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Abstract. We show that ZFC+ BPFA (i.e., the Bounded Proper Forcing Axiom)

+ �there are no Π1
2 in�nite MAD families� implies that ω1 is a remarkable cardinal

in L. In other words, under BPFA and an anti-large cardinal assumption there is

a Π1
2 in�nite MAD family. It follows that the consistency strength of ZFC+ BPFA

+ �there are no projective in�nite MAD families� is exactly a Σ1-re�ecting cardinal

above a remarkable cardinal. In contrast, if every real has a sharp�and thus under

BMM�there are no Σ1
3 in�nite MAD families.

1. Introduction

A. By a MAD family, we mean a collection A with the following two properties: Firstly,

A is an almost disjoint (short: a.d.) family, that is, A consists of in�nite subsets of ω

and any two distinct a, a′ ∈ A are almost disjoint, i.e., a ∩ a′ is �nite. Secondly, for any
in�nite set b ⊆ ω there is a ∈ A such that |a ∩ b|= ℵ0; that is, A is maximal among a.d.

families under inclusion.

While �nite MAD families exist trivially, in�nite MAD families can be constructed

using the Axiom of Choice. This makes them an example of an irregular set somewhat

analogous to a set without the Baire property or a non-measurable set.

As is well-known, Mathias [16, 15] proved that no in�nite MAD family can be analytic.

On the other hand, Arnie W. Miller in [17] constructed a co-analytic in�nite MAD family

under the assumption that V = L, showing that Mathias' result is optimal.

Mathias [16] also produced a model of ZF + DC in which there are no in�nite MAD

families, starting from the assumption of a Mahlo cardinal. Much later, Törnquist showed

that there are no in�nite MAD families in Solovay's model [28], and Horowitz and Shelah

produced a model of ZF + �there are no in�nite MAD families� without making any large

cardinal assumption [9].

The de�nability of MAD families has been investigated under many natural extensions

of the axiomatic system ZFC. It was shown recently by Neeman and Norwood and

independently by Bakke-Haga, Törnquist and the second author, that under the Axiom

of Determinacy (AD) no in�nite MAD family can be an element of L(R); and under the

Axiom of Projective Determinacy and the Axiom of Dependent Choice (DC) there is no

projective in�nite MAD family [19, 2, 25]. In fact, as Neeman and Norwood were �rst

to show, under AD+ (a technical strengthening of AD introduced by Woodin) there are

no in�nite MAD families.

Another natural family of extensions of ZFC are forcing axioms. De�nability properties

of irregular sets of reals under such axioms have long been investigated. An early example

is work of Martin and Solovay [14] showing that Martin's Axiom for sets of size ℵ1 (MAℵ1)
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implies that all Σ1
2 sets are measurable and have the Baire property. It was shown by

Törnquist [28] that similarly MAℵ1 rules out the existence of in�nite MAD families which

are Σ1
2 in terms of de�nitional complexity.

As is well-known, MAℵ1 is equiconsistent with ZFC; adding assumptions about reg-

ularity of de�nable sets of reals can increase this consistency strength. For instance it

was shown by Harrington and Shelah [8] that MAℵ1 together with �all projective sets are

measurable and have the Baire property� is equiconsistent with ZFC+ there is a weakly

compact cardinal (in fact, it su�ces to add �all ∆1
3 sets have the Baire property� or �all

∆1
3 sets are measurable� to MAℵ1 to drive up its consistency strength).1

On the other hand, the theory MAℵ1 + �there is no in�nite projective MAD family�

(and even MAℵ1 + �there is no in�nite MAD family which is de�nable from a parameter

in Onω�) is equiconsistent with ZFC; this is a by-product of Horowitz and Shelah's

construction in [9] of a model of ZF + �there are no in�nite MAD families� (since as part

of this construction they force MAℵ1 to hold).

Stronger forcing axioms such as the Proper Forcing Axiom (PFA) imply that AD holds

in L(R), as was shown by Steel [26]. Thus under PFA, just as under AD, all sets of reals

in L(R) are regular: They are measurable, have the Baire property, and no in�nite MAD

family can be found among them. As we shall show, this is not the case for the so-called

bounded version of this axiom, the Bounded Proper Forcing Axiom (BPFA). This axiom

was introduced by Goldstern and Shelah in [7] and later recognized to be equivalent to a

principle of generic absoluteness by Bagaria [1]; it is quite a bit stronger than MAℵ1 but

much weaker than PFA.

In the present paper, we show that the assumption that there are no in�nite MAD

families with a simple de�nition drives up the consistency strength of BPFA.

Theorem 1.1. ZFC + BPFA+ �there is no in�nite Π1
2 MAD family� implies that ω1 is

a remarkable cardinal in L.

This is indeed remarkable, since ZFC + BPFA alone is known to have consistency

strength of a Σ1-re�ecting cardinal, which is weaker than a remarkable cardinal. As

we have already mentioned, it is known that BPFA (in fact, just MAℵ1) rules out the

existence of Σ1
2 (in fact, of ω1-Suslin) in�nite MAD families [28], so the complexity of

Π1
2 in the above theorem cannot be improved.

