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Results
Measure and Category
c ≥ ℵ3
Open questions

I To what extent the combinatorial properties of the real line
(expressed in terms of cardinal characteristics) are compatible
with the existence of a projective wellorder of the reals?

I What other ’natural’ combinatorial objects on the reals are
consistent with the existence of a projective wellorder of the
reals?
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Eventual dominance
If f , g ∈ ωω then f ≤∗ g (g dominates f ) if ∃n ∈ ω s.t.
∀m ≥ n(f (m) ≤ g(m)).

Bounding number

B ⊆ ωω is unbounded if there is no single function in ωω which
simultaneously dominates the elements of B.
b = min{|B| : B is unbounded}
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Dominating number

D ⊆ ωω is dominating if ∀f ∈ ωω∃g ∈ D s.t. g dominates f .
d = min{|D| : D is dominating}

Splitting number

S ⊆ [ω]ω is splitting if ∀A ∈ [ω]ω∃B ∈ S s.t.
|A ∩ B| = |A ∩ Bc | = ω.
s = min{|S | : S is splitting}
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Open questions

I All cardinal characteristics have values between ℵ1 and c.
That is if f is a cardinal characteristics then ℵ1 ≤ f ≤ c.

I ZFC relations between the card. char. (e.g. b ≤ d)

I Independence (e.g. b, s)
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If a, b ∈ [ω]ω, then a, b are almost disjoint if a ∩ b is finite.

mad families
An infinite A ⊆ [ω]ω is almost disjoint (a.d.) if its elements are
pairwise almost disjoint; A ⊆ [ω]ω is maximal almost disjoint
(m.a.d.) if it is maximal with respect to inclusion among a.d.
families.

ω-mad families
If A is a.d., let
L(A) = {b ∈ [ω]ω : b is not covered by finitely many a ∈ A}. A
m.a.d. family A is ω-mad if ∀B ∈ [L(A)]ω there is a ∈ A such
that |a ∩ b| = ω for all b ∈ B.
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L. Harrington

The existence of ∆1
3-definable wellorder of the reals is consistent

with c being as large as desired and MA.

S. Friedman
The existence of ∆1

3-definable wellorder of the reals is consistent
with c = ω2 and MA.

Note that under MA all cardinal characteristics are equal to c.
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Develop iteration techniques which allows one to separate certain
cardinal characteristics in the presence of a projective wellorder.

V.F. - S.D. Friedman, 2009

I The existence of a ∆1
3-wellorder of the reals is relatively

consistent with d < c = ω2.

I The existence of a ∆1
3-definable wellorder of the reals is

relatively consistent with b < s = a = c = ω2.

I The existence of a ∆1
3-definable wellorder of the reals is

relatively consistent with b < g = c = ω2.
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Conjecture

Each admissible assignment of ℵ1 and ℵ2 to the cardinal invariants
(associated with measure and category) in the Cichón diagram, is
relatively consistent with the existence of a projective wellorder of
the reals.
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There is general interest, however also major difficulties, in
obtaining models in which the real line has desireable
combinatorial properties and c ≥ ω3.
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V.F., S.D. Friedman, L. Zdomskyy, 2010

The existence of a ∆1
3-definable wellorder of the reals is consistent

with b = c = ω3 and the existence of a Π1
2-definable ω-mad

subfamily of infinite subsets of ω.

We expect that an application of Jensen’s coding technique will
lead to the same result with essentially arbitrary values for c.
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Basic Definitions
ω-mad families
Results
Measure and Category
c ≥ ℵ3
Open questions

I Is the existence of a ∆1
3-projective wellorder of the reals

relatively consistent with MA in the presence of c ≥ ℵ3? (The
iteration techniques from the previous theorem can take care
only of Suslin posets).

I How about models, in which desired inequalities between
cardinal characteristics of the real line hold, in the presence of
a projective wellorder and c ≥ ℵ3? (In the model from the last
theorem there is a major problem in bookkeeping families of
reals of size > ℵ0.)

