
PARTITIONS OF THE BAIRE SPACE INTO COMPACT SETS

V. FISCHER AND L. SCHEMBECKER

Abstract. We define a c.c.c. forcing which adds a maximal almost disjoint family of finitely

splitting trees on ω (a.d.f.s. family) or equivalently a partition of the Baire space into compact

sets of desired size. Further, we utilize the forcing to add arbitrarily many maximal a.d.f.s.

families of arbitrary sizes at the same time, so that the spectrum of aT may be large.

Furthermore, under CH we construct a Sacks-indestructible maximal a.d.f.s. family (by count-

ably supported iteration and product of any length), which answers a question of Newelski [15].

Also, we present an in-depth “isomorphism of names”-argument to show that in generic exten-

sions of models of CH by countably supported Sacks forcing there are no maximal a.d.f.s. families

of size κ, where ℵ1 < κ < c. Thus, we prove that in the generic extension the spectrum of aT
is {ℵ1, c}. Finally, we prove that Shelah’s ultrapower model of [16] for the consistency of d < a

also satisfies a = aT. Thus, consistently d < a = aT may hold.

1. Introduction

Given an uncountable Polish space X and a pointclass Γ of Borel sets we want to understand

what are the possible cardinalities of partitions of X into sets in Γ. Here, with a partition we

mean a collection of non-empty subsets of X which are pairwise disjoint and union up to the

whole space X.

We begin with a brief recollection of when partitions of size ℵ1 exist for different pointclasses

Γ. For Γ = Fσδ, Hausdorff proved in [11] that every Polish space is the union of ℵ1-many strictly

increasing Gδ-sets. Thus, one immediately obtains that every uncountable Polish space can be

partitioned into ℵ1-many disjoint Fσδ-sets. For Γ = Gδ, there is a close connection to cov(M),

the minimal size of a family of meager sets which covers ω2. In fact, in [9] Fremlin and Shelah

showed that cov(M) = ℵ1 if and only if ω2 can be partitioned into ℵ1-many Gδ-sets. Finally, the

most interesting case for us will be partitions into closed/compact sets. In [14] Miller introduced

a proper forcing notion, which is ωω-bounding (see [17]) and destroys a given partition C of ω2

into closed sets by adding a new real which is not in the closure of any element of C in the generic

extension. Thus, by iterating the forcing ℵ2-many times and using a suitable bookkeeping one

obtains a model in which there is no partition of ω2 into ℵ1-many closed sets. We denote with aT
the minimal size of a partition of ω2 into closed sets, so with this notation in [14] Miller established

the relative consistency of cov(M) = ℵ1 < aT = ℵ2. Notably, the forcing also preserves tight mad
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families (see [10]), and as more recently shown in [4] selective independent families and P-points.

Thus, the same model witnesses the consistency of d = a = i = u = ℵ1 < aT = ℵ2 (see [4]).

Naturally, one might ask if the definition of aT differs if we would have chosen another un-

countable Polish space than ω2. However, by a recent result of Brian [3], some uncountable Polish

space can be partitioned into κ-many closed sets if and only if every uncountable Polish space

can be partitioned into κ-many closed sets. Hence, not only aT is independent of the choice of the

underlying Polish space, but so is also spec(aT), which is the set of all sizes of partitions of ω2 into

closed sets. In fact, even more is true [3, Theorem 2.4]: The existence of partitions into κ-many

closed sets is equivalent to the existence of partitions into κ-many compact or Fσ-sets. Thus, if

we would be only interested in the possible values of aT and spec(aT) it does not matter which

uncountable Polish space we partition or whether these partitions are into compact, closed or

Fσ-sets. In addition, Brian established in [3] the existence of a c.c.c. forcing that adds partitions

of ω2 into Fσ-sets of desired sizes and only those sizes. Therefore by the aforementioned theorem

the poset adjoins implicitly also partitions of ω2 into closed or compact sets of these desired sizes.

In contrast, in the current paper we introduce a c.c.c. forcing that explicitly adds a partition

of ωω into compact sets. Our approach stems from a slightly different standpoint, as aT can also

be defined as the minimal size of a maximal almost disjoint family of finitely splitting trees on

ω<ω, since König’s Lemma implies that such families can be identified with partitions of ωω into

compact sets (for a more detailed discussion see Section 2). Hence, it will be most natural for us

to consider partitions of Baire space into compact sets.

This paper is structured as follows: In section 2 we will review some common notions and

definitions regarding trees. The third section begins with the introduction of a c.c.c. forcing

which extends a given almost disjoint family of finitely splitting trees by ω-many new finitely

splitting trees (see Definition 3.5), so that the extended family is still almost disjoint (see Lemma

3.11). We then prove that the generic new trees satisfy a certain diagonalization property (see

Definition 3.1 and 3.2 and Proposition 3.12), so that iterating the forcing yields a maximal almost

disjoint family of finitely splitting trees of desired size κ for any κ of uncountable cofinality (see

Theorem 3.13). We immediately obtain the following consistency result, see Theorem 3.14

Theorem. Assume CH and let κ ≤ λ be regular cardinals. Then there is c.c.c. extension in

which d = aT = κ ≤ λ = c holds.

Further, we utilize the forcing to add arbitrarily many maximal a.d.f.s. families of arbitrary

sizes at the same time (see Theorem 3.15):

Theorem. Assume GCH. Let λ be a cardinal of uncountable cofinality, θ ≤ λ a regular cardinal

and ⟨κβ | β < θ⟩ a sequence of regular uncountable cardinals with cof(λ) ≤ κβ ≤ λ for all β < θ.

Then there is a c.c.c. extension in which c = λ and κβ ∈ spec(aT) for all β < θ.

Finally, we conclude section 3 with a brief analysis if and when the forcing adds unbounded,

Cohen and dominating reals (see Remark 3.17 and Propositions 3.16 and 3.18).

Continuing the recent results on the existence of Sacks-indestructible witnesses for various

combinatorial properties, e.g. independent families [2], [5] or eventually different families [7], in
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the fourth section we extend this analysis to almost disjoint families of finitely splitting trees (see

Theorem 4.17):

Theorem (CH). There is an a.d.f.s. family which remains maximal after forcing with countably

supported iteration or product of Sacks forcing of arbitrary length.

The above result answers in particular Question 2 of Newelski’s [15], see the discussion at the

end of section 4. First, we give a brief reminder of common definitions of Sacks forcing and fusion

for countably supported products of Sacks forcing. For the proof of Theorem 4.17 we will do

an analogous construction as for the construction of a Sacks-indestructible maximal eventually

different family by Fischer and Schrittesser in [7].

Thus, the two main ingredients of Theorem 4.17 are a particularly nice version of continuous

reading of names for countably supported iterations of Sacks forcing (see Lemma 4 of [7]) and

the following Lemma 4.8:

Lemma. Let T be a countable a.d.f.s. family, λ be a cardinal, p ∈ Sλ and ḟ be a Sλ-name for a

real such that for all T ∈ T we have

p ⊩ ḟ /∈ [T ].

Then there is a finitely splitting tree S and q≤ p such that T ∪ {S} is an a.d.f.s. family and

q ⊩ ḟ ∈ [S].

Here, Sλ is the countably supported product of Sacks forcing of size λ. Under CH we may apply

this lemma in a diagonal fashion to ensure that every new real may not be a witness that our

a.d.f.s. family is not maximal in the generic extension (see Theorem 4.17). Notice the similarity

to Lemma 7 in [7] which can be rephrased as

Lemma. Let F be a countable eventually different (e.d.) family, λ be a cardinal, p ∈ Sλ and ḟ

be a Sλ-name for a real such that for all g ∈ F we have

p ⊩ ḟ is eventually different from g.

Then there is a real h and q≤ p such that F ∪ {h} is an e.d. family and

q ⊩ ḟ is not eventually different from h.

We conclude section 4 with an in-depth “isomorphism of names”-argument to show that in

generic extensions of models of CH by countably supported Sacks forcing there are no maxi-

mal a.d.f.s. families of size κ, where ℵ1 < κ < c. Thus, by combining both results we obtain

Theorem 4.18:

Theorem (CH). Let λ be a cardinal such that λℵ0 = λ. Then Sλ ⊩ “ spec(aT) = {ℵ1, λ}”.

Finally, in the last section we will use an “average of names”-argument to prove that in the

template model constructed by Shelah in [16] to obtain the consistency of d < a, we also have

that a = aT. Thus, we extend Shelah’s theorem to the following (see Theorem 5.5):

Theorem. Assume κ is measurable, and κ < µ < λ, λ = λω, νκ < λ for all ν < λ, are regular

cardinals. Then there is a forcing extension satisfying b = d = µ and a = aT = c = λ.
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2. Preliminaries

In the following every tree T will be a tree on ω, i.e. T ⊆ ω<ω is non-empty and closed under

initial sequences. For a tree T , we recall the following notions:

(1) If s ∈ T and n < ω, then succT (s) = {n < ω | s⌢ n ∈ T} and T ↾n = T ∩ ω≤n.