By results of Schindler (see [22]) the consistency strength of ZFC+BPFA+ �every set in

L(R) is measurable� is exactly a Σ1-re�ecting cardinal above a remarkable cardinal. With

Theorem 1.1 and Törnquist's result from [28] at our disposal, we can adapt Schindler's

argument to gauge the exact consistency strength of ZFC + BPFA+ �there is no in�nite

Π1
2 MAD family�.2

Corollary 1.2. The following are equiconsistent:

(1) ZFC + �there exists a Σ1-re�ecting cardinal above a remarkable cardinal.�

(2) ZFC + BPFA + �there is no in�nite Π1
2 MAD family.�

(3) ZFC + BPFA+ �there is no in�nite MAD family in L(R).�

1The reader can �nd a wealth of further results in [3, Chapter 9].
2We thank the anonymous referee for calling Corollary 1.2 to our attention.
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Proof. Clearly, Item (2) implies that the theory in Item (1) is consistent: It is well-known

that BPFA implies that ω2 is Σ1-re�ecting in L; by Theorem 1.1 ω1 is remarkable in L.

It su�ces to show that the theory in Item (3) is consistent assuming Item (1). So

suppose κ < λ, κ is remarkable, and λ is Σ1-re�ecting in V . Let G be Coll(ω,< κ)-generic

over V , and let H be generic for a proper forcing over V [G] such that V [G][H] � BPFA.

Since κ is remarkable, it follows as in [22, Lemma 24] that for any x ∈ P(ω) ∩ V [G][H]

there is ξ < κ and some generic G′ for Coll(ω, ξ) over V such that x ∈ V [G′]. It follows

from this as in Lemma 8 of [22] (described as �folklore� there) that the �rst-order theory

of L(R)V [G][H] is the same as the theory of L(R) after forcing with Coll(ω,< κ). But in

the latter model, there is no in�nite MAD family by [28]�or because universal Ramsey

regularity and Ramsey-positive uniformization hold in this model, and by [25]. �

We can also view Theorem 1.1 from a di�erent perspective. We have seen that forcing

axioms which are strong enough to imply ADL(R), rule out the existence of de�nable

in�nite MAD families. Our result shows that under an anti-large cardinal assumption,

forcing axioms can lead to the opposite result: They imply the existence of in�nite MAD

families at a rather low level of the projective hierarchy.

Theorem 1.3. Suppose BPFA holds and that ω1 is not remarkable in L. Then there is

an in�nite Π1
2 MAD family.

We take this as evidence that under certain forcing axioms and anti-large cardinal

assumptions, the universe behaves somewhat like L (as in L there are in�nite Π1
1 MAD

families). This idea is also corroborated by the proof of the above theorem.

An obvious question is to which degree the above theorem can be generalized in the

sense of replacing �almost-disjointness� by other relations. To state this question pre-

cisely, let us introduce some terminology: Let E be a binary, symmetric, and anti-re�exive

relation on a Polish space X. We view G = 〈X,R〉 as a simple graph with vertex set X

and edge relation E. To say such G is Borel, Σ1
1, . . . means that E is Borel, Σ1

1, . . . as

a subset of X2 (a Polish space, with the product topology). A set D ⊆ X is called

G-discrete if no two of its elements are E-related, and maximal discrete if it is G-discrete

and maximal with respect to ⊆ among G-discrete subsets of X.

We can now ask: Under the same hypothesis as in Theorem 1.3, which Borel graphs

on Polish spaces have an in�nite Π1
2 maximal discrete set? What about Σ1

3 graphs?

That the answer is not �all of them� is obvious from the fact that maximal discrete

sets for the relation xEy ⇐⇒ (x 6= y ∧ |x∆y| < ℵ0) on P(ω) cannot be measurable and

hence not Π1
1. Likewise, under MAℵ1 no Π1

2 maximal discrete set for this relation can

exists, since under MAℵ1 all Σ1
2 sets are measurable.

The obstacle to generalizing our construction to arbitrary Borel (or Σ1
3) graphs is the

coding mechanism in Fact 4.5 which relies heavily on the combinatorics of our speci�c

graph. Vidnyánszky [29] has found a large class of graphs which admit a co-analytic

maximal discrete set if P(ω) ⊆ L: For instance, this holds for Borel graphs G = 〈X,E〉
with the property that for each countable D ⊆ X and d ∈ X such that D ∪ {d} is

G-discrete, the set{
d′ ∈ X | D ∪ {d′} is G-discrete and D ∪ {d,′ d} is not

}
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is co�nal in the hyperarithmetic degrees. Vidnyánszky's construction uses properties

speci�c to Π1
1 sets, and it is not clear how to carry out this argument at the level of Π1

2

sets (under BPFA).

Inspired by a question put to us by the anonymous referee, for which we are thankful,

we proved the following theorem. Recall that Bounded Martin's Maximum (BMM) is

the bounded forcing axiom for stationary set preserving forcing.

Theorem 1.4. ZFC + BMM implies that there are no in�nite Σ1
3 MAD families.

However, as is not hard to see, under just BPFA and thus also under BMM, there is

an in�nite MAD family which is ∆1 allowing a parameter from P(ω1) (using the well-

ordering of P(ω) from Theorem 2.1 below). The consistency strength of BMM is not

known; the best upper bound, to our knowledge, is (ω + 1)-many Woodin cardinals (an

unpublished result due to Woodin); the current lower bound is a strong cardinal [24].

B. Our work has some precursors in the literature: In [4] it is shown that under BPFA,

if ω1 is not remarkable in L every predicate on P(ω) which has a Σ1 de�nition in H(ω2)

also has a Σ1
3 de�nition.

