MAD FAMILIES, SPLITTING FAMILIES, AND LARGE
CONTINUUM

JORG BRENDLE AND VERA FISCHER

ABSTRACT. Let k < X be regular uncountable cardinals. Using a finite
support iteration of ccc posets we obtain the consistency of b = a = k <
s = A. If u is a measurable cardinal and p < kK < A, then using similar
techniques we obtain the consistency of b =k < a =15 = A\.

1. INTRODUCTION

In the following we will study the bounding, splitting and almost disjoint-
ness numbers (for basic definitions and notation see [2]). Following standard
notation “w denotes the set of all functions from w to w, [w]|* denotes the
set of infinite subsets of w and <* denotes the eventual dominance order
on “w. That is for f,g in “w f <* ¢ if and only if there is n € w such
that for all i@ > n(f(i) < ¢(i)). A family B C “w is unbounded if there
is no single real which simultaneously dominates all elements of B. The
bounding number b is the minimal cardinality of an unbounded family. A
family A C [w]* is almost disjoint (a.d.) if any two distinct elements of
A have finite intersection. An almost disjoint family A is maximal, called
mazximal almost disjoint, if for every C' € [w]¥ there is A € A such that
|ANC| =w. The almost disjointness number a is the minimal cardinality
of a maximal almost disjoint family. It is well known that b < a (see [2]).
A family S C [w]¥ is splitting if for every A € [w]“ there is B € S such that
|AN B| = |AN B¢l = w. The splitting number s is the minimal cardinality
of a splitting family.

The bounding and the splitting numbers are independent. The consis-
tency of s < b was obtained in 1985 by J. Baumgartner and P. Dordal
(see [1]). The consistency of b < s was obtained in 1984 by S. Shelah
(see [9]) using a proper forcing notion of size continuum, which is almost
“w-bounding and adds a real not split by the ground model reals. There
is an increased interest in obtaining models in which ¢ > N3. In 1998 J.
Brendle obtained the consistency of b = k < a = k* using a finite support
iteration of ccc posets (see [5]). The consistency of b = k < 5 = kT was
obtained in [7] (see also [6]). In fact the forcing construction of the last two
models, can be combined and in an appropriate finite support iteration of
cce posets one obtains the consistency of b=k <a=s5=rx".
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In the present paper, we obtain the more general consistency results of
b=ua=~k<s =M\, for kK, A arbitrary regular uncountable cardinals (see
Theorem 17) and b = kK < s = a = X\ where Kk < \ are arbitrary regular
cardinals, above a measurable y (see Theorem 21). Both of the constructions
use the idea of matrix iteration introduced by A. Blass and S. Shelah in [3].

Notation: For an ultrafilter I/ on w, let M;; denote the associated Mathias
forcing (see [2]). That is My, is the poset of all (a, A) € [w]<¥ x U such that
max a < min A with extension relation defined as follows: (a1, A1) < (a2, A2)
if ag is an initial segment of ay, a;\az C Az and A; C Ay. The Hechler
forcing D (see [2]) consists of all (s, f) € <“w x “w with extension relation
defined as follows: (s1, f1) < (s2, f2) if so is an initial segment of si, for all
i € dom(sy)\dom(s2), s1(2) > fa(i) and for all i € w fa(i) < f1(i). For p a
measurable cardinal and D a p-complete ultrafilter on p, let P#/D denote
the ultrapower of P (see [4]), where P is a given poset. Ultrapowers of posets
were introduced by S. Shelah in [10].

2. ADDING A MAD FAMILY

Definition 1 (S. Hechler [8]). For vy an ordinal, P., is the poset of all finite
partial functions p : Y xw — 2 such that dom(p) = F, xn, where F, € [y]<¥,
ny € w. The order is given by g < p if p C q and |¢ (1) N FP x {i}| <1 for
all i € ng\ny .