I Definable cardinal characteristics.
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Definition
A transitive ZF− model M is suitable if M � ω2 = ωL

2 exists.

Throughout this section work in some generic extension L[G ∗] of L
in which cofinalities have not been changed.
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Basic properties

Definition
Let X ⊆ ω1 and let φ(ω1,X ) be a Σ1-sentence with parameters
ω1, X which is true in all suitable models containing ω1 and X as
elements. Let L(φ) be the poset of all r : |r | → 2 where |r | is a
countable limit ordinal such that:
1. ∀γ ∈ |r |(γ ∈ X iff r(2γ) = 1)
2. if γ ≤ |r |, M is a countable suitable model containing r � γ as
an element, where ωM1 = γ, then φ(γ,X ∩ γ) holds in M.
The extension relation is end-extension.
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Definition of Localization
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L(φ) is proper and does not add new reals. In fact L(φ) has a
countably closed dense suborder.
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Definition of C(µ̄, Y )

Let Y ⊆ ω1 be generic over L such that in L[Y ] cofinalities have
not been changed. Inductively define µ̄ = {µi}i∈ω1 of L-countable
ordinals as follows: µi is least µ > supj<i µj such that
Lµ[Y ∩ i ] � ZF− and Lµ � (ω is the largest cardinal).

A real R codes Y below i if for all j < i

j ∈ Y iff Lµj [Y ∩ j ,R] � ZF−.

For T ⊆ 2<ω a perfect tree, let |T | = min{i : T ∈ Lµi [Y ∩ i ]}.
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Definition of C(µ̄, Y )

Definition
Let C(Y ) be the poset of all perfect trees T such that every
branch R through T codes Y below |T |. Whenever T0,T1 are
conditions in C(Y ) let T0 ≤ T1 iff T0 ⊆ T1.

C(Y ) is proper and ωω-bounding.
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Destroying stationarity
Preservation

Definition
Let T ⊆ ω1 be a stationary set. A poset Q is T -proper, if for every
countable elementary submodel M of H(Θ), where Θ is a
sufficiently large cardinal, such that M∩ ω1 ∈ T , every condition
p ∈ Q ∩M has an (M,Q)-generic extension q.
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I Let S ⊆ ω1 be a stationary, co-stationary set. Then Q(S) is
the poset of all countable closed subsets of ω1\S , with the
end-extension as the extension relation. Q(S) is ω1\S-proper.

I S-proper posets preserve ω1 and the stationarity of all
stationary subsets of S . The countable support iteration of
S-proper posets is S-proper.
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Lemma
Assume CH. Let 〈Pα : α ≤ δ〉 be a countable support iteration of
length δ ≤ ω2 of S-proper posets of size ω1. Then Pδ is ℵ2-c.c.

Lemma
Assume CH. Let 〈Pα : α ≤ δ〉 be a countable support iteration of
length δ < ω2 of S-proper posets of size ω1. Then V Pδ � CH.

Vera Fischer Combinatorics and Projective Wellorders on the Reals



Introduction
Localization

Coding with perfect trees
S-properness

Forcing a projective well-order of the reals and not CH
Cardinal Characteristics

Bookkeeping
The wellorder
The iteration
Properties of Pω2
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∆1

3 wellorder

Lemma
There is F : ω2 → Lω2 definable over Lω2 via a formula φ and a
sequence S̄ = (Sβ : β < ω2) of almost disjoint stationary subsets
of ω1 definable over Lω2 via a formula ψ such that F−1(a) is
unbounded in ω2 for every a ∈ Lω2 , and

I If M,N are suitable models and ωM1 = ωN1 then FM,FN

agree on ωM2 ∩ ωN2 .