It was shown by Asger Törnquist in [27] that if there is an in�nite Σ1
2 MAD family,

there is an in�nite Π1
1 MAD family. Unfortunately, the latter proof does not lift to show

that there exists a Π1
2 in�nite MAD under BPFA+ω1 is not remarkable in L. The reason

for this is that Törnquist's proof relies on properties of Σ1
2 and Π1

1 sets which do not hold

for Σ1
3 and Π1

2 sets.

C. The paper is organized as follows. In section �2 we discuss a result of Caicedo and

Velickovic which can be summed up as follows: BPFA implies that there is a well-ordering

of P(ω) of length ω2 with de�nable initial segments. In �3 we discuss the role of the

anti-large cardinal assumption, referring to work of Schindler, and discuss a technique of

localization which we have used before (e.g., [6]) and which takes a particularly simple

form under BPFA + ω1 is not remarkable in L. In �4 we prove Theorem 1.3, and in the

short �5 we prove Theorem 1.4 We close with open questions in �6.

Acknowledgements: The �rst, second and third authors would like to thank the Austrian

Science Fund (FWF) for the generous support through START Grant Y1012-N35. The

second author would also like to thank the FWF through generous support from project P

29999. We thank the anonymous referee for their e�ort and their comments, which have

greatly improved this paper.

2. A well-ordering with definable initial segments

It was shown by Moore [18] that under BPFA there is a well-ordering of P(ω) of order-

type ω2. Improving Moore's result, Caicedo and Velickovic [5] obtained, under BPFA,

such a well-ordering which is de�nable by a Σ1 formula with a parameter from P(ω1).

Their well-ordering has the following property which will be crucial to our argument.

Theorem 2.1. Under BPFA there is a well-ordering ≺ of P(ω) such that for some Σ1

formula Φ≺(u, v, w) and some parameter c≺ ⊆ ω1,(
∀x ∈ P(ω)

)
(∀I)

(
Φ≺(x, I, c≺) ⇐⇒ I = {y ∈ P(ω) : y ≺ x}

)
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Such a well-ordering is obviously very useful when one is interested in devising a

recursive de�nition of optimal complexity. For convenience, we give a name to this type

of well-order:

De�nition 2.2. We say a well-order ≺ of P(ω) with the property from Theorem 2.1 has

(Σ1,P(ω1))-de�nable good initial segments.

In fact, what Caicedo and Velickovic show in their article [5] is that P(ω) carries a

well-order ≺ with the properties (i) and (ii) in the fact below. Of course, this is equivalent

to having (Σ1,P(ω1))-de�nable initial segments.

Fact 2.3. That a well-ordering of P(ω) has (Σ1,P(ω1))-de�nable initial segments (i.e.,

has the property from Theorem 2.1) is equivalent to the conjunction of the following:

(i) ≺ is Σ1 with a parameter c≺ ⊆ ω1,

(ii) There is a formula Φis(u) such that for any transitive model M with c≺ ∈ M ,

M � Φis(c≺) if and only if ≺ is absolute forM andM ∩P(ω) is an initial segment

of ≺.

Remark 2.4. The requirement in (ii) above thatM � Φis(c≺) implies that≺ is absolute for

M is redundant; it follows from Requirement (i) if we replace Φis(c≺) by its conjunction

with
(
∀x, y ∈ P(ω)

)
x ≺ y ∨ y ≺ x.

Proof. To see that (i)∧(ii) implies that ≺ is a well-ordering with (Σ1,P(ω1))-de�nable

initial segments let Φ≺(x, I, c≺) be the formula

(∃M) M is a transitive ∈-model with {x, c≺, I} ⊆M and

M � �Φis(c≺) ∧ I = {y ∈ P(ω) | y ≺ x}�

and observe I = {y ∈ P(ω) : y ≺ x} ⇐⇒ Φ≺(x, I, c≺).

For the other direction, �rstly observe that if ≺ has (Σ1,P(ω1))-de�nable initial seg-

ments then obviously ≺ is Σ1 in the parameter c≺. Secondly, let Φis(c≺) be the formula(
∀x, y ∈ P(ω)

)
x ≺ y ∨ y ≺ x ∧

(
∀x ∈ P(ω)

)
(∃I) Φ≺(x, I, c≺). �

For a proof that under BPFA there is such a well-ordering of P(ω) with (Σ1,P(ω1))-

de�nable good initial segments, we refer the reader to the excellent exposition in [5].

3. Coding, reshaping, and localization

We start by recalling the following well-known fact.

Fact 3.1. Let B = 〈bξ : ξ < ω1〉 be an arbitrary sequence of pairwise almost disjoint

in�nite subsets of ω. Under MAℵ1 , for every subset of S ⊆ ω1 there is a c ⊆ ω such that

(1) S = {ξ < ω1 : c ∩ bξ is in�nite}.

The proof of this fact is equally well-known; it uses Solovay's almost disjoint coding

(see [10] or, e.g., [12]).

We take the opportunity to introduce the following rather natural terminology:

De�nition 3.2. We shall say that c ⊆ ω almost disjointly via B codes the set S to mean

precisely that (1) holds.

Our only use of the assumption that ω1 is not remarkable in L is in the following fact

(this was shown by Ralf Schindler in [20, 21]).
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Fact 3.3. Suppose ω1 is not remarkable in L and BPFA holds. Then there exists r ∈ P(ω)

such that ω1 = (ω1)
L[r].

Notation 3.4.