P, is ccc. If G is P,-generic, then the family A, = {A, : @ < 7}, where
Ay = {i : 3p € Gp(a,i) = 1} is almost disjoint and for v > w; maximal
almost disjoint (see [8]). This product like forcing decomposes as a two-step
iteration as follows. Let v < 4, G a Py-generic filter. In V[G], let P, 5) be
the poset of all pairs (p, H) such that p : (6§\y) X w — 2 is a finite partial
function with dom(p) = F, x n,, where F, € [6\7]<¥, np € w and H € [y]<¥.
The order is given by (¢, K) < (p, H) if ¢ <p, p, H C K and for all « € F,,
B e H,ieng\nyif i € Ag, then ¢(a,i) = 0. Observe that P5 = P * IP’[W;),
i.e. Ps5 is forcing equivalent to the two step iteration of P, and I.P’[W;).

Definition 2. Let M C N be models of set theory, B = {Ba}a<y € MN[w]®,
Ae NNw]“. Then (*g;{v) holds if for every h: wx [y|<¥ — w, h € M and
m € w there are n > m, F € [y]< such that [n,h(n, F))\U,ep Ba € A.

Lemma 3. Let (*g/{jv) hold, B = {Bqa}a<~, let Z(B) be the ideal generated
by B and the finite sets and let B € MN[w]¥, B ¢ Z(B). Then |ANB| = Rg.

Proof. Otherwise AN B C n for some n € w. Let m > n, F € [y]<¥. Since
B ¢1I(B), BZ* Jyep Ba and so there is ky, p € B\ |J,cp Ba greater than
m. Define h(m, F) = ky, p+1for allm > n, F € [y]|<¥ and h|n x [y]<¥ = 0.
Then h is a function in M such that [m, h(m, F))\ U,cp Ba € A for all

m > n, F € [y]<¥, contradicting (*%ZV). O

The sets A, added by the forcing P, satisfy the above property in the
following sense:

Lemma 4. Let G11 be Pyyi-generic, Gy, = Gy NPy and Ay = {Ax o<y,
where A = {i: Ip € Gy11p(a,i) =1}, a <. Then (*X[WCZL’V[G”“]) holds.
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Proof. Let h € V[G,], h : w x [{]*¥ — w, (p,H) € Py q1), m € w.
Then dom(p) = {7} x n, where n, € w. Define an extension (¢, K) of
(p, H) in Py 41y as follows. Let n > max{m,np}, ny, = h(n,H). Let

dom(q) = {7} X ng, K = H, q[{v} xnp = p, q[{7} x [np,n) = 0 and for
i € [n,ng) let q(7,4) = 1 if and only if i & |J,cpr Ao Then (¢, K) < (p, H)
and (¢, K) IF [n, h(n, H)\ Upen Aa € A,. 0

3. COMBINATORICS AND PRESERVATION

In addition to (*g’év), we consider one more combinatorial property which
will be crucial for the second consistency result to be established, and sys-
temize some preservation theorems for both of these properties.

Definition 5. If M C N are models of set theory, ¢ € N N [w]¥ such that
forall f € MN[w]¥, NEc<L*f, we will say that (xM, N, c) holds.

The following lemma can be found in [3].

Lemma 6 (A. Blass, S. Shelah, [3]). Let M C N be models of set theory,
U an ultrafilter in M, ¢ € w* NN such that (xM, N, c) holds. Then there is
an ultrafilter YV 2 U in N such that:

(1) every maximal antichain of My which belongs to M is a maximal
antichain of My, in N,
(2) (*M[G], N|G], c) holds where G is My-generic over N (and thus, by
(1), My,-generic over M ).
In analogy, we obtain the following.

Crucial Lemma 7. Let M C N be models of set theory, B = {Ba}a<y C
MNw¥, Ae NnNwl such that (*%;{V) holds. Let U be an ultrafilter in
M. Then there is an ultrafilter V D U in N such that
(1) every maximal antichain of My which belongs to M is a maximal
antichain of My, in N,
M[G],N[C] . .
(2) (%p.a ) holds where G is My-generic over N (and thus, by (1),
My, -generic over M ).