(2) T is pruned iff succT (s) ̸= ∅ for all s ∈ T .

(3) T is finitely splitting iff T is pruned and succT (s) is finite for all s ∈ T .

(4) [T ] = {f ∈ ωω | (∀n < ω)(f ↾n ∈ T )}.
For n < ω we call T ⊆ ω≤n an n-tree and use the same definitions as above, where we replace

(2)&(4) with (2∗)&(4∗), respectively:

(2*) T is pruned iff succT (s) ̸= ∅ for all s ∈ T ∩ ω<n.

(4*) [T ] = T ∩ ωn.

For trees T ⊆ ω<ω we call [T ] the branches of T and for n-trees T ⊆ ω≤n we call [T ] the leaves

of T . Remember that the non-empty closed sets of ω<ω are in bijection with pruned trees on ω

in the following way. Let T ⊆ ω<ω be a pruned tree and C ⊆ ωω be closed and non-empty, then

the maps

T 7→ [T ] and C 7→ TC = {s ∈ ω<ω | (∃f ∈ C)(s ⊆ f)}
are inverse to each other. Furthermore, the bijection restricts to a bijection between finitely

splitting trees on ω and non-empty compact subsets of ωω. The following object will be of

central interest for our study:

Definition 2.1. The partition spectrum of the Baire space is the set

spec(aT) = {|P | | P is a partition of ωω into compact sets}

and aT = min spec(aT).

As ωω is not σ-compact, ℵ1 ≤ aT and the partition of ωω into singletons witnesses that aT ≤ c.

Furthermore, by the aforementioned result of Brian [3], aT and spec(aT) do not depend on the

choice of the underlying Polish space X and also do not depend on the choice of compact, closed

or Fσ partitions.

Definition 2.2. A family T of finitely splitting trees is called an almost disjoint family of finitely

splitting trees (or an a.d.f.s. family) iff S and T are almost disjoint, i.e. S ∩ T is finite for all

S, T ∈ T . It is called maximal iff there is no finitely splitting tree S which is almost disjoint from

every T ∈ T .

Almost disjoint families of finitely splitting trees will be the combinatorial object of main

interest for this paper. Notice that by König’s lemma for finitely splitting trees S and T we

have that S and T are almost disjoint iff [T ] ∩ [S] = ∅. Thus, using the above identification of

finitely splitting trees and non-empty compact subsets of ωω, we can also identify maximal a.d.f.s.

families with partitions of ωω into non-empty compact sets. Moreover, we get that an a.d.f.s.

family T is maximal iff for all reals f ∈ ωω there is a T ∈ T such that f ∈ [T ]. To conclude this

section we note that d ≤ aT [17] and spec(aT) is closed under singular limits [3].
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3. Forcing the existence of maximal a.d.f.s. families

In this chapter we will define and analyse a c.c.c. forcing that allows us for any κ of uncountable

cofinality to explicitly add a maximal a.d.f.s. family of size κ or equivalently a partition of ωω

into κ-many compact sets. We will also see that we can use this forcing to change the value of aT
to any regular uncountable cardinal. These results mainly depend on the fact that our forcing

diagonalizes a given a.d.f.sḟamily in the following sense:

Definition 3.1. Let T be an a.d.f.s. family. We define

W(T ) = {f ∈ ωω | for all T ∈ T we have f /∈ [T ]}.

Furthermore, we define

I+(T ) = {T | T is a finitely splitting tree with [T ] ⊆ W(T )}.

Note that W(T ) is the set of all reals that T is missing to be maximal and S ∈ I+(T ) iff

S is almost disjoint from every T ∈ T . In particular, I+(T ) consists of exactly those finitely

splitting trees that we may add to T without destroying almost disjointness. The notion I+(T )

should emphasize the similarity to I+(A) for an a.d. family A in the subsequent diagonalization

property. However, contrary to I+(A) it is generally not induced by an ideal.

Definition 3.2. Let T be an a.d.f.s. family, let P be a forcing notion and G be a P-generic filter.
We say that a set of finitely splitting trees S in V [G] diagonalizes T iff T ∪S is an a.d.f.s. family

and for all T ∈ I+(T )V we have that {T} ∪ S is not almost disjoint.

Lemma 3.3. The above definition is equivalent to: T ∪ S is an a.d.f.s. family and for all

f ∈ W(T )V there is an S ∈ S with f ∈ [S].

Proof. We argue in V [G]. Let f ∈ W(T )V . Then Tf = {s ∈ ω<ω | s ⊆ f} ∈ I+(T )V . By

assumption choose S ∈ S such that [Tf ] ∩ [S] ̸= ∅. But [Tf ] = {f}, so f ∈ [S].

Conversely, let T ∈ I+(T )V . Choose f ∈ W(T )V such that f ∈ [T ]. By assumption choose

S ∈ S such that f ∈ [S]. But then f ∈ [S] ∩ [T ], so S and T are not almost disjoint. □

The above observation motivates the following definition:

Definition 3.4. T is the forcing consisting of partial functions p : ω × ω<ω → 2, such that

(1) dom(p) = Fp × ω≤np , where np ∈ ω and Fp ∈ [ω]<ω;

(2) for all i ∈ Fp, T
i
p = {s ∈ ω≤np | p(i)(s) = 1}(⊆ ω≤np) is a finitely splitting np-tree.

We order T by p≤ q iff p ⊇ q. Note that this implies that T i
p end-extends T i

q for every i ∈ Fq.

Definition 3.5. Let T be an a.d.f.s. family. T(T ) is the forcing notion of all pairs (p, wp)

such that p ∈ T and wp : W(T ) → ω is a partial function, so that dom(wp) = Hp for some

Hp ∈ [W(T )]<ω and for all f ∈ Hp we have wp(f) /∈ Fp or f ↾np ∈ T
wp(f)
p . We order T(T ) by

(p, wp)≤(q, wq) iff p≤T q and wp ⊇ wq
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Notice that for every maximal a.d.f.s. family T we have W(T ) = ∅, so T(T ) ∼= T ∼= C as T is

countable. The intuition is that T(T ) adds ω-many new finitely splitting trees, where the side

conditions wp will ensure that every element of W(T ) will be contained in the branches of one

those new trees. The main difference with the forcing sketched in [3, Theorem 3.1] is that only

one of the new trees is allowed to contain an element of W(T ) as its branch, which ensures that

the new trees are almost disjoint. Thus, this forcing may be used to explicitly add partitions of

ωω into compact sets rather than only a partition into Fσ-sets.

Lemma 3.6. T(T ) is Knaster.

Proof. Let A ⊆ T(T ) be of size ω1. Since T is countable, we may assume that p = q for all

(p, wp), (q, wq) ∈ A. Moreover, by the ∆-system lemma applied to {Hp | (p, wp) ∈ A}, we may

assume that there is a root R ∈ [W(T )]<ω, i.e. that Hp ∩Hq = R for all (p, wp) ̸= (q, wq) ∈ A.

However, there are only countably many functions fromR → ω, so we may assume wp ↾R = wq ↾R
holds for all (p, wp), (q, wq) ∈ A.

It remains to observe, that then, the elements of A are pairwise compatible. Indeed, consider

(p, wp), (q, wq) ∈ A. By choice of R, wp∪q = wp∪wq is a function with dom(wp∪q) = Hp∪Hq. We

claim that (p, wp∪q) ∈ T(T ). If this is the case, then the result follows as p = q = p ∪ q implies

that (p ∪ q, wp∪q)≤(p, wp), (q, wq).

Let f ∈ Hp ∪ Hq. If f ∈ Hp, then either wp(f) ∈ Fp and so f ↾n ∈ T
wp(f)
p = T

wp∪q(f)
p∪q , or

otherwise we have wp(f) /∈ Fp and so wp(f) /∈ Fq, wp(f) /∈ Fp∪q. Analogously, if f ∈ Hq, then

either wq(f) ∈ Fq and so f ↾n ∈ T
wq(f)
q = T

wp∪q(f)
p∪q , or otherwise we have wq(f) /∈ Fq and so

wq(f) /∈ Fp, wq(f) /∈ Fp∪q. □

Definition 3.7. Let T be an a.d.f.s. family and let G be a T(T )-generic filter. In V [G] we let

SG = {SG,i | i ∈ ω}, where SG,i = {s ∈ ω<ω | there is (p, wp) ∈ G with p(i)(s) = 1} for i ∈ ω.