I If M is suitable and ωM1 = ω1 then FM, S̄M equal the
restrictions of F , S̄ to the ω2 of M.
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Proof.
Define F (α) = a iff via Gödel pairing α codes a pair (α0, α1)
where a has rank α0 in the natural wellorder of the sets in L. For
the almost disjoint stationary sets, let (Dγ : γ < ω1) be the
canonical Lω1 definable ♦ sequence, for each α < ω2 let Aα be the
L-least subset of ω1 coding α and define Sα to be the set of all
i < ω1 such that Di = Aα ∩ i .
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Recursively define a countable support iteration 〈Pα, Q̇α : α < ω2〉
such that P = Pω2 will be the desired poset.

I For α < β < ω2 we can assume that all Pα-names for reals
precede in the canonical wellorder <L of L all Pβ-names for
reals which are not Pα names.

I For α < ω2, define a wellorder <α on the reals of L[Gα],
where Gα is a Pα-generic as follows. If x is a real in L[Gα] let
σαx be the <L-least Pγ-name for x , where γ ≤ α. Then let
x <α y if and only if σαx <L σ

α
y .
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I Note that <α is an initial segment of <β.

Then if G is a P-generic filter, <G =
⋃
{<G

α : α < ω2} will be the
desired wellorder of the reals. Also, for x , y reals in L[Gα] such
that x <α y let x ∗ y = {2n : n ∈ x} ∪ {2n + 1 : n ∈ y}. Let S be
a stationary set almost disjoint from every element of S̄ .
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Proceed with the definition of Pω2 . Let P0 be the trivial poset.
Suppose Pα has been defined. Let Q̇α = Q̇0

α ∗ Q̇1
α be a Pα-name

for a poset such that Q̇0
α is a Pα-name for a proper forcing notion

of size at most ℵ1 and Q̇1
α is defined as follows.

I If F (α) is not of the form {σαx , σαy } for some reals x , y in V Pα

then let Q̇1
α be a Pα ∗ Q̇0

α-name for the trivial poset.

I Otherwise F (α) = {σαx , σαy } for some reals x <α y in V Pα .

Let xα = x , yα = y . Then let Q̇1
α be a Pα ∗ Q̇0

α-name for
K0
α ∗ K̇1

α ∗ K̇2
α where:

Vera Fischer Combinatorics and Projective Wellorders on the Reals



Introduction
Localization

Coding with perfect trees
S-properness

Forcing a projective well-order of the reals and not CH
Cardinal Characteristics

Bookkeeping
The wellorder
The iteration
Properties of Pω2
Preserving stationarity
∆1

3 wellorder

Destroying stationary sets (K0
α)

In V Pα∗Q̇0
α let K0

α be the direct limit 〈P0
α,n, K̇0

α,n : n ∈ ω〉, where

K̇0
α,n is a P0

α,n-name for Q(Sα+2n) for n ∈ xα ∗ yα, and K̇0
α,n is a

P0
α,n-name for Q(Sα+2n+1) for n 6∈ xα ∗ yα.
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Localization (K1
α)

Let G 0
α be a Pα ∗ Q̇0

α-generic filter and let Hα be a K0
α-generic over

L[G 0
α]. In L[G 0

α ∗ Hα] let Xα be a subset of ω1, coding α, coding
(xα, yα), coding a level of L in which α has size at most ω1 and
coding the generic G 0

α ∗ Hα which we can regard as a subset of an
element of Lω2 .
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Then let K1
α = L(φα) where φα = φα(ω1,Xα) is the Σ1-sentence

which holds iff Xα codes an ordinal ᾱ < ω2 and a pair (x , y) such
that Sᾱ+2n is nonstationary for n ∈ x ∗ y , Sᾱ+2n+1 is nonstationary
for n 6∈ x ∗ y . Let K̇1

α be a P0
α ∗ Q̇0

α ∗ K̇0
α-name for K1

α.
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Coding with Perfect Tress (K2
α)

Let Yα be K1
α-generic over L[G 0

α ∗ Hα]. Since Yα codes Xα,
L[G 0

α ∗ Hα ∗ Yα] = L[Yα]. Let K2
α = C(Yα). Let K̇2

α be a
Pα ∗ Q̇0

α ∗ K̇0
α ∗ K̇1

α-name for K2
α.