Proof. Work in N. Let C C My, C € M, be a maximal antichain, and let
s € [w]<¥. We say X is forbidden by C,s if (s, X) is incompatible with all
conditions from C. ) )

Given an My-name h : w x [7]<* — w, h € M, there are (in M) maximal
antichains DZ’ r © My, and functions QZ, F DZ’ r — w such that p forces
that h(n, F) = ggF(p) for all p € DZF. Say Y is forbidden by h,t if, for
all n and all F, (¢,Y) is incompatible with all conditions p € DZ  Which
satisfy [n,gZ,F(p)) \ Uncr Ba € A. (This means that (¢,Y) forces that
[, 1(n, F)) \ Uper Ba € A for all n, F.)

Let Z be the ideal generated by all forbidden sets.

Main Claim 8. ZNU = ()

Once the main claim in proved, we construct ¥V O U such that VNZ = 0.
Then (1) and (2) easily hold.
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Proof. By contradiction. Assume there are forbidden sets
X0y ooy Xp—1, Y0, ey Vi1
with witnesses
Co, 50, s Clom1, Sk—1, 10, 0y ooy Pl 1, i1

such that Z := J,_, Xi U, Yi € U (in M).

For ¢t € [w]<¥ and (s, X) € My, say (s, X) permits t if s Ct C sUX. If
C C My, say C permits t if there is p € C' which permits t. Note that p is
compatible with (¢,Y) iff there is u C Y such that p permits ¢ U u.

Subclaim 9. There is h : w x [y|<¥ — w, h € M, with h(n,F) > n, such
that whenever we partition Z N [n, h(n, F')) into 2k pieces, then at least one
piece s has the following property:

e for all i < k there is t C s such that C; permits si Ut,

e for all 1 < k there is t C s such that some p € DZ"F with gZiF(p) <
h(n, F') permits t; Ut.

Proof. The subclaim only mentions objects from M, and is clearly absolute.
Therefore we may prove it in M.

Assume the subclaim was false for some n and F. Consider Z \ n. By a
compactness argument (equivalently, by Kénig’s Lemma) we could partition
Z \ n into 2k pieces none of which satisfies the conclusion of the subclaim.
One of the 2k pieces, say W, must belong to Y. Since C; is a maximal
antichain, there is p € C; such that p and (s;, W) are compatible. Thus

there is t C W such that p permits s; Ut. Similarly, there are p € DZiF and
t C W such that p permits t; Ut. If we choose h(n, F') large enough, s =

WnNin, h(n, F)) has the required properties, contradictory to our assumption
about n and F'. O

We continue the proof of the main claim. Fix n and F. Consider the
partition given by {X; N [n,h(n, F')),Y; N [n,h(n, F)) : i < k}. Consider
a piece X; N [n,h(n, F)). Since (s;, X;) is incompatible with all conditions
from Cj, there isno t C X;N[n, h(n, F')) such that C; permits s; Ut. So X; N
[n, h(n, F')) is not as in the subclaim. Hence one piece s = Y; N [n, h(n, F))
satisfies the conclusion of the subclaim. Thus there are t C'Y; N [n, h(n, F'))
and p € DZiF with gZiF (p) < h(n, F) such that p permits ¢;Ut. In particular
p is compatible with (¢;,Y;). On the other hand, (¢;,Y;) is incompatible with
all g € DZ?F which satisfy [n,gZ’F(q)) \ Uaer Ba € A. Thus [n,gle(p)) \
Uaer Ba € A, and [n,h(n, F)) \ Uyep Ba € A follows. Unfixing n and F,
we see this holds for all n and F'. This contradicts (*gjv), and the proof of
the main claim and the crucial lemma is complete. O

O

Lemma 10. Let <Pgm,(@gm :n < (), L €{0,1} be finite support iterations
such that Py, is a complete suborder of Py, for allmn < (. Then Py is a
complete suborder of Py ¢.
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Proof. 1t is clear that Py - C IP ¢ and that incompatibility is preserved. Let
p € Py¢. Since Py is finite support iteration, there is n < ¢ such that
p € P1,. However Py <o Py, and so there is ¢ € Py, which is a reduction
of p (in Pyp,). Then g is also a reduction of p in Py¢. Indeed, let r < g,
r € Po¢. Then r = ro Ury where 79 € Py, and suppt(r1) C [,{). Then
ro < ¢ and since ¢ is a reduction of p in Py, there is 7o € Py, which is a
common extension of p and ryg. Then 79 U7 is a common extension of r and
p. Thus ¢ is a reduction of p in Py . O

Lemma 11. Let M C N be models of set theory, P € M a poset such that
P C M, G aP-generic filter over M (and so P-generic over N ).

