.

Let Y = {yi : i ∈ κ}, then Y ∈ [κ]κ and Y is almost disjoint from A because if |Y ∩A| = κ

for some A ∈ A, then |X ∩ Ã| ≥ |X ∩
(⋃

j∈Y ∩AXj

)
| ≥

⋃
i,yi∈Y ∩A αi = λ. We have arrived

at a contradiction, thus Ã is maximal. Also Ã has the same size as A.
For S ⊆ [κ]κ a splitting family, let S̃ := {S̃ : S ∈ S}. S̃ has the same size as S

and is a λ-splitting family. Because let X ∈ [λ]λ and define Y ∈ [κ]κ as before. Then
some S ∈ S splits Y , as S is a splitting family. But then also S̃ splits X: |X ∩ S̃| ≥
|X∩

(⋃
j∈S∩Y Xj

)
| ≥

⋃
i,yi∈S∩Y αi = λ and |X \ S̃| ≥ |X∩

(⋃
j∈Y \S Xj

)
| ≥

⋃
i,yi∈Y \S αi =

λ.

Lemma 4.33. Let λ be singular, then b(λ) ≤ b(cf(λ)) and d(cf(λ)) ≤ d(λ).

Proof. Let κ := cf(λ), 〈αi〉i<κ an increasing cofinal sequence of regular cardinals greater
than κ in λ and let 〈Xi〉i<κ be a partition of λ so that |Xi| = αi for each i ∈ κ.

For any f ∈ κκ we define f̃ ∈ λλ by f̃(β) := αf(i), whenever β ∈ Xi. Let B ⊆ κκ

be an unbounded family, then define B̃ := {f̃ : f ∈ B}. B̃ has the same size as B and
is unbounded. Assume there is some g ∈ λλ, so that f̃ <∗ g for all f ∈ B. Define
h ∈ κκ by h(i) := min{j ∈ κ : |g−1[αj] ∩Xi| ≥ αi}. This is well defined because assume
|g−1[αj] ∩ Xi| < αi for every j, then

⋃
j∈κ (g−1[αj] ∩Xi) = Xi contradicts regularity of
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αi and κ < αi. Then h is a bound for B, because assume for some f ∈ B and some
X ∈ [κ]κ, f(i) ≥ h(i) for all i ∈ X. But this means that for any i ∈ X and for all β ∈ Xi,
f̃(β) = αf(i) ≥ αh(i). But h(i) was chosen so that g maps at least αi elements of Xi below

αh(i). Thus for any i ∈ X there are at least αi many β’s with f̃(β) ≥ g(β). As X is

unbounded in κ, we have that f̃(β) ≥ g(β) for at least
⋃
i∈X αi = λ many β’s. We have

arrived at a contradiction.
Now let D ⊆ λλ be a λ-dominating family. For any g ∈ D we define g′ ∈ κκ as before,

that is g′(i) := min{j ∈ κ : |g−1[αj] ∩ Xi| ≥ αi}. The family D′ := {g′ : g ∈ D} ⊆ κκ

has then size less or equal to D and it is dominating. For any f ∈ κκ, f̃ is dominated by
some g ∈ D. By the same arguments as above, g′ dominates f .

The last two Lemmata were proved in a very similar fashion. What we did in
Lemma 4.33, was we defined a map ϕ : κκ → λλ, f 7→ f̃ and another one ψ : λλ →
κκ, g 7→ g′, so that for any f ∈ κκ, g ∈ λλ, ϕ(f) <∗ g → f <∗ ψ(g). In the context of
“generalized Galois-Tukey connections”, the pair (ϕ, ψ) is called a morphism from one so
called “relation” (λλ, λλ, <∗) to another one (κκ, κκ, <∗). The corresponding maps from
Lemma 4.32 also produce a morphism between specific relations. Finding such morphisms
is a very general method to prove inequalities between cardinal characteristics. For more
on Galois-Tukey connections see [2, 4].

The inequalities fit perfectly in the situation we have after forcing with Cκ,λ+ over a
model of GCH, where κ = cf(λ). d(κ) = λ+ = 2λ, and thus d(λ) = λ+. a(λ), b(λ) be
equal to κ+ (In [8] we showed that b(λ), a(λ) ≥ cf(λ)+). s(λ) is less or equal to κ+.

A natural question is if we can separate, say b(λ) from b(cf(λ)), or if the cardinal
characteristics at cardinals of the same cofinality are equal. For dominating, the question
is answered by the following Lemma:

Lemma 4.34. Let λ be an infinite cardinal. Then d(λ) > λ.

Of course for regular λ, we know this, because d(λ) ≥ b(λ) and b(λ) > κ by the typical
diagonalization argument. But we can actually directly carry out a diagonalization for
d(λ), regardless of whether λ is regular or not.

Proof. Let D ⊆ λλ be of size κ ≤ λ and D = {fi : i ∈ κ}. Partition λ into κ many sets
〈Xi〉i<κ all of size λ. Define f : λ→ λ by f(α) = fi(α) whenever α ∈ Xi. Clearly f is not
(strictly) dominated by any of the fi’s.

Now when we have GCH, d(cf(λ)) = cf(λ)+ < λ < d(λ). For example d = ℵ1 <
d(ℵω) = ℵω+1.

Also we know that d(λ) is not fixed at λ+, but can be arbitrarily large, as d(cf(λ)) can
be arbitrarily large. But even without lifting d(cf(λ)), we can get d(λ) large. If we take
any regular cardinal α between cf(λ) and λ and we add many α Cohen reals, we will add
unbounded λ reals. By partitioning λ into parts of size α and using a cofinal sequence,
λ many α reals can code a λ real. By a density argument they will be unbounded (for
f ∈ λλ, chose dense sets that witness, that for any cardinal δ between α and λ, our real
is greater than f on an unbounded set in δ).

Note that in the proofs of a(λ) ≤ a(cf(λ)), s(λ) ≤ s(cf(λ)), b(λ) ≤ b(cf(λ)) and
d(cf(λ)) ≤ d(λ) we never used the regularity of cf(λ) but only that there is a cofinal
increasing sequence of regular cardinals in λ of type cf(λ). These inequalities can be
generalized to the following:
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Theorem 4.35. Let λ < µ be cardinals of the same cofinality. Then a(µ) ≤ a(λ),
s(µ) ≤ s(λ), b(µ) ≤ b(λ) and d(λ) ≤ d(µ)

What this Lemma tells us is that for a(λ), s(λ), b(λ) there are only finitely many
possible values when we fix the cofinality of λ (else we would get an infinite decreasing
chain of cardinals).
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