(1) For the rest of this article, let us suppose that ω1 = (ω1)
L[r] for some r ∈ P(ω)

which from now on shall remain �xed.

(2) Fix an almost disjoint family F = 〈fξ : ξ < ω1〉 which has a Σ1 de�nition in

L[r] and such that for any α < ω1, 〈fξ : ξ < (ω1)
Lα[r]〉 is the set satisfying this

de�nition in Lα[r].

It is a consequence of ω1 = (ω1)
L[r] and MAℵ1 that any predicate which is Σ1 in H(ω2)

(with a parameter) can be localized in a strong sense. A version of this result can, e.g.,

be found in [4].

To state the following localization lemma, let us make a de�nition which will be used

throughout the paper.

De�nition 3.5 (Suitable models). A suitable model is a countable transitive ∈-model

N such that r ∈ N , N � ZF− and N ��ω1 exists�.

Lemma 3.6 (A form of localization). Suppose MAℵ1 holds (and recall that we are working

under the assumption that ω1 = (ω1)
L[r] made in 3.4). Let φ(y, ω1) be an arbitrary

formula, where y ∈ P(ω) and ω1 are parameters, and suppose that for some transitive

∈-model M with {ω1, y} ∈ M it holds that M � φ(y, ω1). Then there is c ⊆ ω such that

the following holds:

(2)

Given any suitable model N with {c, y} ⊆ N the following must hold in

N : �There is a transitive ∈-model M∗ such that {y, (ω1)
N} ⊆M∗ and

M∗ � φ
(
y, (ω1)

N
)
�.

Proof. Fix a transitive model M as in the lemma. We can assume M to have size ω1.

Find S ⊆ ω1 such that via Gödel pairing, S gives rise to a well-founded binary relation

S∗ on ω1 whose transitive collapse is 〈M,∈ �M〉. We can ask that y and ω1 are mapped

to speci�c points in 〈ω1, S
∗〉 by the inverse of the collapsing map, say to 0 and 1.

Let

(3) D = {β ∈ ω1 : (∃N ∗) N ∗ ≺ Lω2 [S∗, y], {S∗, y} ∈ N ∗, β = ω1 ∩N ∗}.

For Y ⊆ On, let Even(Y ) = {ξ : 2ξ ∈ Y } and Odd(Y ) = {ξ : 2ξ + 1 ∈ Y }. Choose Y

to be any subset of ω1 such that Even(Y ) = S∗ and for each β ∈ D, the preimage under

Gödel pairing of Odd(Y ) ∩ [β, β + ω) is a well-founded binary relation of rank at least

min
(
D \ (β + 1)

)
.

Claim 3.7. Y ⊆ ω1 satis�es the following:

(4)

Given any suitable model N with {Y ∩(ω1)
N , y} ⊆ N the following must

hold in N : �There is a transitive ∈-model M∗ such that {y, (ω1)
N} ⊆

M∗ and M∗ � φ
(
y, (ω1)

N
)
�.

Proof. To see that Y indeed satis�es (4) let N as in (4) be given. Letting β = (ω1)
N it

must hold that β ∈ D: For if β′ < β, since β∩Y ∈ N , this model contains a well-founded

binary relation of length min
(
D \ (β′ + 1)

)
as an element, and so min

(
D \ (β′ + 1)

)
<

β = (ω1)
N because N is a model of ZF−. As D is closed, β ∈ D. It also follows that

S∗ ∩ β ∈ N .
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By de�nition of D we may pick N ∗ as in (3). Letting N ∗ be the transitive collapse

of N ∗ we obtain an elementary embedding j : N ∗ → Lω2 [S∗, y] with critical point

β = (ω1)
N (namely, the inverse of the collapsing map) such that {S∗, y, ω1} ⊆ ran(j).

By elementarity N ∗ ��The transitive collapse of 〈β, S∗ � β〉 is a transitive ∈-model M∗

such that M∗ � Φ(y, β)�. But this transitive collapse is also an element of N , so by

absoluteness of ∆1 formulas N must satisfy the same sentence. Claim 3.7. �

Finally, we �nd c ∈ P(ω) which almost disjointly via F codes the set Y ⊆ ω1 con-

structed above. To see that c satis�es (2) let N as in (2) be given. By choice of F (see

Notation 3.4) 〈fξ : ξ < (ω1)
N 〉 ∈ N and so since N � ZF− it holds that Y ∩ (ω1)

N ∈ N .

By (4) the sentence �there is a transitive ∈-model M∗ such that {y, (ω1)
N} ⊆ M∗ and

M∗ � φ
(
y, (ω1)

N
)
� holds in N , verifying (2). Lemma 3.6. �

4. Proof of Theorem 1.3

In this section we prove Theorem 1.3 in the following, slightly more general form:

Theorem 4.1. Suppose there is a well-ordering of P(ω) of length ω2 with (Σ1,P(ω1))-

de�nable initial segments, MAℵ1 holds, and ω1 = (ω1)
L[r] where r ∈ P(ω). Then there is

an in�nite Π1
2 MAD family.

It is clear by Theorem 2.1 and Fact 3.3 that BPFA + ω1 is not remarkable in L implies

the hypothesis, so proving the above theorem will indeed prove Theorem 1.3.

Notation 4.2. From now on, we suppress the parameter r and assume ω1 = (ω1)
L; our

argument will relativize to r trivially.