(1) Let B={Ba}taey € MN[w]*, A€ NN [w]* such that (xz ) holds.

Then (*%L‘G]’N[G]) holds.

(2) Let c € N N“w such that (xM, N,c). Then (xM[G], N[G],c) holds.

Proof. We give a proof only of (1), since part (2) is proved similarly. If (1)
does not hold, then there are h € M[G], h : w x [y]<*¥ — w and m € w such
that for all n > m, F € [7]<¥, N[G] F [n,h(n, F))\ Upcr Ba € A. Then

there are a P-name h for h in M, p € G and m € w such that

p ke VR = mVF € W]=([n, h(n, )\ | ] Ba Z A).
acF

However for all n > m, F € [y]<“ there are p, p < p (in M) and k, p € w
such that p, p IFpp h(n, F) = ky p. Then

P IENp [, knp)\ U B, Z A
a€F

and so N F [0,k r)\Upep Ba € A. In M define hy : w x [y]<¥ — w as
follows. Let holm X [y]<¥ = 0 and for all n > m, F € [y]<¥ let ho(n, F) =
kn.r. Then hg gives a contradiction to (*Jl‘gl;iv) O

Lemma 12. Let <]P)g7n,Qg’n :n € w), L €{0,1} be finite support iterations
such that Po ,, is a complete suborder of P1,, for alln. Let V,,, = VPen,

(1) Let B = {Ay}yca C Voo N[w]¥, A€ Vign[wl®. If (k55 ™"") holds

for alln € w, then s 0 VL9 ol ds,
B,A

(2) Let ¢ € VipN“w. If (xVou, Vipn,c) holds for all n € w, then
(*Vow, Viw,€) holds.

Proof. We will give a proof of (1). The proof of (2) is analogous. Thus
suppose the claim of (1) does not hold and let h : w X [a|<¥ — w be a
function in Vp,, such that for some m € w, for all n > m, F € [a]<¥,

Viw B [n,h(n, F)\U,cp Ay € A. Then there are a Py -name h, p € Py,
such that p IF [k, h(k, F))\U,cp Ay € A for all k > m, F € [o]<“. Since
p has finite support, there is n € w such that p € P1,. Let Gy, be a
IP; ,-generic filter containing p and let h' = h/ Gon be the quotient name,
where Go,, = Gi1, N Py,. Let Rﬁhw be the quotient poset Py, /Gy, in
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Vin = V|Gey). Then ' € Vy,, and for all k > m, F € [a]<¥

Voa Flbe [k B (K, F)\ ] 4, € A
’ yeF
Then for all & > m, F € [o]<¥ find pyp € Rnw and zj p € w such that
per IF B (k,F) =z p and define ho(k, F) = zp p. Let holm x [a]<¥ = 0.
Then hg € Vo, and [k, ho(k, F))\U,ep Ay £ A for all k > m, F € [a]<*

contradicting (*ZO A ", ™). O

The following Lemma is well-known and often used.

Lemma 13. Let P,Q be partial orders, such that P is completely embedded
into Q. Let A be a P-name for a forcing notion, B a Q-name for a forcing
notion such that I-g A CB, and every maximal antichain ofA in VP is a
mazimal antichain 0fIB3 in VQ. Then P« A<o Q * B.

Proof. Tt is sufficient to show that every maximal antichain of P« A is a
maximal antichain of Q * B. Thus let {(pa,ds) : @ < K} be a maximal
antichain of P % A. Suppose it is not maximal in Q * B and let (¢,b) be a
condition in Q % B which is incompatible with all (pq, aa) for a < k. Let H
be the canonical P-name for the P-generic filter and let Q) be a P-name such
that |- Q = {a : p, € H}.