With this the definition of Q̇α and so P = Pω2 is complete.
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Lemma
P is S-proper and ω2-c.c.
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Lemma A
Let G be a P-generic and let x , y be reals in L[G ]. If x < y , then
there is a real R such that for every countable suitable M,
R ∈M, there is ᾱ < ωM2 such that SMᾱ+2n is nonstationary in M
for n ∈ x ∗ y and SMᾱ+2n+1 is nonstationary in M for n 6∈ x ∗ y .
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Proof
Pick α such that F (α) = {σαx , σαy }. Then xα = x , yα = y . Let G 0

α

be Pα ∗ Q̇0
α-generic, let Hα be K0

α-generic over L[G 0
α], let Yα be the

K1
α-generic over L[G 0

α ∗ Hα], let Rα be the K2
α-generic over L[Yα].

Let M be countable suitable, Rα ∈M. However Rα codes Yα and
so Yα � γ ∈M, where γ = ωM1 . Then in particular Xα ∩ γ ∈M.
By the properties of localization φα(γ,Xα ∩ γ) holds in M and so
∃ᾱ < ωM2 such that SMᾱ+2n is nonstationary in M for n ∈ x ∗ y and
SMᾱ+2n+1 is nonstationary in M for n 6∈ x ∗ y . �
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Lemma B
Let G be P-generic. Then for β not of the form α + 2n,
n ∈ xG

α ∗ yG
α and not of the form α + 2n + 1, for n /∈ xG

α ∗ yG
α , the

set Sβ is stationary in L[G ].
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Proof
Let p ∈ P be a condition forcing that β < ω2 is not of the form
α + 2n, n ∈ xG

α ∗ yG
α and not of the form α + 2n + 1, for

n /∈ xG
α ∗ yG

α . Consider the forcing notion P � p which consists of all
conditions in P which extend p. Note that G is also P � p-generic.
However P � p is Sβ-proper and so Sβ remains stationary in L[G ].
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Let G be P-generic and let x , y be reals in L[G ]. Then

(1) x < y iff for some α < ω2, Sα+2n is nonstationary for n in
x ∗ y and Sα+2n+1 is nonstationary for n not in x ∗ y .

(2) If x < y then there is a real R such that for every countable
suitable M, R ∈M, there is ᾱ < ωM2 such that SMᾱ+2n is
nonstationary in M for n ∈ x ∗ y and SMᾱ+2n+1 is nonstationary
in M for n 6∈ x ∗ y .
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Observation
(1) implies the converse of (2).

Let R be given. The conclusion of (2) holds for arbitrary suitable
models and so it holds for LΘ[R] =M where Θ is large. Let
α < ω2 be the corresponding ordinal. As S̄ is definable over Lω2

and Θ > ω2, SMβ = Sβ for all β < ω2. Thus SMα+2n = Sα+2n is

nonstationary in M for n in x ∗ y and SMα+2n+1 = Sα+2n+1 is
nonstationary inM for n not in x ∗ y . These sets are nonstationary
in the larger model L[G ] and so by (1), we have x < y .
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Therefore in L[G ], <G =
⋃
{<G

α : α < ω2} has a Σ1
3 definition.

x < y iff there is a real R such that for every countable suitable
M, R ∈M, there is ᾱ < ωM2 such that SMᾱ+2n is nonstationary in
M for n ∈ x ∗ y and SMᾱ+2n+1 is nonstationary in M for n 6∈ x ∗ y

It remains to observe that since x 6<G y is Π1
3 and <G is a linear

order, <G indeed has a ∆1
3 definition.
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Preservation Theorems
d < c
b < g
b < a = s

Lemma
Let S ⊆ ω1 be a stationary set and let 〈Pi , Q̇i : i < δ〉 be a
countable support iteration of length δ ≤ ω2 of S-proper,
ωω-bounding posets. Then Pδ is ωω-bounding and S-proper.
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Preservation Theorems
d < c
b < g
b < a = s

Observation
For all α < ω2,


Pα Q̇1
α is S-proper and ωω-bounding.
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Preservation Theorems
d < c
b < g
b < a = s

Theorem
It is consistent with d < c that there is a ∆1

3 wellorder of the reals.