By Theorem 2.1 we can �x a well-ordering ≺ of P(ω) with (Σ1,P(ω1))-de�nable initial

segments, together with a parameter c≺ ⊆ ω and a formula Φis(c≺) as in Fact 2.3.

We shall inductively construct a sequence 〈aν : ν < ω2〉 such that A = {aν : ν < ω2}
will be a Π1

2 MAD family.

The most straightforward formula de�ning a MAD family A would express that a ∈ A
i� there is an initial segment 〈aν : ν ≤ ξ〉 of the construction with a = aξ; that is,

assuming we can �nd a formula expressing that 〈aν : ν ≤ ξ〉 is an initial segment of this

construction. But of course it is not clear how any projective formula should express

such a fact about 〈aν : ν < ξ〉, this being an object of size ω1. A �rst step towards a

solution is that aξ should code certain sets of size ω1, including 〈aν : ν < ξ〉. Almost

disjoint coding via F (see Fact 3.1) allows us to �nd a real coding these large sets. We

then want to �nd a real `localizing' this coding, i.e., ensuring that the property of coding

an initial segment of the construction is expressible by a Π1
2 formula. Using a variant of

the coding from [17] we can then code these reals into aξ.

4.1. Coding into an almost disjoint family. We call the following fact from Miller's

article [17] to the reader's attention.

Fact 4.3 (see [17, Lemma 8.24, p. 195]). Fix z ∈ P(ω) and suppose ~a = 〈aν : ν < ξ〉 is
a countable sequence of pairwise almost disjoint in�nite sets. For any d ∈ [ω]ω which is

almost disjoint from every element of ~a there is a ∈ [ω]ω such that

• a ∩ d is in�nite,

• a is almost disjoint from each aν for ν < ξ,

• and z is computable from a and ~a � ω = 〈an : n < ω〉.
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Using this fact, Miller succeeds in constructing a co-analytic MAD family in L: he

recursively constructs 〈aν : ν < ω1〉 such that in the end, A = {aν : ν < ω1} turns out to
be a Π1

1 MAD family. At some initial stage ξ < ω1 having constructed ~a = 〈aν : ν < ξ〉
he considers a counterexample d to the maximality of the family {aν : ν < ξ} constructed
so far. Instead of adding this set d to ~a, he adds a as in the fact above, which in addition

codes some information z so as to bring down the de�nitional complexity of A.

Since we shall need a variant of this type of coding, let us repeat Miller's proof of the

above fact.

Proof of Fact 4.3. Let ~b = 〈bn : n ∈ N〉 enumerate {aν : ω ≤ ν < ξ}. For each n ∈ ω,
choose a �nite set Gn ⊆ an \

⋃(
{ bk : k < n} ∪ { ak : k < n}

)
so that |Gn ∪ (an ∩ d)| is

even if n ∈ z, and odd otherwise. Finally, let a = d ∪
⋃
{Gn : n ∈ ω}. �

For our purposes the previous fact is useless, since as 2ω = ω2 under BPFA we shall

have to deal with uncountable sequences ~a = 〈aν : ν < ξ〉. Interestingly, there is a

variant of the above construction that allows us to deal with uncountable sequences.

Before we describe this variant let us commit, once and for all, to some sequence (to

be used for coding purposes) as an initial segment of the MAD family we are about to

construct.

Notation 4.4. Let us �x, for the rest of this article, some sequence ~aω = 〈an : n ∈ ω〉
of in�nite sets any two of which are almost disjoint.

We now state our variant of Miller's coding lemma. For this variant, we must make

an additional assumption (the existence of c below) which in our case will easily be seen

to follow from MAℵ1 (see Remark 4.6 below)

Fact 4.5. Suppose ~a = 〈aν : ν < ξ〉 is a (possibly uncountable) sequence of pairwise

almost disjoint in�nite subsets of ω such that ~a � ω = ~aω. Further suppose we have

c ∈ [ω]ω satisfying the following:

• c is almost disjoint from each aν , for ω ≤ ν < ξ, and

• c ∩ an is in�nite for each n ∈ ω.
Then for any z ∈ P(ω) and any d ∈ [ω]ω which is almost disjoint from every element of

ran(~a) there is a ∈ [ω]ω such that

• a ∩ d is in�nite,

• a is almost disjoint from each aν for ν < ξ,

• and z is computable from a and ~a � ω = 〈an : n < ω〉.
In fact there are functions dc : P(ω)→ P(ω) and cd : P(ω)3 → P(ω), both of which are

computable in ~aω, such that a as above is given by a = cd(d, c, z) and z can be recovered

from a as z = dc(a).

The name dc was chosen to remind us that this function will be used to `decode' z

from a, and likewise, the name cd should remind us that the function produces a `code'

(for z).

Remark 4.6. We will use Fact 4.5 in the situation where ~a = 〈aν : ν < ξ〉 is of length
ξ < ω2 and MAℵ1 holds. Then it is easy to see c as in Fact 4.5 exists: Just use Fact 3.1

to obtain c so that {ν < ξ | c ∩ aν is in�nite } = ω.
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Proof of Fact 4.5. We de�ne cd : P(ω)3 → P(ω) as follows. Let Fn be the shortest �nite

initial segment of

c ∩ an \
⋃
{ak : k < n}

such that |Fn ∪ (d∩ an)| is even if n ∈ z and odd otherwise. Clearly, Fn can be found by

a procedure which is computable in ~aω, c, d, and z. Now de�ne the function cd by

cd(d, c, z) = d ∪
⋃
{Fn : n ∈ ω}.