Claim. I+ “{aq : o € Q} is a mazimal antichain of A”.

Proof. Suppose not. Then, there are p € P and a P-name a such that
p IF Va(a € Q — ala,). Then (p,a) € Px A and so there is o < &
such that (p,a) £ (pa,aq). Let (p',d’) be a common extension. Then
P Ik (@ < aand ¢ < an), and since p' < pa, P IF a € Q. That is,
Pk (ae Qand ¢/ < a,d < 4,) which is a contradiction. O

Let G be Q-generic filter such that g € G. Then since P<o Q, there is a
P-generic filter H such that V[H] C V[G]. Now let b = b[G], an = 4a[G] =
ao[H] (for a such that p, € H) and let Q = Q[G] = {a < k : po € H}. By
the above claim {a, : @ € Q} is a maximal antichain in A (in V[G]) and so
by the hypothesis of the Lemma, it is a maximal antichain of B (in V[G]).
So there is a € Q such that b = b[G] is compatible with a, = ao[H]. So
there is ¢ € G such that ¢ < pa, ¢ <qandq I+ (aeQandblaQ)
Thus there is a Q-name b’ such that ¢’ IF “b < b, ¥ < a,” and so (¢, V') is
a common extension of (¢,b) and (pa, aa), which is a contradiction. O

4. THE CONSISTENCY OF b=a=kx <5 =\

Let f:{n < X:n=1mod 2} — k be an onto mapping, such that for all
a < Kk, f~1(a) is cofinal in A. Recursively define a system of finite support
iterations ((Pa¢ : @ < k,¢ < A), (Qac : a < K,¢ < A)) as follows. For all
a,C let Voo = VPec, We refer to such systems as matrix iterations. Note
that this type of iterations appeared for the first time in [3].

(1) If ¢ = 0, then for all & < k, P, o is Hechler’s poset (see Definition 1) for
adding an a.d. family A, = {A5}5<a (note that for o > wy, A, is mad in

Va0)-
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(2)If¢=n+1,¢=1mod 2, then IFp, Qan = M, o where Uan is a
Py ,-name for an ultrafilter and for all o < 8 < &, Il—pﬁ Zx[anCZ/{5n
YIf¢=n+1,(=0mod 2, then if a« < f(n ),QW7 is a P, ,-name for the

(3
trivial forcing notion; if o > f(n) then Qa, is a Py ,-name for DYs(mn,

(4) If ¢ is a limit, then for all o < k, P, ¢ is the finite support iteration of
(P

r]a@a,n < C)
Furthermore the construction will satisfy the following two properties:

(a) V¢ < XVa < B < K, Py is a complete suborder of Pg ¢.
(b) Y < WWa < & (%4750 "1€) holds.

Proceed by recursion on (. For ¢ = 0, a < w let P, be the poset
from Definition 1. Then by the product property of P,o and Lemma 4
respectively, properties (a) and (b) above hold. Let ( = n+ 1 be a successor
ordinal and suppose Va < &, P, has been defined so that properties (a)
and (b) above hold.

If ( =1 mod 2 define Qa,n by induction on a < k as follows. If o = 0,

let L'{om be a Py ,-name for an ultrafilter, Qo,n a P ,-name for MZJO . and
let Po . = Pogy * Qo,n- If a = 0+ 1 and uﬁm has been defined, by the
inductive hypothesis and Lemma 7 there is a P, ,-name U, , for an ultrafilter
such that IFp,  Ug, C Uay, every maximal antichain of Muﬁw in Vg, is a
and (x4 V’“ Vﬁ“ ) holds, where Vg1 = VFec,

Poc =Py n*@a n and Qa nisalP, n—name for M . Note that by Lemma 13
P =Pgy+M,;;, is a complete suborder of IP’a C If a s a limit ordinal and

maximal antichain of M~
a,m

for all 8 < « uﬁm has been defined (and so ng is a Pg,-name for M, o

Pgc = Pgy * ng), consider the following two cases. If cf(a) = w, ﬁnd a
P, ,-name L'{W] for an ultrafilter such that for all 8 < «, IFp, I/Iﬁn C Llan
and every maximal antichain of MUﬁ,n from Vg, is a maximal antichain of
My, , (in Vi) (for the construction of such an ultrafilter in VFon see [3],

p. 266). If cf(a) > w, then let U, be a Pmn—name for U< Upn- Let Qay
be a Pq ,-name for M, o and let P ¢ = Py * Qam. Again by Lemma 13
for all 8 < a Pggis a complete suborder of Pa<

