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Abstract. We show that base matrices for P(ω)/fin of regular height larger
than h necessarily have maximal branches which are not cofinal. The same holds
for base matrices of height h if tSpoiler < h, where tSpoiler is a variant of t which
has been introduced in “Construction with opposition: cardinal invariants and
games” by Brendle, Hrušák and Torres-Pérez.

1. Introduction

A forcing P is δ-distributive if any system of δ many maximal antichains has a
common refinement. The distributivity of a forcing notion P, denoted by h(P), is
the least λ such that P is not λ-distributive. In particular, h(P(ω)/fin) is the classical
cardinal characteristic h. Note that h(P) is actually the least λ such that there is a
system of λ many refining maximal antichains without common refinement, which
gives rise to the following definition:

Definition 1.1. We say that A = {Aξ | ξ < λ} is a distributivity matrix for P of
height λ if

(1) Aξ is a maximal antichain in P, for each ξ < λ,
(2) Aη refines Aξ whenever η ≥ ξ, i.e., for each b ∈ Aη there exists a ∈ Aξ such

that b ≤ a, and
(3) there is no common refinement, i.e., there is no maximal antichain B which

refines every Aξ.

A special sort of distributivity matrices have been considered in the seminal
paper [BPS80] of Balcar, Pelant, and Simon, where h has been introduced:

Definition 1.2. A distributivity matrix {Aξ | ξ < λ} for P is a base matrix if
⋃
ξ<λ Aξ

is dense in P, i.e., for each p ∈ P there is ξ < λ and a ∈ Aξ such that a ≤ p.

In [BPS80], the famous base matrix theorem has been shown: there exists a
base matrix for P(ω)/fin of height h. A more general version for a wider class of
forcings has been given in [BDH15, Theorem 2.1].

Due to its refining structure, a distributivity matrix {Aξ | ξ < λ} can be viewed
as a tree, with level ξ being Aξ. Let us say that 〈aξ | ξ < δ〉 is a branch of the
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distributivity matrix {Aξ | ξ < λ} if aξ ∈ Aξ for each ξ < δ, and aη ≤ aξ for each
ξ ≤ η < δ. We say that the branch is maximal if there is no branch of {Aξ | ξ < λ}
strictly extending it. If δ = λ, the branch 〈aξ | ξ < δ〉 is called cofinal in {Aξ | ξ < λ}.

A tower for P is a decreasing sequence in P which does not have a lower bound
in P. The minimal length of a tower for P is denoted by t(P). It is well-known that
t(P) ≤ h(P) (see Observation 2.2). Note that each maximal branch of a distributivity
matrix for P which is not cofinal is a tower. So if there are no towers of length
strictly less than h(P), i.e., if t(P) = h(P), all maximal branches of a distributivity
matrix of height h(P) are cofinal.

The structure of base matrices for P(ω)/fin has been investigated in the litera-
ture. Dow showed that in the Mathias model, there exists a base matrix of height h
without cofinal branches (see [Dow89, Lemma 2.17]). It is actually consistent that
no base matrix of height h has cofinal branches. This was proved by Dordal by con-
structing a model in which h does not belong to the tower spectrum (see [Dor87]
or1 [Dor89, Corollary 2.6]), and has later been shown to hold true also in the Math-
ias model.

In [FKW], the authors of this paper have shown that consistently there exists
a distributivity matrix for P(ω)/fin of regular height larger than h in which all
maximal branches are cofinal.

In [Bre], Brendle has shown that if λ ≤ c is regular and greater or equal than the
splitting number s (or, alternatively, there exists no strictly ⊆∗-decreasing sequence
of length λ), then there exists a base matrix for P(ω)/fin of height λ. In particular,
there always exists a base matrix of height c provided that c is regular. He mentions
that in the Cohen and random models base matrices of height larger than h neces-
sarily have maximal branches which are not cofinal (in fact, there are no strictly
⊆∗-decreasing sequences of length larger than ω1).

We will show below that, in ZFC, any base matrix for P(ω)/fin of regular height
larger than h has maximal branches which are not cofinal.

2. Main Result

In Theorem 2.3 and Corollary 2.4, we give the connection between a variant of
the tower number t given in [BHTP19] and branches of base matrices. Let us first
introduce the relevant game (where P is an arbitrary forcing notion):

Definition 2.1. Let Gδ
t
(P) denote the tower game of length δ for P:

I a0 a1 . . . aµ aµ+1 . . .

II b0 b1 . . . bµ bµ+1 . . .

The players alternately pick conditions in P such that the resulting sequence is
decreasing, i.e., bi ≤ ai and a j ≤ bi for every i < j < δ. Player I starts the game
and plays at limits µ. If Player I cannot play at limits (because the sequence played
till then has no lower bound), the game ends and Player I wins immediately. If the

1Dordal’s original model (in which c = ω2) is presented in [Dor87], whereas [Dor89, Corol-
lary 2.6] is a more general result which also gives models satisfying h = c > ω2 (but is, interestingly
enough, easier to prove).
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game continuous for δ many steps, Player II wins if and only if there exists a b ∈ P
with b ≤ ai for every i < δ.

This game has been considered in [BHTP19], where tSpoiler is defined to be the
minimal δ such that Player II does not have a winning strategy in Gδ

t
(P(ω)/fin). It

is mentioned in [BHTP19] that t ≤ tSpoiler ≤ h. More generally, let tSpoiler(P) denote
the minimal δ such that Player II does not have a winning strategy in Gδ

t
(P). For

the convenience of the reader we give the proof of the following well-known fact:

Observation 2.2.
t(P) ≤ tSpoiler(P) ≤ h(P).