Proof.
Let PS be defined just as P = Pω2 with the additional requirement
that Q̇0

α is a Pα-name for the trivial poset. Let G be PS-generic.
Since destroying stationary sets, localization and coding with
perfect trees are ωω-bounding, PS is weakly bounding. Then
L[G ] � d = ω1 < c = ω2.

Vera Fischer Combinatorics and Projective Wellorders on the Reals



Introduction
Localization

Coding with perfect trees
S-properness

Forcing a projective well-order of the reals and not CH
Cardinal Characteristics

Preservation Theorems
d < c
b < g
b < a = s

Theorem
It is consistent with b < g that there is a ∆1

3 wellorder of the reals.

Proof.
Let PM be defined just as P = Pω2 with the additional requirement
that Q̇0

α is a Pα-name for Miller forcing M. Since M is almost
ωω-bounding, PM is weakly bounding. The Miller real has
supersets in all groupwise dense families from the ground model,
and so if G is PS-generic, L[G ] � b = ω1 < g = ω2.
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Theorem
It is consistent with b < s = a that there is a ∆1

3 definable
wellorder of the reals.

Proof
Let Q be an almost ωω-bounding poset which adds a real not split
by the ground model reals. By a result of S. Shelah if V � CH and
A is a mad family in V , then in V1 = V C(ω1) there is an almost
ωω-bounding poset which destroys the maximality of A.
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Let F0 be a bookkeeping function, dom(F0) = ω2 such that every
relevant name for a mad family is enumerated cofinally often. Let
PQ be defined just as P with the additional requirement that
Q0
α = H0

α ∗ Ḣ1
α ∗ Ḣ2

α where

I H0
α adds ω1 Cohen reals.

I If F0(α) is a Pα-name for a mad family then H1
α is an almost

ωω-bounding poset which destroys its maximality. If F0(α) is
not a Pα-name for a mad family then H1

α is the trivial poset.

I H2
α is Shelah’s poset Q.

Vera Fischer Combinatorics and Projective Wellorders on the Reals



Introduction
Localization

Coding with perfect trees
S-properness

Forcing a projective well-order of the reals and not CH
Cardinal Characteristics

Preservation Theorems
d < c
b < g
b < a = s

Let G be PQ-generic.

I Cohen forcing, Q and the posets used to kill mad families are
almost ωω-bounding. Thus PQ is weakly bounding and so
L[G ] � b = ω1.

I Let W ⊆ L[G ] ∩ [ω]ω, |W | = ω1. Then W ⊆ L[Gα] for some
α < ω2. However H2

α adds a real not split by W and so
L[G ] � s = ω2
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I Suppose A is a mad family in L[G ], |A| = ω1. Since F−1
0 (Ȧ)

is unbounded there is β ≥ α with F0(β) = Ȧ. Then H1
α

destroys the maximality of A and so L[Gβ+1] � A is not mad,
which is a contradiction. Thus L[G ] � a = ω2.
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1. Which other inequalities between the standard cardinal
characteristics of the real line are consistent with the existence of a
projective wellorder of the reals?

2. What is the complexity in the projective hierarchy of the
witnesses of the corresponding cardinal characteristics in these
models?
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A family D ⊆ [ω]ω is groupwise dense if

1. if X ∈ D and Y \X is finite, then Y ∈ D

2. if Π is a family of infinitely many pairwise disjoint finite
subsets of ω, the union of some subfamily of Π is in D.

The groupwise density number g is the minimal κ such that for
some family D of κ-many groupwise dense families,

⋂
D = ∅
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