If ( = 0 mod 2, then for all a < f(n) let Qa,n be a P, ,-name for the
trivial poset and for a > f(n) let Qam be a P, ,-name for DVrma. Let
Po ¢ = Poy* Qa,n. If o« <8< f(n), then Py ¢ = Py y, Pg ¢ = Py, and so by
the inductive hypothesis P, ¢ is a complete suborder of Pg¢. If a < f(n) <
B, then P = P, and Py <o Pg, <o Pg, * Qg,. Thus P, <o Pg.. If
f(n) < a < B, then again by Lemma 13 P, <o Pg.. Furthermore by
Lemma 11.(1) (*}1‘1’%‘2‘”1’4) holds for all a < k.

If ¢ is a limit and for all n < ¢, Py y, Qa,n have been defined, let P, ¢ be
the finite support iteration of <Pa,mQam : 1 < (). By Lemma 10 P, ¢ is a
complete suborder of Pz ¢ and by Lemma 12.(1) (*Z‘Z’%‘:““’C) holds.
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Remark 14. For alla < <k, ( <n < APy <o Pg,.

Lemma 15. For ¢ < A:
(1) for every p € Py ¢ there is o < K such that p belongs to Py ¢,

(2) for every Py c-name for a real f there is o < k such that f is a
Py c-name.

Proof. The proof follows just as in the last Lemma of [3], p. 270. For
completeness we will give a proof as well. We will prove (1) and (2) simul-
taneously by induction on ¢. Note that by the ccc property of P, and the
fact that x is regular, uncountable, it is clear that (2) follows immediately
from (1). If ¢ = 0 the claim follows from the product property of P, o. If ¢
is a limit, p € P, ¢ then since p has a finite support, there is 7 < ¢ such that
p € Pyy. By inductive hypothesis there is o < 1 such that p € P, ; and so
in particular p € P ¢. Let ¢ =+ 1 be a successor. Then p € Py ¢ is of
the form (po, p1) where pg € Py, and IFp, , p1 € @W. If { = 1 mod 2 then
p1 is of the form (a, A) where e, A €Uy, ac€ W< If ¢ =0mod 2,
then p; is of the form (s,f) where f is a Py ,-name for a real, s € “Yw
or pp is trivial. In either of the above cases, the inductive hypothesis for
(2) implies that there is a1 < & such that p; is a Py, ,-name. Again the
inductive hypothesis for (1) implies that py € Pq, ., for some ag < k. Then
p = (po, 1) belongs to P, , where o = max{ap, o1}. O

Lemma 16. V, ,Fb=a=xr <s=A.

Proof. The family {Ag}aer remains a maximal almost disjoint family in
Via- Indeed, otherwise there is a set B € V, y N [w]¥ such that Va <
k(|B N Ay < w). By Lemma 15 there is o < & such that B € V,, \ N [w]*.
However B ¢ I(As). On the other hand (x4 >""*) holds, and so by
Lemma 3 |B N Aq+1| = w which is a contradiction. Therefore a < k.

Let B C V;x N“w be of cardinality < x. Then by Lemma 15 there are
a < K, ¢ < Asuch that B C V,¢. Since {7 : f(y) = a} is cofinal in A,
there is ¢' > ¢ such that f(¢{’) = a. Then Pyq 741 adds a real dominating
Voo N“w (and so Vi, ¢ N*w since Vi, ¢ C V7). Thus B is not unbounded.
Therefore Vj, x |- b > . However b < a (see [2]) and so Vi IFb=a=&.