Proof. First note that t(P) ≤ tSpoiler(P) follows directly from the definition.
Now fix a distributivity matrix {Aα | α < h(P)} of height h(P). In particular

the conditions intersecting this matrix are not dense in P. Let a0 ∈ P such that no
intersecting condition is stronger than a0. Let us describe a winning strategy σ for
Player I. Let ≺ be a well-order of P. Let σ(〈〉) := a0. Assume Player II played bα
in the αth round of the game (for α < h(P)). Since Aα is a maximal antichain, there
exists a ∈ Aα which is compatible with bα. Let aα+1 be the ≺-minimal witness for
the compatibility and let σ(〈a0, b0, . . . , bα〉) := aα+1. At limits Player I picks the
≺-minimal lower bound of the sequence played so far, if there exists one.

If Player I follows the strategy σ, the game stops after at most h(P) many rounds
and Player I wins. Indeed, if there exists a run of the game of length h(P) where
Player I followed σ and has not won the game yet, then there exists a b ∈ P such
that b ≤ aα+1 for every α < h(P), which implies that b intersects the matrix and
b ≤ a0, a contradiction.

So Player I has a winning strategy in Gh(P)
t

(P), therefore Player II does not have
one and hence tSpoiler(P) ≤ h(P). �

Let us now state the main result and its consequences:

Theorem 2.3. Let A = {Aξ | ξ < λ} be a base matrix for P such that the length of
any of its maximal branches has cofinality at least ν. Then ν ≤ tSpoiler(P).

Proof. Fix a well-order ≺ on P. Let δ < ν. We will show that Player II has
a winning strategy in Gδ

t
(P), which we define as follows. Assume Player I has

played ai ∈ P. Then Player II picks the ≺-minimal bi ≤ ai with bi ∈
⋃
ξ<λ Aξ; this

is possible sinceA is a base matrix. For each µ ≤ δ, the following holds:

Claim. The sequence 〈bi | i < µ〉 has a lower bound.

Proof. We can assume that the sequence is not eventually constant. Moreover, we
can assume that it is strictly decreasing. It is easy to check that there is a strictly
increasing sequence 〈ξi | i < µ〉 ⊆ λ with bi ∈ Aξi for each i < µ. The sequence
〈bi | i < µ〉 induces a branch of the matrix of length sup({ξi | i < µ}). Since µ < ν
this branch is not maximal. Consequently, there exists an a (in the matrix) such
that a ≤ bi for each i < µ. �
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Therefore, for any i < δ, Player I can play some ai, so the game does not stop
before length δ. Furthermore, there exists b ≤ ai for every i < δ, hence Player II
wins the game, and the defined strategy is a winning strategy. �

Corollary 2.4. LetA = {Aξ | ξ < λ} be a base matrix for P of regular height λ all
whose maximal branches are cofinal. Then λ = h(P) = tSpoiler(P).

In particular, any base matrix for P of regular height λ > h(P) has a maximal
branch which is not cofinal.

Proof. It follows from the above theorem that λ ≤ tSpoiler(P). On the other hand,
h(P) ≤ λ, because there exists a base matrix for P of height λ. Together with the
fact that tSpoiler(P) ≤ h(P), the equality follows. �

Remark 2.5. Note that it follows from the above corollary that if λ is regular and P
is not <λ-strategically closed (i.e., using the notation from [BHTP19], t∗Spoiler(P) <
λ), then any base matrix for P of height λ has maximal branches which are not
cofinal.

For the important case of P(ω)/fin, we can now derive the following:

Corollary 2.6. Let A = {Aξ | ξ < λ} be a base matrix for P(ω)/fin of regular
height λ, where λ > tSpoiler (i.e., λ > h or h > tSpoiler). Then for every a ∈

⋃
ξ<λ Aξ,

there is a maximal branch ofA containing a which is not cofinal.

Proof. Fix a in the matrix (i.e., a ∈
⋃
ξ<λ Aξ). Let P := {b | b ⊆∗ a} be the part

of P(ω)/fin below a. Since P(ω)/fin is homogenous, h(P) = h(P(ω)/fin) = h and
tSpoiler(P) = tSpoiler. Note that the part of A below a is a base matrix for P of
height λ. Since λ > tSpoiler, it follows by Corollary 2.4 that the part of A below a
has maximal branches which are not cofinal. Any such branch induces a maximal
branch ofA containing a which is not cofinal. �

Remark 2.7. In [BHTP19] it has been shown that consistently tSpoiler < h. In such
models every base matrix (in particular every of height h) has (many) maximal
branches which are not cofinal. It is an open question of [BHTP19] whether t =
tSpoiler holds true in ZFC. Note that a positive answer would imply that either all
base matrices of height h only have cofinal maximal branches, or all base matrices
of height h have (many) maximal branches which are not cofinal, depending on
whether t = h or not.

Corollary 2.6 actually implies that distributivity matrices for P(ω)/fin of regular
height larger than h cannot simultaneously have only cofinal maximal branches and
be a base matrix. Therefore, Brendle’s theorem from [Bre] together with Corol-
lary 2.6 shows that there are distributivity matrices for P(ω)/fin of regular height
larger than h with maximal branches which are not cofinal provided that c > h is
regular (or s < c).

On the other hand, Corollary 2.6 shows that the generic distributivity matrix
of regular height larger than h from [FKW] cannot be a base matrix because all
its maximal branches are cofinal (this can also be seen by analyzing the forcing
construction, see the end of [FKW, Section 7.1]).
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Further note that in the model from [FKW], there are both kinds of distributivity
matrices for P(ω)/fin of regular height larger than h: matrices all whose maximal
branches are cofinal, and matrices with maximal branches which are not cofinal.
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