Next, we show that in V [G] the family SG diagonalizes T . First, we prove that T ∪ S is an

a.d.f.s. family. We will make use of the following density arguments:

Proposition 3.8. Let T be an a.d.f.s. family. Let (p, wp) ∈ T(T ) and i0 ∈ ω \ Fp. Then there

is q ∈ T such that q ≤T p, dom(q) = (Fp ∪ {i0})× ω≤np, (q, wp) ∈ T(T ) and (q, wp)≤(p, wp).

Proof. Choose any finitely splitting np-tree T which contains the leaf f ↾np for every f ∈ Hp

with wp(f) = i0 and define q : (Fp ∪ {i0})× ω≤np by

T i
q =

{
T if i = i0

T i
p otherwise

Then q ∈ T and q≤ p. Furthermore, we have that (q, wp) ∈ T(T ) by choice of T and clearly also

(q, wp)≤(p, wp) holds by definition of q. □
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Proposition 3.9. Let T be an a.d.f.s. family. Let (p, wp) ∈ T(T ) and m > np. Then we can

extend p to q with dom(q) = Fp × ω≤m, (q, wp) ∈ T(T ) and (q, wp)≤(p, wp).

Proof. For every i ∈ Fp and for every f ∈ Hp with wp(f) = i we have f ↾np ∈ T i
p. Hence, we may

choose a finitely splitting m-tree Ti which extends T i
p and contains f ↾m for every f ∈ Hp with

wp(f) = i. Define q : Fp × ω≤m by T i
q = Ti. Then q ∈ T and q≤ p. Furthermore, we have that

(q, wp) ∈ T(T ) by choice of the Ti’s and clearly also (q, wp)≤(p, wp) holds by definition of q. □

Proposition 3.10. Let T = {Tj | j ∈ J} be an a.d.f.s. family. Let (p, wp) ∈ T(T ) and j0 ∈ J .

Then we can extend p to q with dom(q) = Fp × ω≤nq , so that (q, wp) ∈ T(T ), (q, wp) ≤ (p, wp)

and we have that [T i
q ] ∩ [T j

q ] = ∅ as well as [T i
q ] ∩ [Tj0 ↾nq] = ∅ for all i ̸= j ∈ Fp.

Proof. Choose m > np so that f ↾m ̸= g ↾m for all f ̸= g ∈ Hp and f ↾m /∈ Tj0 for all f ∈ Hp.

By Proposition 3.9 extend p to q0 with dom(q0) = Fp × ω≤m−1.

For every i ∈ Fp and s ∈ [T i
q0 ] the set

Ki
s = {k < ω | s⌢ k ∈ Tj0 or s⌢ k = f ↾m for some f ∈ Hp with wp(f) ̸= i}

is finite, so there are pairwise different {kis < ω | i ∈ Fp, s ∈ [T i
q0 ]} such that kis /∈ Ki

s.

We define q for i ∈ Fp and t ∈ ω≤m by

q(i)(t) =


q0(i)(t) if t ∈ ω≤m−1

1 if t = s⌢ k with s ∈ [T i
q0 ] and k = kis

1 if t = f ↾m with f ∈ Hp with wp(f) = i

0 otherwise

Then T i
q is a finitely splitting m-tree for every i ∈ Fp, dom(q) = Fp × ω≤m, (q, wp) ∈ T(T ) and

(q, wp)≤(p, wp). It remains to show that (q, wp) has the desired properties, so let i ̸= j ∈ Fp.

Let s⌢ k ∈ [T i
q ]∩[T

j
q ]. Assume k = kjs. Then kis ̸= kjs = k, so choose f ∈ Hp with wp(f) = i and

f ↾m = s⌢ k. Then k ∈ Kj
s , which contradicts k = kjs /∈ Kj

s . The case k = kis follows analogously,

so assume kis ̸= k ̸= kjs. Choose f, g ∈ Hp with wp(f) = i, wp(g) = j and f ↾m = s⌢ k = g ↾m.

This contradicts the choice of m.

Finally, let s⌢ k ∈ [T i
q ]∩[Tj0 ↾m]. Then k ∈ Ki

s, so k ̸= kis. Now, choose f ∈ Hp with wp(f) = i

and f ↾m = s⌢ k. Again, this contradicts the choice of m. □

Lemma 3.11. Let T = {Tj | j ∈ J} be an a.d.f.s. family and let G be T(T )-generic. In V [G] we

have that T ∪ SG is an a.d.f.s. family.

Proof. Let i ∈ ω. First, we show that SG,i is a finitely splitting tree in V [G]. Let t ∈ SG,i and

s ⊆ t. Then we can choose (p, wp) ∈ G with p(i)(t) = 1. But T i
p is an np-tree, so also p(i)(s) = 1,

i.e. s ∈ SGi which shows that SGi is a tree.

Next, we show that SG,i is finitely splitting, so let s ∈ SGi . Again, choose (p, wp) ∈ G with

p(i)(s) = 1. By Proposition 3.9 there is (q, wp) ∈ G with (q, wp)≤(p, wp) and dom(q) = Fp×ω≤nq

for nq > |s|. But then T i
q is an nq-tree and s ∈ T i

q\[T i
q ], which implies that succSG,i

(s) = succT i
q
(s),

so SG,i is finitely splitting in V [G].
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Let i0 ̸= j0 ∈ ω. We show that SG,i0 and SG,j0 are almost disjoint in V [G]. Let (p, wp) ∈ T(T ).

By Proposition 3.8 there is q extending p such that dom(q) = (Fp ∪ {i0, j0}) × ω≤np , so that

(q, wp) ∈ T(T ) and (q, wp)≤(p, wp). By Proposition 3.10 there is an extension r of q with

dom(r) = (Fp ∪ {i0, j0}) × ω≤nr , so that (r, wp) ∈ T(T ), (r, wp)≤(q, wp) and [T i
r ] ∩ [T j

r ] = ∅ for

all i ̸= j ∈ Fp ∪ {i0, j0}. But then we have that

(r, wp) ⊩ [SĠ,i0
↾nr] ∩ [SĠ,j0

↾nr] = [T i0
r ] ∩ [T j0

r ] = ∅

so the set of all conditions which force that SĠ,i0
and SĠ,j0

are almost disjoint is dense.

Finally, let i0 ∈ ω and j ∈ J . We show that SG,i0 and Tj are almost disjoint in V [G]. Consider

(p, wp) ∈ T(T ). By Proposition 3.8 there is an extension q of p with dom(q) = (Fp∪{i0})×ω≤np ,

so that (q, wp) ∈ T(T ) and (q, wp)≤(p, wp). By Proposition 3.10 we can extend q to r with

dom(r) = (Fp ∪ {i0})× ω≤nr , so that (r, wp) ∈ T(T ) and (r, wp)≤(q, wp) and [T i
r ] ∩ [Tj ↾nr] = ∅

for all i ∈ Fp ∪ {i0}. But then

(r, wp) ⊩ [SĠ,i0
↾nr] ∩ [Tj ↾nr] = [T i0

r ] ∩ [Tj ↾nr] = ∅

so the set of all conditions which force that SĠ,i0
and Tj are almost disjoint is dense. □

Proposition 3.12. Let T be an a.d.f.s. family and let G be T(T )-generic. Then in V [G] we

have that SG diagonalizes T .

Proof. Let (p, wp) ∈ T(T ) and f ∈ W(T ). If f /∈ Hp we can choose an i ∈ ω \ Fp and consider

(q, wq) = (p, wp ∪ (f, i))≤(p, wp). Then, however, f ∈ Hq and (q, wq) ⊩ “f ∈ [SĠ,wq(f)
]”. □

Using this diagonalization property we obtain a maximal a.d.f.s. family as follows:

Theorem 3.13. Let κ be a cardinal of uncountable cofinality. Let ⟨Tα, Q̇γ | α ≤ κ, γ < κ⟩ be the

finite support iteration, where Q̇α = T(Ṫα) and Ṫα is a Tα-name for
⋃

β<α S
β

Ġβ+1/Ġβ
. Let G be

Tκ-generic. Then Tκ =
⋃

α<κ Sα
G is a maximal a.d.f.s. family.

Proof. By Lemma 3.11, Tκ is an a.d.f.s. family in V [G]. Assume there was a finitely splitting

tree T almost disjoint from Tκ. As Tκ is c.c.c. we can choose α < κ such that T ∈ V [Gα],

where Gα = G ∩ Tα is a Tα-generic filter. By assumption T ∈ I+(Tα), so by Proposition 3.12 in

V [Gα+1] there is an i < ω such that T has non-empty intersection with Sα+1
Gα+1/Gα,i

, which is a

contradiction. □

In particular we obtain the following consistency result:

Theorem 3.14. Assume CH and let κ ≤ λ be regular cardinals. Then there is c.c.c. extension

in which d = aT = κ ≤ λ = c holds.