To see that Vi n F s = A, note that if § C V, y N [w]* is a family of
cardinality < A, then there is ¢ < A such that ( = n+ 1, ( = 1 mod 2
and S C V,,. Then Muﬁ’n adds a real not split by S and so S is not
splitting. U

Theorem 17. Let Kk < A be arbitrary reqular uncountable cardinals. Then
there is a ccc gemeric extension in whichb=a=k <s = \.

5. THE CONSISTENCY OF Kk = b < s =a =)\ ABOVE A MEASURABLE

Let i be a measurable cardinal, D a pu-complete ultrafilter on p. Let £ < A
be regular such that p < k. For notation regarding ultrapowers of posets
and names, see [4] and [10]. In the Lemma below we show that (xM, N, c)
is preserved under ultrapowers.

Lemma 18. Let P<o Q, ¢ € V@ such that for all f € VE N“w, Ikp ¢ £* f.
Let @ = Q*/D, P =P*/D, f € V' N“w. Then kg ¢ £* f.
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Proof. Suppose not. Thus there is a I’ name for a real f and [¢] € Q
such that for some k € w, for all i > k, [¢] I ¢(i) < f(i). Note that f
is determined by maximal antichains {[py i]}n,icw and {k, i}nicw € w such
that for all n,i [pn] IFp f(i) = kn,. Furthermore we can assume (see [4])
that for all & € p there are maximal antichains {pgﬂ-}n,ieu in P, such that
[Pl = (P : @ < p)/D, and a P-name for a real f* such that Pni IFp
f%(i) = kni. By elementarity, A = {a : g(a) IFg é(i) < f*(i)} is in D, and
so in particular A is non-empty. Here we identify ¢ with its ultrapower. Let
a € A. Then f® is a P-name and for all i > k, g(a) I-g é¢(i) < f*(i), which
is a contradiction. O

Let f:{n < AX:n=1mod 3} — k be an onto mapping such that
for all @ < K, f~!(a) is cofinal in A. Similarly to the construction from
the previous section, recursively define a system of finite support iterations
((Poe:a <k, ¢ <A, (Qac: <k, <N) so that properties (1) — (5), as
well as (a) — (b) below hold. For all o, ¢ let V¢ = VFec,

(1) If ¢ = 0, then for all a < &, let Py o be the forcing notion for adding «
many Cohen reals, {cy}y<a- ‘
2)If¢=n+1,¢=1mod 3, then IFp, Qan—M o where Uy 5 is a
Py p-name for an ultrafilter and for all a < 8 < &, Il—pﬁ U an © L{g n-

(3) If ¢ =n+1, ¢ =2mod 3, then if a < f(n), Q. is a Py -name for the
trivial forcing notions; if a > f(1) then Q. is a Py -name for DVrenn.

(4) If ( =n+1, ¢ =0 mod 3, then for every a < k let Qam be a P, ,-name
for the quotient poset of ((Pa,,)*)/D and Pg,,.

(5) If ¢ is a limit, P, ¢ is the finite support iteration of (Pq,, Qam in < ().

Furthermore the construction will satisfy the following two properties:

(a) V¢ < AVa < B < K, Py is a complete suborder of Pg ¢.
(b) V¢ < AVa < & (xVa ¢, Vagi,¢, Cat1) holds.

Proceed by induction on ¢. If ¢ = 0, then for all a < & let P, o be the
forcing notion for adding o many Cohen reals, {cy}y<o. The properties
of Cohen forcing imply that (a) and (b) above hold. Let ( = n+ 1 be a
successor ordinal and suppose that for all @ < &, P, has been defined so
that the relevant properties (a) and (b) above hold.

If { =1 mod 3 define Qa,n by induction on o < k as follows. If a = 0
let L'{Q77 be a Py ,-name for an ultrafilter, Qo,n a [P ,-name for M%m and let

Po ¢ = Po,y * Qo,n- If a =341 and Z/'lgm has been defined, by the inductive
hypothesis and Lemma 6 there is a P, ;-name U, , for an ultrafilter such that
IFp,,.,, Usy S Uay, every maximal antichain of Mu,a,n in Vg, is a maximal

antichain of My —and (*Vs.¢, V1., c+1) holds, where Viyq o = VEac,

Poc = Pqoy * Qa . and Qa . 18 a Py p-name for M . By Lemma 13 Pg ¢ =
Pg, x My, Us is a complete suborder of Py, ¢. If o is a lzmzt ordinal and for all
5N

0 < a, aﬂm has been defined, proceed as in the limit case for «, ¢ successor,
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odd ordinal, in the construction of the system of finite support iterations
from the previous section.