Moreover, we de�ne dc : P(ω)→ P(ω) as follows: Given a ∈ [ω]ω let

dc(a) = {n ∈ ω : |a ∩ an| is even}.

Clearly, these functions satisfy the conditions in the lemma. �

4.2. Minimal local witnesses. The functions cd and dc together with the almost dis-

joint coding into reals of subsets of ω1 via F will help us arrange that aξ codes 〈aν : ν < ξ〉.
But crucially, we need the fact that aξ codes an initial segment of the construction (up

to stage ξ, some ordinal below ω2) to be witnessed by a Π1
2 formula (the same formula

for all ξ < ω2). This involves uniquely selecting a real cξ ∈ P(ω) which we call a minimal

local witnesses and whose task is to localize the coding to suitable countable models.

Uniquely selecting such a real is a non-trivial task, and to tackle it we introduce some

terminology.

Notation 4.7. Let F : ω2 → ω denote some �xed recursive bijection for the remainder

of this article.

De�nition 4.8.

(1) Given c ⊆ ω and n ∈ ω we write (c)n for {m ∈ ω : F (n,m) ∈ c}.
(2) Given c ⊆ ω we write Seq (c) for the sequence 〈(c)n : n ∈ ω〉.
(3) Let G : On2 → On denote the Gödel pairing function. We say c ⊆ ω almost

disjointly via F codes the sequence ~b to mean that c ⊆ ω almost disjointly via F
codes a set S ⊆ ω1 and ~b = 〈bν : ν < ξ〉 where:
• For θ < ω1, letting

Sθ = {η < ω1 | G(θ, η) ∈ S},

S∗θ = {(ζ0, ζ1) ∈ (ω1)
2 | ω +G(ζ0, ζ1) ∈ Sθ},

it holds that 〈ω1, S
∗
θ 〉 is a well-ordering and ξ = {otpS∗θ | θ < ω1, Sθ 6= ∅};

• For each ν < ξ there is exactly one θ such that Sθ 6= ∅ and otpS∗θ = ν, and

for this θ it holds that

bν = ω ∩ Sθ.

The crucial de�nition for our proof of Theorem 4.1 (and thus, of Theorems 1.1 and

1.3) is that of minimal local witness.

Remark 4.9. In the end, our MAD family will be

A = {an : n ∈ ω}∪{
a ∈ [ω]ω : c = dc(a) is a minimal local witness and a = cd

(
(c)0, (c)1, c

)}
.

We will show below that being a minimal local witness is expressible by a Π1
2 formula.

Thus, A will be Π1
2. The low de�nitional complexity will be achieved through a careful
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recursive construction of A. We will have A = {aξ : ξ < ω2} where letting cξ = dc(aξ),

(cξ)2 almost disjointly via F codes 〈aν : ν < ξ〉.

Before we introduce the notion of minimal local witnesses, we make another convenient

de�nition, for which some motivation should be provided by the previous remark.

De�nition 4.10. We shall say that a sequence ~b = 〈bν : ν < ξ〉 is a coherent candidate

if ~aω ⊆ ~b and moreover, for each ν < ξ it holds that
(
dc(bν)

)
2
almost disjointly via F

codes the sequence ~b � ν.

We proceed towards the de�nition of minimal local witness, by de�ning the notions of

k-witness, minimal k-witness and k-localizer, by induction on k ∈ ω, k ≥ 3.

De�nition 4.11. We say c̄ ∈ P(ω)3 is a 3-witness if and only if

(∗)3

(a) c̄(2) almost disjointly via F codes a sequence ~b = 〈bν : ν < ξ〉.
(b) ~b is a coherent candidate.

(c) c̄(1) is subset of ω such that c∩ bν is in�nite if ν < ω and �nite

for all other ν < ξ.

(d) c̄(0) is an element of [ω]ω which is almost disjoint from each bν
for ν < ξ;

Remark 4.12. Clearly, the sequence ~b from (a) is intended to be an initial segment of

the MAD family under construction. We ask (b) as a �rst step towards ensuring that

this is indeed the case. The reader will notice that in (c) we require that c̄(1) has the

same properties as c in Fact 4.5, and in (d) we require that c̄(0) has the same properties

as d in said fact. The reader may think of c̄(0) as a counterexample to maximality of ~b

which we wish to eliminate at stage ξ of our construction of A by adding a `self-coding'

element to our MAD family which has in�nite intersection with c̄(0).

We continue with the de�nition of minimal 3-witness to a sequence ~b of subsets of ω.

De�nition 4.13. For any 3-witness c̄ ∈ P(ω)3, we say c̄ is a witness to ~b if ~b is the

sequence coded by c̄(2) as in (a) above. We also write ~b
(
c̄(2)

)
for this sequence. Write

≺3 for the lexicographic ordering on P(ω)3 induced by ≺. We call a 3-witness c̄ ∈ P(ω)3

minimal if it is ≺3-minimal among all 3-witnesses to the same sequence ~b. This is the

same as saying that c̄(2) is ≺-minimal satisfying (d) in (∗)3, c̄(1) is ≺-minimal satisfying

(c), and c̄(0) is ≺-minimal satisfying (a).

As is not hard to see, the notion of minimal 3-witness is su�ciently absolute for our

purposes:

Lemma 4.14. The notion of 3-witness is absolute for transitive models M of ZF− such

that ω1 ∈M and the notion of minimal 3-witness is absolute for such models if in addition

M � Φis(c≺).