Proof. Use Cλ ∗ Ṫκ, where Cλ is λ-Cohen forcing and Ṫκ is the forcing from the previous theorem.

In the generic extension clearly λ = c holds and we have aT ≤ κ by the previous theorem. Further,

d ≥ κ, because Ṫκ adds Cohen reals cofinally often, which follows either from the fact the we use

finite support and add Cohen reals at limit steps of countable cofinality or from fact that already

T(T ) adds Cohen reals, which we will prove at the end of this section. □
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We can also add many maximal a.d.f.s. families at the same time with our forcing. We use an

analogous construction as Fischer and Shelah in [8], where they add many maximal independent

families at the same time.

Theorem 3.15. Assume GCH. Let λ be a cardinal of uncountable cofinality, θ ≤ λ a regular

cardinal and ⟨κβ | β < θ⟩ a sequence of regular uncountable cardinals with cof(λ) ≤ κβ ≤ λ for

all β < θ. Then there is a c.c.c. extension in which c = λ and κβ ∈ spec(aT) for all β < θ.

Proof. As cof(λ) ≤ κβ for all β < θ we may choose a partition of (possibly a subset of) λ into

θ-many disjoint sets ⟨Iβ | β < θ⟩ such that |Iβ| = κβ and Iβ is cofinal in λ for all β < θ. We

define a finite support iteration ⟨Pα, Q̇α | α < λ⟩ of c.c.c. forcings as follows: We will iteratively

add θ-many a.d.f.s. families ⟨Tβ | β < θ⟩. Denote with Ṫ α
β the name for the β-th family after

iteration step α. Initially we let Ṫ 0
β be a name for the empty set for all β < θ. Now, assume that

Pα and Ṫ α
β have been defined for all β < θ. If there is no β < θ such that α ∈ Iβ let Q̇α be a

name for the trivial forcing. Otherwise, let βα < θ be the unique index such that α ∈ Iβα and

let Q̇α be a name for T(Ṫ α
βα
). Furthermore, for β ̸= βα let Ṫ α+1

β be a name for the same family

as Ṫ α
β and for βα let Ṫ α+1

β be a name for Ṫ α
β ∪ SĠ.

Let G be Pλ-generic. As Iβ is cofinal in λ for all β < θ and by the results of the previous section

we obtain in V [G] that Tβ is a maximal a.d.f.s. family for all β < θ. Furthermore, as |Iβ| = κβ
and every iteration step extends at most one family by ω-many new trees we obtain that Tβ has

size κβ for all β < θ. But this shows that κβ ∈ spec(aT). Finally, GCH, the c.c.c.-ness of all Pα

and cof(λ) > ℵ0 imply that c = λ by counting nice names. □

Proposition 3.16. T(T ) adds Cohen reals.

Proof. Let G be T(T )-generic. Define a real c : ω → 2 by c(i) = 1 iff ⟨0⟩ ∈ SG,i. We show that c

defines a Cohen real over V . In V let D ⊆ C be dense and (p, wp) ∈ T(T ). By Propositions 3.8

and 3.9 we may assume that np > 0 and Fp = [0, N ] and ran(Hp) ⊆ Fp for some N < ω.

Define s(i) = 1 iff ⟨0⟩ ∈ T i
p for i ≤ N . By definition of c we get (p, wp) ⊩ “s ⊆ ċ”. By density

of D choose t ∈ D such that s ⊆ t. Let S, T be any np-trees, such that ⟨0⟩ ∈ S and ⟨0⟩ /∈ T .

Then we extend (p, wp) to (q, wp) with dom(q) = |t| × ω≤np by

T i
q =


T i
p if i ≤ N

S if i > N and t(i) = 1

T otherwise

But then we get that (q, wp) ⊩ “t ⊆ ċ”, where t ∈ D. □

Remark 3.17. Let T be an a.d.f.s. family. Apart from the Cohen reals above, there is also a

second kind of unbounded reals added by T(T ). Let G be a V [G]-generic filter. For i0 < ω in

V [G] define

fi0(n) = max {k < ω | there is an s ∈ SG,i0 with s(n) = k}
To show that fi0 is unbounded over V , consider any g ∈ ωω ∩V , n0 < ω and (p, wp) ∈ T(T ). By

Propositions 3.8 and 3.9 we may assume that i0 ∈ Fp and n0 ≤ np. As before, given i ∈ Fp we
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can choose an (np + 1)-tree Ti which extends T i
p and contains f ↾(np + 1) for all f ∈ Hp with

wp(f) = i, but for i0 additionally also contains an s ∈ Ti0 such that s(np) = g(np) + 1. Define

q : Fp ×ω≤np+1 by T i
q = Ti. Then we have (q, wp)≤(p, wp) and (q, wp) ⊩ g(np) < s(np) ≤ fi0(n).

Finally, we show that T(T ) can both add and not add dominating reals, depending on the

properties of T . Note that the following characterization is sufficient but not necessary.

Proposition 3.18. Let T be an a.d.f.s. family. If I+(T ) is a dominating family then T(T ) adds

a dominating real. In particular T(∅) adds dominating reals.

Proof. Assume I+(T ) is dominating. Let G be T(T )-generic. In V [G] choose f such that

fi ≤∗ f , where fi is defined as in the previous remark. We claim that f is dominating, so in V

let g ∈ ωω and (p, wp) ∈ T(T ). Choose h ∈ I+(T ) and N < ω such that for all n ≥ N we have

g(n) ≤ h(n). By possibly extending (p, wp) we may assume that h ∈ Hp. Let i = wp(h) and

choose (q, wq)≤(p, wp) and M < ω with N ≤ M < ω such that

(q, wq) ⊩ For all n ≥ M we have fi(n) ≤ f(n)

But then (q, wq) ⊩ g ≤∗ f as wp(h) = i implies that

(q, wq) ⊩ For all n ≥ M we have g(n) ≤ h(n) ≤ fi(n) ≤ f(n)

□

Remark 3.19. On the other hand, if T is a maximal a.d.f.s. family, we have T(T ) ∼= C, so that

T(T ) does not add dominating reals.

Question 3.20. Is there a nice combinatorial characterization of those families T for which T(T )

adds a dominating real?

4. A Sacks-indestructible maximal a.d.f.s. family

In the last section we have seen that spec(aT) can be arbitrarily large, in fact it may be a

superset of any set of regular uncountable cardinals. Contrarily, in this section we will prove

that CH implies the existence of a maximal a.d.f.s. family which stays maximal even after forcing

with countably supported iteration or product of Sacks forcing of any length. Together with

an “isomorphism of names”-argument we will then that the Sacks-product extension satisfies

spec(aT) = {ℵ1, c} where c may be any cardinal of uncountable cofinality. Thus, consistently

aT = ℵ1 and spec(aT) is minimal.

We begin with a brief reminder of the definitions of Sacks forcing and countably supported

Sacks forcing and their fusion sequences.

Definition 4.1. Let T ⊆ 2<ω be a tree.

(1) Let s ∈ T then Ts = {t ∈ T | s ⊆ t or t ⊆ s}.
(2) spl(T ) = {s ∈ T | s⌢ 0 ∈ T and s⌢ 1 ∈ T} is the set of all splitting nodes of T .

(3) T is perfect iff for all s ∈ T there is t ∈ spl(T ) such that s ⊆ t.

(4) S = {T ⊆ 2<ω | T is a perfect tree} ordered by inclusion is Sacks forcing.
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Definition 4.2. Let T ∈ S. We define the fusion ordering for Sacks forcing as follows:

(1) Let s ∈ T then succsplT (s) is the unique minimal splitting node in T extending s.

(2) stem(T ) = succsplT (∅).
(3) spl0 = {stem(T )} and if spln(T ) is defined for n < ω we set

spln+1 = {succsplT (s⌢ i) | s ∈ spln(T ), i ∈ 2}

spln(T ) is called the n-th splitting level of T .

(4) Let n < ω and S, T ∈ S. We write S≤n T iff S≤T and spln(S) = spln(T ).

The following lemmata are well-known, see [12] for example. We add them for completeness.

Lemma 4.3. Let ⟨Tn ∈ S | n < ω⟩ be a sequence of trees such that Tn+1≤n Tn for all n < ω.

Then T =
⋂

n<ω Tn ∈ S and T ≤n Tn for all n < ω.

Proof. The only non-trivial property to verify is that T ∈ S, so let s ∈ T . So s ∈ T0 and let

t = succsplT0
(s) and n < ω such that t ∈ spln(T0). As Tn≤T0 choose u ∈ spln(Tn) such that

t ⊆ u. But then s ⊆ u and by definition of ≤n we get that u ∈ spl(T ). □

Definition 4.4. Let λ be a cardinal. Sλ is the countable support product of Sacks forcing of

size λ. Moreover,

(1) for A ⊆ Sλ let
⋂
A be the function with dom(

⋂
A) =

⋃
p∈A dom(p) and for all α < λ we

have (
⋂
A)(α) =

⋂
p∈A p(α). Notice that we do not necessarily have

⋂
A ∈ Sλ.