If ( = 2 mod 3 then for all « < f(n) let QW] be a P, ,-name for the
trivial poset and for a > f(n) let @am be a P, ,-name for DYsn. Let
Poc = Pay * Qam. Property (a) can be established for ¢ and a < k just
as in the successor, even case in the construction from the previous section.
The inductive hypothesis and Lemma 11.(2) imply that for ¢ and a < &,
property (b) holds as well.

If { = 0 mod 3 then for all a < k let Qam be a P, ,-name for the
quotient poset of (Ph,)/D and Py ,. Let Py = Poy * ro,n- Then by the
inductive hypothesis and Lemma 5 of [4] for all « < 8 < k P, ¢ is a complete
suborder of Pg . By the inductive hypothesis and Lemma 18 for all o < &
(*Va,g, Va+1’<, Ca+1) holds. )

If ¢ is a limit and for all n < ¢, P, and Q,, have been defined, then
let P, ¢ be the finite support iteration of (Pq ), Qam :n < ¢). By Lemma 10
for all @ < B8 < Kk Py ¢ is a complete suborder of Pg ¢ and by Lemma 12.(2)
(*Va¢, Vat1,¢, Cat1) holds for all o < k.

Lemma 19. For { < A:
(1) for every p € Py ¢ there is o < Kk such that p belongs to Py ¢,

(2) for every Py c-name for a real f there is a < Kk such that f s a
Py c-name.

Proof. If ( is a limit, proceed as in the limit case of Lemma 15. If { =n+1
is a successor and ¢ = 1 mod 3 or { = 2 mod 3 the proof follows as in the
successor case of Lemma 15. Let ( = 0 mod 3 and let p € (P, ,)*/D. Then
p=[fl = (f(v) : v < w)/D where f(vy) € Py, for v < p. By the inductive
hypothesis and x = cf(k) > p, there is a < & such that f(vy) € Pq,, for all
v < g and so p = [f] belongs to (Pan)*/D = Pq . O

Lemma 20. V, ,Fb=r<s=a= ),

Proof. Let f € Vix N“®w. Then there are ( < A, a@ < K such that f €
Va,e N “w. Since (x Vo Vagic Cas1) holds, Vi1 E car1 £F f and so
Vi E cay1 £° f. Therefore {cot1}a<k is unbounded in V, x. If B C
VierN“w is a family of reals of cardinality < &, then there are o < x, ¢ < A
such that B C V,¢. Since {7 : f(7) = a} is cofinal in A, there is ¢’ > { such
that f(¢') = a. Therefore (b = k)Vx2,

Since a > b, we have V,, \ F a > k. Let A C V)N [w]” be an almost
disjoint family of cardinality v where k < v < A. Then there is { < A such
that ( =n+1, ( =0mod 3 and A C V.. Then by Lemma 4 of [4], in V, ¢
there is a real which has a finite intersection with all elements of A and so
A is not maximal. Therefore (a = ¢ = \)"=x.

To see that (s = \)V=* note that if S C V. xN[w]?, |S| < A, then there is
(<A ¢=n+1,¢=1mod 3 such that S C V, ;. Then in V ¢ there is a
real which is not split by S (added by My, ,) and so S is not splitting. [

Thus we obtain the following theorem.

Theorem 21. Let p be a measurable cardinal, k < X\ regqular such that
u < k. Then there is a ccc generic extension in which b =rx <s=a= .
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6. COMMENTS AND QUESTIONS

The converse consistency K = s < b = a = X is well-known and standard.
However of interest remain the following questions:
(1) Is it relatively consistent that b < a < s?
(2) Is it relatively consistent that b < s < a?
(3) Is it relatively consistent that b < s = a without assuming a measurable?
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