Proof. The statement (∗)3(a) that c̄(2) almost disjointly via F codes a sequence ~b is

easily seen to be equivalent in ZF− to a Σ1 property of c̄(2), allowing ω1 as a parameter.

Moreover, this Σ1 statement is absolute for transitive models M of ZF− since a witness

can be constructed inside M using the Replacement Axiom, and as F ∈M by choice of

F . That ~b is a coherent candidate is absolute for the same reasons. Statements (c) and

(d) are obviously ∆1 in the parameters ~b and c̄. This shows that the notion of 3-witness

is absolute for transitive models M of ZF−.
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Minimality of 3-witnesses is now easily seen to be absolute provided that in addition

M � Φis(c≺) since ≺ is absolute for such M and P(ω)∩M is an initial segment of ≺: If
c̄ ∈M is a minimal 3-witness,M �� c̄ is a minimal 3-witness� by absoluteness of ≺ and of

the notion of 3-witness. Vice versa, suppose c̄ ∈ M and M �� c̄ is a minimal 3-witness�.

Then c̄(0) must minimal satisfying (∗)3(a) since if there were c′ ≺ c̄(0) satisfying (a), it

would have to be the case that c′ ∈M since P(ω)∩M is a ≺-initial segment, contradicting

M �� c̄ is a minimal 3-witness�. Likewise for c̄(1) and c̄(2). �

We now give the crucial de�nition of a 3-localizer�a real which ensures that minimal

3-witnesses can be recognized from a local (i.e., a Π1
2) property.

De�nition 4.15. Given c̄ ∈ P(ω)3 (a putative 3-witness) we say c ∈ P(ω) is a 3-localizer

for c̄ if and only if:

(∗)4

For any suitable model N with {c̄, c,~aω} ⊆ N , the following holds in

N : There is a transitive model M of ZF− such that M � Φis(c≺),

{ω1, c̄,~aω} ⊆M , and

(a) M �� c̄ is a minimal 3-witness�.

(b) Writing ~b
(
c̄(2)

)M
as 〈bν : ν < ξ〉 it holds that for each ν < ξ,

M �� c̄∗ν � 3 is a minimal 3-witness�, where c̄∗ν = Seq (dc(bν)).

Remark 4.16. Note that � c̄ν � 3 is a minimal 3-witness� is a statement which uses ~aω as

a parameter.

We need the following crucial lemmas:

Lemma 4.17. Suppose c̄ ∈ P(ω)3 is a minimal 3-witness, ~b
(
c̄(2)

)
= 〈bν | ν < ξ〉 and

for each ν < ξ it holds that Seq (dc(bν)) � 3 is a minimal 3-witness. Then there exists a

3-localizer for c̄.

Proof. Suppose c̄ ∈ P(ω)3 is as in the lemma. Fix a transitive model M of ZF− such

that {ω1, c̄} ⊆ M and so that M � Φis(c≺). By Lemma 4.14 the property of being a

minimal 3-witness is absolute for M , so M �� c̄ is a minimal 3-witness� and M �� c̄∗ν � 3

is a minimal 3-witness� where c̄∗ν = Seq (dc(bν)) for each ν < ξ.

Now as in the proof of Lemma 3.6, �nd c coding almost disjointly via F a subset of ω1

which is isomorphic to ∈ �M and such that for any suitable model N , if c, c̄ ∈ N then it

holds in N that c codes a model M∗ which witnesses the Σ1 statement expressing c̄ and

each c̄∗ν � 3 are minimal 3-witnesses. Clearly, c is a 3-localizer for c̄. �

Lemma 4.18. Suppose c̄ ∈ P(ω)3. If there exists a 3-localizer for c̄, then c̄ is a minimal

3-witness, and letting ~b
(
c̄(2)

)
= 〈bν | ν < ξ〉 it holds for each ν < ξ that Seq (dc(bν)) � 3

is a minimal 3-witness.

Proof. Suppose c is a 3-localizer for c̄. Let N̄ be a countable elementary submodel of

Lω2 [c, c̄,~aω] with {ω1, c, c̄,~aω} ⊆ N̄ and let N be the transitive collapse of N̄ . Then N is

suitable, and so by (∗)4 the following holds in N : There is a transitive model M of ZF−

such that M � Φis(c≺), {(ω1)
N , c̄,~aω} ⊆M , and

(a) M �� c̄ is a minimal 3-witness�.

(b) Writing ~b
(
c̄(2)

)M
as 〈bν : ν < ξ〉, for each ν < ξ, M � c̄∗ν � 3 is a minimal

3-witness�, where c̄∗ν = Seq (dc(bν)).



12 FISCHER, SCHRITTESSER, AND WEINERT

By elementarity, there exists such a model M in Lω2 [c, c̄,~aω] with all of the above prop-

erties, where (ω1)
N is replaced by ω1. Since ω1 ∈ M and M � ZF− ∧ Φis(c≺), by

Lemma 4.14 the property of being a minimal 3-witness is absolute for M . Hence c̄ and

each c̄∗ν � 3 for ν < ξ are a minimal 3-witnesses, �nishing the proof. �

Thus we have shown, roughly, that c̄ is a minimal 3-witness coding a coherent candidate

consisting of minimal 3-witnesses if and only if there exists a 3-localizer for c̄. Of course,

there may be more than one 3-localizer for a given minimal 3-witness.