(2) Let n < ω, p, q ∈ Sλ and F ∈ [dom(q)]<ω. Write p≤F,n q iff p≤ q and p(α)≤n q(α) for all

α ∈ F .

Lemma 4.5. Let ⟨pn ∈ Sλ | n < ω⟩ and ⟨Fn | n < ω⟩ be sequences such that

(1) pn+1≤Fn,n pn for all n < ω

(2) Fn ⊆ Fn+1 for all n < ω and
⋃

n<ω Fn =
⋃

n<ω dom(pn)

Then p =
⋂

n<ω pn ∈ Sλ and p≤Fn,n pn for all n < ω.

Proof. Again, we only need to verify that p ∈ Sλ. Clearly, dom(p) =
⋃

n<ω dom(pn) is count-

able. Let α ∈ dom(p). Choose N < ω such that α ∈ FN . By assumption we get that

⟨pn(α) ∈ S | n ≥ N⟩ is a fusion sequence, so p(α) =
⋂

n<ω pn(α) ∈ S by the previous lemma. □

Definition 4.6. Let p ∈ Sλ, F ∈ [dom(p)]<ω, n < ω and σ : F → V be a suitable function for p,

F and n, i.e. for all α ∈ F there are s ∈ spln(p(α)) and i ∈ 2 with σ(α) = s⌢ i. Then we define

p ↾σ ∈ Sλ by

(p ↾σ)(α) =

{
p(α)σ(α) if α ∈ F

p(α) otherwise

Notice that for fixed p ∈ Sλ, n < ω and F ∈ [dom(p)]<ω there are only finitely many σ which are

suitable for p, F and n. Also, if q≤F,n p, then q and p have the same suitable functions for F

and n. Furthermore, the set

{p ↾σ | σ : F → V is a suitable function for p, F and n}

is a maximal antichain below p.
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Lemma 4.7. Let p ∈ Sλ, D ⊆ Sλ be dense open below p, n < ω and F ∈ [dom(p)]<ω. Then

there is q≤F,n p such that for all σ suitable for p (or equivalently q), F and n we have q ↾σ ∈ D.

Proof. Let ⟨σi | i < N⟩ enumerate all suitable functions for p, F and n. Set q0 = p. We will define

a ≤F,n-decreasing sequence ⟨qi | i ≤ N⟩ so that all of the qi have the same suitable functions as

p for F and n. Assume i < N and qi is defined. Choose ri≤ qi ↾σi in D and define

qi+1(α) =

{
ri(α) ∪

⋃
{qi(α)s | s = t⌢ i for t ∈ spln(p), i ∈ 2 and s ̸= σ(α)} if α ∈ F

ri(α) otherwise

Clearly, qi+1≤F,n qi and qi+1 ↾σ = ri. Now, set q = qN and let σ be suitable for p, F and n.

Choose i < N such that σ = σi. Then we have q ↾σ≤ qi+1 ↾σ = ri ∈ D, so q ↾σ ∈ D as D is

open. □

By routine fusion arguments one obtains that both S and Sλ are proper and ωω-bounding.

Here, we will need the following key lemma:

Lemma 4.8. Let T be a countable a.d.f.s. family, λ be a cardinal, p ∈ Sλ and ḟ be a Sλ-name

for a real such that for all T ∈ T we have

p ⊩ ḟ /∈ [T ].

Then there is a finitely splitting tree S and q≤ p such that T ∪ {S} is an a.d.f.s. family and

q ⊩ ḟ ∈ [S].

Proof. Enumerate T = {Tn | n < ω}. By assumption for every n < ω the set

Dn = {r ∈ Sλ | There is a k < ω such that r ⊩ ḟ ↾ k /∈ Tn}

is open dense below p. Set q0 = p. We define a fusion sequence ⟨qn | n < ω⟩ as follows. Fix

with a suitable bookkeeping argument a sequence ⟨Fn ∈ [dom(qn)]
<ω | n < ω⟩ such that that⋃

n<ω Fn =
⋃

n<ω dom(qn). Now, let n < ω and assume qn has been defined, and Fn is given.

Apply Lemma 4.7 to Dn, qn, n and Fn to obtain qn+1≤Fn,n qn such that for all suitable functions

σ for qn, Fn and n there is a kσ < ω such that

qn+1 ↾σ ⊩ ḟ ↾ kσ /∈ Tn.

Set kn = max {kσ | σ is a suitable function for qn, Fn and n}. Then we have

qn+1 ⊩ ḟ ↾ kn /∈ Tn.

Let qω =
⋂

n<ω qn. Finally, Sλ is ωω-bounding, so we may choose q≤ qω such that

S = {s ∈ ω<ω | there is an r≤ q with r ⊩ s ⊆ ḟ}

is a finitely splitting tree. Clearly, q ⊩ ḟ ∈ [S] by definition of S. Furthermore, for n < ω we

have that S and Tn are almost disjoint, since q≤ qn+1, qn+1 ⊩ ḟ ↾ kn /∈ Tn and the definition of

S imply

q ⊩ [T ↾ kn] ∩ [S ↾ kn] = ∅.
□
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Finally, we will need that Sλ satisfies a nice version of continuous reading of names as proved

in [7]. To state this version of continuous reading we summarize the most important definitions

with minor tweaks for simplicity. First, we modify the presentation of [13, Definition 2.5 and

Proposition 2.6] to code continuous functions f∗ : ω(ω2) → ωω:

Definition 4.9.

(1) For s, t ∈ <ω(<ω2) write s ⊴ t iff dom(s) ⊆ dom(t) and for all n ∈ dom(s), s(n) ⊆ t(n).

(2) A function f : <ω(<ω2) → ω<ω is monotone if for all s ⊴ t ∈ <ω(<ω2), f(s) ⊆ f(t).

(3) A function f : <ω(<ω2) → ω<ω is proper iff for all x ∈ ω(ω2):

|dom(f(x ↾n× n))| n→∞−→ ∞.

(4) For a monotone, proper function f : <ω(<ω2) → ω<ω define a continuous function

f∗ : ω(ω2) → ωω via f∗(x) =
⋃
n<ω

f(x ↾n× n).

In this case f is called a code for f∗.

Remark 4.10. Conversely, for every continuous function f∗ : ω(ω2) → ωω there is a code for it.

In fact, this is true in general for continuous functions between any two effective Polish spaces.

Remark 4.11. For all p, q ∈ S there is a natural bijection π : spl(p) → spl(q) which for every

n < ω restricts to bijections π ↾ spln(p) : spln(p) → spln(q) and which preserves the lexicographical

ordering. We can extend it to a monotone and proper function π : p → q in a similar sense as

above. π then codes a homeomorphism π : [p] → [q] which we call the induced homeomorphism.

Definition 4.12. Let P be the countable support iteration of Sacks forcing of length λ. Let

p ∈ P and assume that |dom(p)| = ω and 0 ∈ dom(p). Note that this assumption is clearly dense

in P.
(1) A standard enumeration of dom(p) is a sequence

Σ = ⟨σk | k < ω⟩

such that σ0 = 0 and ran(Σ) = dom(p).

(2) Let [p] be a P-name such that

P ⊩ [p] = ⟨x ∈ dom(p)(ω2) | For all α ∈ dom(p) we have x(α) ∈ [p(α)]⟩

(3) Let Σ be a standard enumeration of dom(p). For k < ω let ėp,Σk be a P ↾σk-name such

that

P ↾σk ⊩ ėp,Σk is the induced homeomorphism between [p(σk)] and
ω2

Finally, let ėp,Σ be a P-name such that

P ⊩ ėp,Σ : [p] → ω(ω2) such that ėp,Σ(x) = ⟨ėp,Σk (x(σk)) | k < ω⟩ for all x ∈ [p]

Remark 4.13. For the countable support product of Sacks forcing we define the analogous

notions. In fact in this simpler case we do not have to define [p], ėp,Σk and ėp,Σ as names.
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Definition 4.14. Let P be the countable support iteration or product of Sacks forcing of any

length. Let q ∈ P and ḟ be a P-name such that q ⊩ “ḟ ∈ ωω ”. Let Σ = ⟨σk | k < ω⟩ be a

standard enumeration of dom(q) and f : <ω(<ω2) → ω<ω be a code for a continuous function

f∗ : ω(ω2) → ωω such that

q ⊩ ḟ = (f∗ ◦ ėq,Σ)(sĠ ↾dom(q))

where sĠ is the sequence of Sacks reals. Then we say ḟ is read continuously below q (by f and

Σ).

Lemma 4.15 (Lemma 4 of [7]). Let P be the countable support iteration or product of Sacks

forcing of length λ. Suppose p ∈ P and ḟ is a P-name such that p ⊩ “ḟ ∈ ωω ”. Then there is

q≤ p such that ḟ is read continuously below q.

Remark 4.16. For any p ∈ P and P-name ḟ such that p ⊩ “ḟ ∈ ωω ” it is easy to see that if

ḟ is read continuously below p then for all q≤ p also ḟ is read continuously below q. Thus, the

previous lemma shows that the set

{q ∈ P | ḟ is read continuously below q}

is dense open below p.

Theorem 4.17. [CH] There is an a.d.f.s. family which remains maximal after forcing with

countably supported iteration or product of Sacks forcing of arbitrary length.

Proof. By CH let ⟨fα | α < ℵ1⟩ enumerate all codes fα : <ω(<ω2) → ω<ω for continuous functions

f∗
α : ω(ω2) → ωω. We define an increasing sequence ⟨Tα | α < ℵ1⟩ of a.d.f.s. families as follows:

Set T0 = ∅. Now, assume Tα is defined and is countable. If for all T ∈ Tα we have that

Sℵ0 ⊩ f∗(sĠ) /∈ [T ]

then by Lemma 4.8 there is a finitely splitting tree S and p ∈ Sℵ0 such that Tα∪{S} is an a.d.f.s.

family and

p ⊩ f∗(sĠ) ∈ [S].

Set Tα+1 = Tα ∪ {S}. In the other case we set Tα+1 = Tα.
This finishes the construction and we set T =

⋃
α<ℵ1

Tα. By construction we have that for any

code f : <ω(<ω2) → ω<ω for a continuous function f∗ : ω(ω2) → ωω there is a p ∈ Sℵ0 and T ∈ T
such that

p ⊩ f∗(sĠ) ∈ [T ].

We claim that this implies that for all x ∈ [p], f∗(x) ∈ [T ], for if x ∈ [p] and n < ω we define

px ↾n×n≤ p as follows: For m < ω let

px ↾n×n(m) =

{
(p(m))xm ↾n if m < n

p(m) otherwise.

This is well-defined and px ↾n×n ∈ Sℵ0 since xm ↾n ∈ p(m). But then we have

px ↾n×n ⊩ f(sĠ ↾n× n) ∈ T and sĠ ↾n× n = x ↾n× n
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which yields that f(x ↾n× n) ∈ T . Thus, we have shown f∗(x) ∈ [T ].

Assume that T is not maximal in some iterated Sacks-extension with countable support. The

argument for countably supported product of Sacks forcing follows similarly. So let λ be an

ordinal and P the iterated Sacks forcing of length λ; we may assume that λ ≥ ω. Further, let

q̄ ∈ P and ḟ be a P-name for a real such that for all T ∈ T we have

q̄ ⊩ P ḟ /∈ [T ].

Choose q≤ q̄ and a standard enumeration Σ = ⟨σk | k ∈ ω⟩ of dom(q) and f : <ω(<ω2) → ω<ω a

code for a continuous function f∗ : ω(ω2) → ωω such that

q ⊩ P ḟ = f∗(ėq,Σ(sĠ)).

By construction of T we may choose T ∈ T and p ∈ Sℵ0 such that for all x ∈ [p] we have

f∗(x) ∈ [T ]. Let r be the ‘pull-back’of p under ˙eq,Σ, i.e. for all k < ω we have

⊩ P[r(σk)] = (ėq,Σk )−1[[p(k)]] so that r ⊩ P ė
q,Σ(sĠ) ∈ [p].

By definition of ėq,Σ we have that r≤ q. By absoluteness of Π1
1-formulas we have

⊩ P For all x ∈ [p] we have f∗(x) ∈ [T ]

which yields the contradiction

r ⊩ ḟ = f∗(ėq,Σ(sĠ)) ∈ [T ].

□

Theorem 4.18. [CH] Let λ be a cardinal such that λℵ0 = λ. Then Sλ ⊩ “ spec(aT) = {ℵ1, λ}”.

Remark 4.19. The set of all finitely splitting trees is an effective Polish space with the topology

generated by the basic open sets O(T ) = {S | S is a finitely splitting tree with S ↾n = T} where

T is a finitely splitting n-tree for some n < ω. Hence, we may use that Sλ has continuous reading

of names as above for finitely splitting trees. Furthermore, CH implies that Sλ has the ℵ2-c.c. So

if we assume that any name for a finitely splitting tree is nice, then we have that its evaluation

only depends on ℵ1-many conditions in Sλ. Here, we already use the notion of a nice name for a

finitely splitting tree as defined in the next section.

Proof. First, we prove that Sλ ⊩ c = λ. For every p ∈ Sλ let Ḟp be a Sλ-name such that

Sλ ⊩ Ḟp = {(f∗ ◦ ėp,Σ)(sĠ ↾dom(p)) | Σ is a standard enumeration of dom(p) and

f : <ω(<ω2) → ω<ω is a code for a continuous function f∗ : ω(ω2) → ωω}

With this definition the continuous reading of names exactly means that

Sλ ⊩ ωω =
⋃
p∈Sλ

Ḟp
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By CH we have Sλ ⊩ “|Ḟp ≤ ℵ1|”. As λℵ0 = λ we have |Sλ| = λ, so we compute

Sλ ⊩ c =

∣∣∣∣∣∣
⋃
p∈Sλ

Ḟp

∣∣∣∣∣∣ ≤
∑
p∈Sλ

∣∣∣Ḟp

∣∣∣ ≤ ∑
p∈Sλ

ℵ1 = |Sλ| · ℵ1 = λ · ℵ1 = λ

Conversely, Sλ adds λ-many different Sacks reals so we get Sλ ⊩ “c ≥ λ”. Furthermore, by CH

Theorem 4.17 implies the existence of a Sacks-indestructible a.d.f.s. family, so spec(aT) ⊇ {ℵ1, λ}.
Now, consider any ℵ1 < κ < λ and for a contradiction assume ⟨Ṫα | α < κ⟩ are nice Sλ-names for

finitely splitting trees and p ∈ Sλ is such that

p ⊩ ⟨Ṫα | α < κ⟩ is a maximal a.d.f.s. family.

For any α < ℵ2 choose pα≤ p with dom(pα) = Uα ∈ [λ]ℵ0 such that Ṫα is read continuously below

pα. By CH we may use the ∆-system lemma to choose I0 ∈ [ℵ2]
ℵ2 and a root U of ⟨Uα | α ∈ I0⟩.

By a counting argument there is I1 ∈ [I0]
ℵ2 such that |Uα \ U | = |Uβ \ U | for all α, β ∈ I1.

Then, for every α ∈ I1, we may choose a bijection ϕα : Uα → ω such that ϕα ↾U = ϕβ ↾U for all

α, β ∈ I1. Now, for α, β ∈ I1 define an involution πα,β : λ → λ by

πα,β(i) =


(ϕβ)

−1(ϕα(i)) for i ∈ Uα

(ϕα)
−1(ϕβ(i)) for i ∈ Uβ

i otherwise.

Clearly, this is well-defined as Uα ∩ Uβ = U and ϕα ↾U = ϕβ ↾U . Moreover, for all α, β, γ ∈ I1
we have

(1) πα,β maps Uα onto Uβ and Uβ onto Uα, but is the identity on the rest of λ.

(2) πα,β is the identity on U .

(3) πα,α = idλ, πα,β = πβ,α and πα,γ = πα,β ◦ πβ,γ ◦ πα,β.
πα,β naturally induces to an automorphism of Sλ which we also denote with πα,β. Note that the

three properties above also hold for the induced maps. Fix γ1 ∈ I1. For any α ∈ I1 we have that

dom(πα,γ1(pα)) ⊆ Uγ1 . But by CH |S| = ℵ1 and ℵℵ0
1 = ℵ1, so there are only ℵ1-many conditions

p ∈ Sλ with dom(p) ⊆ Uγ1 . Again by a counting argument, we can find I2 ∈ [I1]
ℵ2 such that

πα,γ1(pα) = πβ,γ1(pβ) for all α, β ∈ I2. But this implies that

πα,β(pα) = πα,γ1 ◦ πγ1,β ◦ πα,γ1(pα) = πα,γ1 ◦ πγ1,β ◦ πβ,γ1(pβ) = πα,γ1(pβ) = pβ

for all α, β ∈ I2. Notice that the last equality follows from dom(pβ) ∩ (Uα ∪ Uγ1) = U .

Again, fix some γ2 ∈ I2. The mapping πα,β induces an automorphism of Sλ-names and note

again that the three properties above also hold for this extension. By the automorphism theorem

we get that πα,γ2(Ṫα) can be read continuously below πα,γ2(pα) = pγ2 . But by CH there are

only ℵ1 many different names for finitely splitting trees that can be read continuously below pγ2 .

Again by a counting argument we can find I3 ∈ [I2 \ {γ2}]ℵ2 such that for all α, β ∈ I3 we have

pγ2 ⊩ πα,γ2(Ṫα) = πβ,γ2(Ṫβ).
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We may assume that for all α < κ, all maximal antichains in the nice name of Ṫα restrict to

maximal antichains below pα. Then, we write Ṫα ↾ pα for the restriction of the name Ṫα below

pα. For all α ∈ I3, πα,γ2(Ṫα ↾ pα) can be read continuously below pγ2 , so we may assume that the

maximal antichains have been chosen such that dom(πα,γ2(Ṫα ↾ pα)) = dom(pγ2) = Uγ2 .

We now define a new Sλ-name Ṫκ for a finitely splitting tree. By assumption, all names Ṫα

are nice, so we may choose {pα,i | i < ℵ1, α < κ} such that the evaluation of Ṫα only depends on

{pα,i | i < ℵ1}. Let Wα =
⋃

i<ℵ1
dom(pα,i) and W =

⋃
α<κWα. Then |W | ≤ κ < λ, so we may

choose Uκ ∈ [λ]ℵ0 such that Uκ∩W = U and |Uγ \U | = |Uκ \U |. Choose a bijection ϕκ : Uκ → ω

such that ϕκ ↾U = ϕα ↾U for all α ∈ I1. Thus, we can extend the system of involutions to I1∪{κ}
by defining πα,κ by the same equation as above, so that the three properties are preserved. Fix

γ3 ∈ I3 and set pκ = πγ3,κ(pγ3) and Ṫκ = πγ3,κ(Ṫγ3). We claim that pκ and Ṫκ are independent of

the choice of γ3 in the following sense: For all α ∈ I2 (in particular for γ2) we have πα,κ(pα) = pκ
and for all α ∈ I3 we have

pκ ⊩ πα,κ(Ṫα) = Ṫκ = πγ3,κ(Ṫγ3).

For α ∈ I2 the first claim holds because

πα,κ(pα) = πα,γ3 ◦ πγ3,κ ◦ πα,γ3(pα) = πα,γ3 ◦ πγ3,κ(pγ3) = πα,γ3(pκ) = pκ

where the last equality follows from dom(pκ) ∩ (Uα ∪ Uγ3) = U . For the second claim let α ∈ I3
and apply the automorphism theorem to

pγ2 ⊩ πα,γ2(Ṫα) = πγ3,γ2(Ṫγ3)

to obtain

pκ ⊩ πγ2,κ(πα,γ2(Ṫα)) = πγ2,κ(πγ3,γ2(Ṫγ3)).

Using the third property of the involutions and simplifying yields

pκ ⊩ πα,γ2(πα,κ(Ṫα)) = πγ3,γ2(πγ3,κ(Ṫγ3)).

To prove the claim it remains to show that

pκ ⊩ πα,κ(Ṫα) = πα,γ2(πα,κ(Ṫα)) and πγ3,κ(Ṫγ3) = πγ3,γ2(πγ3,κ(Ṫγ3)).

First, since α ∈ I3 we have Uα ∩ Uγ2 = U . Remember πα,γ2(Ṫα ↾ pα) only depends on Uγ2 , so it

does not depend on Uα \U . But then πγ2,α(πα,γ2(Ṫα ↾ pα)) = Ṫα ↾ pα does not depend on Uγ2 \U
and clearly also not on Uκ \U . Hence, πα,κ(Ṫα ↾ pα) does not depend on Uγ2 \U and Uα \U . This

shows that

pκ ⊩ πα,γ2(πα,κ(Ṫα)) = πα,γ2(πα,κ(Ṫα ↾ pα)) = πα,κ(Ṫα ↾ pα) = πα,κ(Ṫα).

Notice, that the second equation follows analogously using γ3 ∈ I3.

Finally, let β < κ. Choose α ∈ I3 such that Uα ∩ Wβ ⊆ U . This is possible, as we have

|Wβ| ≤ ℵ1 < |I3| = ℵ2 and for every i ∈ Wβ \ U there is at most one α ∈ I3 such that i ∈ Uα as

⟨Uα | α ∈ I3⟩ is a ∆-system. But then πα,κ(Ṫβ) = Ṫβ and pκ ⊩ “Ṫκ = πα,κ(Ṫα)”. Now, applying

the automorphism πα,κ to

pα ⊩ Ṫα and Ṫβ are almost disjoint
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yields that

pκ ⊩ πα,κ(Ṫα) = Ṫκ and Ṫβ are almost disjoint.

But dom(p) ⊆ U implies pκ≤ p, which contradicts that

p ⊩ ⟨Ṫα | α < κ⟩ is a maximal a.d.f.s. family.

□

Finally, we discuss how our results answer Question 2 of Newelski’s [15]. In fact, if we replace

the use of Lemma 4.8 in the proof of Theorem 4.17 by the following lemma

Lemma 4.20. Let T be a countable family of almost disjoint nowhere dense trees on ω2, λ be a

cardinal, p ∈ Sλ and ḟ be a Sλ-name for an element of ω2 such that for all T ∈ T we have

p ⊩ ḟ /∈ [T ].

Then there is a nowhere dense tree S and q≤ p such that T ∪ {S} is almost disjoint and

q ⊩ ḟ ∈ [S].

then we may obtain the following result with exactly the same proof:

Theorem 4.21 (CH). There is a partition of ω2 into nowhere dense closed sets which is inde-

structible by forcing with countably supported iteration or product of Sacks forcing of arbitrary

length.

Notice that also Lemma 4.20 has a similar proof as Lemma 4.8, where a routine fusion argument

can be used to force the hull for the name of an element of ω2 to be a nowhere dense tree on ω2.

Finally, with a bit of extra work it can be shown that a part of the proof of Theorem 4.17 in

fact implies that every partition indestructible by countable product of Sacks-forcing is already

indestructible by any countably supported product or iteration of Sacks-forcing. This shows that

also the partition forced by Newelski in [15] is indestructible by countably supported iterations

of Sacks-forcing. A complete argument is contained in the author’s follow-up paper [6].

5. The consistency of d < aT = a

In all our models that we considered so far we have that d = aT. In this section we prove

that consistently µ = d < aT = λ can hold for various values above a measurable cardinal. In

[16] Shelah introduced template iterations to prove the consistency of d < a; see also [1] for

an insightful exposition of Shelah’s results. Shelah first proved that one can iterate templates

canonically by taking ultrapowers and use an “average of names”-argument to obtain the con-

sistency of κ < d < a = c above a measurable cardinal κ. We will prove that in this model we

also have that aT = c by a similar “average of names”-argument. Notably, Shelah constructed

a second template iteration, so that a more involved “isomorphism of names”-argument yields

a model of ℵ2 ≤ d < aT without the use of a measurable cardinal. Even though these results

finally solved the consistency of d < a these technique cannot be used to settle the consistency

of d = ℵ1 < a = ℵ2.
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Throughout this section fix a measurable cardinal κ and a <κ-complete ultrafilter U on κ.

First, we briefly restate the basic definitions and properties of the ultrapower forcing given in

[16]:

Definition 5.1. Let P be a forcing. The ultrapower forcing of P by U is defined as the set of all

equivalence classes

Pκ/U = {[f ]U | f : κ → P}
where [f ]U = [g]U iff {α < κ | f(α) = g(α)} ∈ U . Usually, we will drop the subscript U . Further-
more, we order Pκ/U by [f ]U ≤ [g]U iff {α < κ | f(α) ≤ g(κ)} ∈ U . It is easy to see that this

defines a partial order. Furthermore, we have an embedding P → Pκ/U of partial orders, where

p ∈ P is mapped to the equivalence class of the constant map fp, i.e. fp(α) = p for all α ∈ κ.

Hence, we may identify p with [fp].

Lemma 5.2. Let P be a forcing. Then the following statements hold:

(1) P<◦Pκ/U iff P is κ-cc.

(2) If µ < κ and P is µ-cc, then also Pκ/U is µ-cc.

Proof. See [1]. □

From now on fix a c.c.c. forcing P, so that both items of the previous lemma apply. Analogous

to the average of P-names of reals in [1] we consider the average of P-names of finitely splitting

trees. Let A(P) be the set of all maximal antichains in P.

Definition 5.3. The pair (A, T•), where T• = ⟨Tn : n ∈ ω⟩, is a nice P-name for a finitely

splitting tree iff A : ω → A(P) and for every n < ω we have that Tn : A(n) → P(ω≤n) such that

(1) For all n < ω and p ∈ A(n) we have that Tn(p) is a finitely splitting n-tree.

(2) For all n < m and p ∈ A(n), q ∈ A(m) with p || q we have that Tm(q) ∩ ω≤n = Tn(p).

Given any P-name Ṫ for a finitely splitting tree, for every n < ω we may choose an antichain

A(n) such that every element p ∈ A(n) decides Ṫ ↾n as Tn(p). It is easy to see that then the

second item is also satisfied by these choices, so we have defined a nice P-name (A, T•) for a

finitely splitting tree. But from (A, T•) we can define a P-name Ṡ for a finitely splitting tree by

Ṡ = {(š, p) | there is an n < ω such that p ∈ A(n) and s ∈ Tn(p)}

It is easy to see that P ⊩ “Ṫ = Ṡ”, so we in fact showed that Ṫ can be represented by a nice

P-name for a finitely splitting tree. Hence, in the following we may only consider nice names

for finitely splitting trees. Using this, we want to understand how nice Pκ/U-names for finitely

splitting trees can be constructed from nice P-names for finitely splitting trees and vice versa.

For α < κ let (Aα, Tα
• ) be nice P-names for finitely splitting trees. Fix α < κ and for n < ω

enumerate Aα(n) = {pαn,i | i < ω}. For fixed n, i < ω consider [pn,i] = ⟨pαn,i | α < κ⟩/U ∈ Pκ/U
and Tn,i = [Tn,i] = ⟨Tα

n (p
α
n,i) | α < κ⟩/U ∈ (P(ω≤n))κ/U = P(ω≤n). By countable completeness

of U we get that A(n) = {[pn,i] | i < ω} is a maximal antichain for all n < ω. Set Tn([pn,i]) = Tn,i.

We claim that (A, T•) is a nice Pκ/U-name for a finitely splitting tree, which we call the average

of (Aα, Tα
• ).
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But (1) follows from the fact that Tα
n (p

α
n,i) is a finitely splitting tree for all α < κ and n, i < ω.

For item (2) let n < m and assume [pn,i] ||[pm,j ] for some i, j < ω. But then

{α < κ | pαn,i || pαm,j} ∩ {α < κ | Tn,i = Tα
n (p

α
n,i)} ∩ {α < κ | Tm,j = Tα

m(pαm,j)} ∈ U

so choose such an α < κ. Then we have that

Tm([pm,j ]) = Tm,j = Tα
m(pαm,j) and Tn([pn,i]) = Tn,i = Tα

n (p
α
n,i)

which implies Tm([pm,j ]) ∩ ω≤n = Tα
m(pαm,j) ∩ ω≤n = Tα

n (p
α
n,i) = Tn([pn,i]), since pαn,i || pαm,j .

Conversely, assume we have a nice Pκ/U-name (A, T•) for a finitely splitting tree. For n < ω

enumerate A(n) = {[pn,i] | i < ω}. Note that by countable completeness of U

D = {α < κ | {pαn,i | i < ω} is a maximal antichain for all n < ω} ∈ U .

Thus, by modifying the pαn,i on a small set with respect to the ultrafilter U we may also assume

Aα(n) = {pαn,i | i < ω} is a maximal antichain for all n < ω and α < κ. But then, defining

Tα
n (p

α
n,i) = Tn([pn,i]) yields a nice P-name (Aα, Tα

• ) for a finitely splitting tree for all α < κ.

Lemma 5.4. Assume Ṫ is a P-name for an a.d.f.s. family of size λ ≥ κ. Then

⊩ Pκ/U Ṫ is not a maximal a.d.f.s. family.

Proof. Choose P-names for finitely splitting trees Ṫα such that

⊩ P Ṫ = {Ṫα | α < λ}

For α < κ choose nice names (Aα, Tα
• ) for Ṫ

α and enumerate Aα(n) = {pαn,i | i < ω}. The average
(A, T•) of ⟨(Aα, Tα

• ) | α < κ⟩ defined as in the previous remark is a nice Pκ/U-name for a finitely

splitting tree. Let Ṫ be the Pκ/U-name for (A, T•). We claim that

⊩ Pκ/U Ṫ is almost disjoint from Ṫ

so let β < λ. For all α < κ with α ̸= β there is a maximal antichain {qαi | i < ω} and {nα
i | i < ω}

such that

qαi ⊩ P Ṫ
α ∩ Ṫ β ⊆ ω≤nα

i

Consider [qi] = ⟨qαi | α < κ⟩/U ∈ Pκ/U and ni = [ni] = ⟨nα
i | α < κ⟩/U ∈ ωκ/U = ω. Again, by

countable completeness of U we have that {[qi] | i < ω} is a maximal antichain. We prove that

for every i < ω we have

[qi] ⊩ Pκ/U Ṫ β ∩ Ṫ ⊆ ω≤ni

Assume not. Then there are i < ω, l > ni, s ∈ ω≤l \ ω≤ni and [r] ≤ [qi] such that

[r] ⊩ Pκ/U s ∈ Ṫ β ∩ Ṫ

By possibly extending [r] we may assume that there is a j < ω such that [r]≤[pl,j ] and also

s ∈ Tl([pl,j ]). Furthermore, let [r] = ⟨rα | α < κ⟩/U . Then we have

{α < κ | rα≤ pαl,j , r
α≤ qαi , T

α
l (p

α
l,j) = Tl([pl,j ]), n

α
i = ni and rα ⊩ P s ∈ Ṫ β} ∈ U

so choose such an α < κ. Then since rα≤ pαl,j , T
α
l (p

α
l,j) = Tl([pl,j ]) and s ∈ Tl([pl,j ]) we have that

rα ⊩ P s ∈ Ṫα ∩ Ṫ β
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but also

qαi ⊩ P Ṫ
α ∩ Ṫ β ⊆ ωnα

i

which is a contradiction, since rα≤ qαi and s ∈ ω≤l \ ω≤ni , but ni = nα
i . □

Thus, we can extend the result in [16] to aT as well:

Theorem 5.5. Assume κ is measurable and κ < µ < λ, λ = λω are regular cardinals such that

νκ < λ for all ν < λ. Then there is a forcing extension satisfying b = d = µ and a = aT = c = λ.

Proof. This holds in Shelah’s template iteration for iterating ultrapowers. There are no maximal

a.d.f.s. families of size <µ as d ≤ aT. Furthermore, the proof that there are no maximal a.d.f.s.

families of size ξ ∈ [µ, λ) works completely analogous as the proof of Theorem 2.3 in [1] where

the use of Lemma 0.3 is replaced with the previous lemma. □
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dent families. The Journal of Symbolic Logic, 88(4):1590–1612, 2023.

[5] V. Fischer and D. C. Montoya. Ideals of independence. Archive for Mathematical Logic,

58:767–785, 2019.

[6] V. Fischer and L. Schembecker. Universally Sacks-indestructible combinatorial families of

reals. arXiv preprint, arXiv:2312.10000, 2023.

[7] V. Fischer and D. Schrittesser. A Sacks indestructible co-analytic maximal eventually dif-

ferent family. Fund. Math., 252:179–201, 2021.

[8] V. Fischer and S. Shelah. The spectrum of independence. Archive for Mathematical Logic,

58, 2019.

[9] D. H. Fremlin and S. Shelah. On partitions of the real line. Israel J. Math., 32(4):299–304,

1979.

[10] O. Guzmán, M. Hrušák, and O. Téllez. Restricted MAD families. J. Symbolic Logic, 85:149–

165, 2020.

[11] F. Hausdorff. Summen von ℵ1 Mengen. Fund. Math., 26:241–255, 1934.

[12] A. Kanamori. Perfect-set forcing for uncountable cardinals. Annals of Mathematical Logic,

19(1):97–114, 1980.

[13] A. S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156,

Springer-Verlag, New York, 1995.

[14] A. Miller. Covering 2ω with ω1 disjoint closed sets. Studies in Logic and the Foundations of

Mathematics, 101:415–421, 1980.



22 V. FISCHER AND L. SCHEMBECKER

[15] L. Newelski. On partitions of the real line into compact sets. J. Symbolic Logic,

52(2):353–359, 1987.

[16] S. Shelah. Two cardinal invariants of the continuum (d < a) and FS linearly ordered iterated

forcing. Acta Math., 192:187–223, 2004.

[17] O. Spinas. Partition numbers. Ann. Pure Appl. Logic, 90:243–262, 1997.

Institute of Mathematics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria

Email address: vera.fischer@univie.ac.at

Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany

Email address: lukas.schembecker@uni-hamburg.de


	1. Introduction
	2. Preliminaries
	3. Forcing the existence of maximal a.d.f.s. families
	4. A Sacks-indestructible maximal a.d.f.s. family
	5. The consistency of d< `3́9`42`"̇613A``45`47`"603AaT= a
	References