De�nition 4.19. We say c̄ ∈ P(ω)4 is a minimal 4-witness if and only if c̄(3) is the

≺-least localizer for c̄ � 3.

We now continue the de�nition of k-localizer and minimal k + 1-witness for elements

of P(ω)k by induction on k, following the template given by the de�nition for k = 3.

De�nition 4.20. Let k ∈ ω \ 4 and suppose we have already de�ned what it means to

be a minimal k-witness for elements of P(ω)k. Given c̄ ∈ P(ω)k (a putative k-witness)

we say c ∈ P(ω) is is a k-localizer for c̄ if and only if the following holds:

(∗)k

For any suitable model N with {c̄, c,~aω} ⊆ N , the following holds in

N : There is a transitive model M of ZF− such that M � Φis(c≺),

{ω1, c̄,~aω} ⊆M , and

(a) M �� c̄ is a minimal k-witness�,

(b) Writing ~b
(
c̄(2)

)M
as 〈bν : ν < ξ〉, for each ν < ξ it holds that

M �� c̄ν � k is a minimal k-witness�, where c̄ν = Seq (dc(bν)).

Moreover, we say c̄ ∈ P(ω)k+1 is a minimal (k + 1)-witness if and only if c̄(k) is the

≺-least k-localizer for c̄ � k.

Finally, we say c̄ ∈ P(ω)ω is a minimal local witness if and only if

(∗∗) for each k ∈ ω \ 3, c̄(k) is a k-localizer for c̄ � k

and we say c ∈ P(ω) is a minimal local witness if and only if Seq (c) is a minimal local

witness.

Given arbitrary c̄ ∈ P(ω)≤ω let us say c̄ codes ~b if c̄(2) almost disjointly via F codes

the sequence ~b. In this case let us also write ~b(c̄) for ~b. We shall also say c̄ is a witness to
~b to mean that c̄ is a lh(c̄)-witness or, if lh(c̄) = ω, a minimal local witness, and ~b(c̄) = ~b.

Just as before for k = 3 we have the following crucial lemma:

Lemma 4.21. Suppose k ∈ ω \ 4 and c̄ ∈ P(ω)k. There exists a k-localizer for c̄ if and

only if c̄ is a minimal k-witness, and letting ~b
(
c̄(2)

)
= 〈bν | ν < ξ〉 it holds for each ν < ξ

that Seq (dc(bν)) � k is a minimal k-witness.

Proof. This is shown precisely as Lemmas 4.18 and 4.17 above. �

In the next lemma, we verify for the reader's convenience that the minimal local

witness to a sequence is uniquely determined by this sequence.

Lemma 4.22. For each sequence ~b = 〈bξ : ξ < ν〉, there is at most one minimal local

witness c̄ ∈ P(ω)ω coding ~b. Likewise, if two sequences c̄ and c̄′ are minimal local

witnesses and c̄(2) = c̄′(2), then c̄ = c̄′.
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Proof. Suppose c̄ and c̄′ are minimal local witnesses coding ~b. Since c̄(3) is a 3-localizer

to c̄ � 3, by Lemma 4.18 the latter is a minimal 3-witness to ~b. The same holds for c̄′.

But obviously, there is only one minimal 3-witness to ~b, so c̄ � 3 = c̄′ � 3. But since c̄(4)

is a 4-localizer for c̄ � 4, c̄(3) is the ≺-least 3-localizer by Lemma 4.21. Since the same

holds for c̄′(4) we have c̄(3) = c̄′(3). Continue by induction to obtain c̄ = c̄′. The second

statement follows, since if c̄(2) = c̄′(2), also ~b(c̄) = ~b(c̄′). �

We are now ready to begin the proof.

Proof of Theorems 1.3 and 4.1. As we have stated earlier, we shall inductively construct

a sequence 〈aν : ν < ω2〉 such that A = {aν : ν < ω2} will be a Π1
2 MAD family. For the

�rst ω elements of 〈aν : ν < ω2〉 take the sequence ~aω = 〈ak : k ∈ ω〉 �xed in 4.4 (since

our coding functions cd and dc use ~aω). Fix cA ∈ P(ω) from which both ~aω and c≺ are

computable; in the end A will be Π1
2(cA).

Suppose we have already constructed 〈aν : ν < ξ〉 (where ω ≤ ξ < ω2) and assume

as induction hypothesis that for each ν < ξ, letting cν = dc(aν) and c̄ν = Seq (cν) we

have that aν = cd(c̄ν(0), c̄ν(1), cν) and c̄ν (or equivalently, cν) is a minimal local witness.

Also, let us write dν = c̄ν(0).

Write Aξ = {aν : ν < ξ}. We will now de�ne aξ. First �nd dξ such that

(5)
dξ is the ≺-least element of [ω]ω which is almost disjoint from every

element of Aξ.
Such dξ exists since BPFA implies that there is no MAD family of size less than ω2.

We now �nd a minimal local witness c̄ξ ∈ P(ω)ω to 〈aν : ν < ξ〉 (see De�nition 4.13).

• Of course, we let c̄ξ(0) = dξ.

• By Fact 3.1 (see also Remark 4.6) there exists c ∈ [ω]ω satisfying the requirement

from Fact 4.5 that {ν < ξ : |c ∩ aν | < ω} = ξ \ ω. We let c̄ξ(1) be the ≺-least
such c.

• Also by Fact 3.1, there exists a subset of ω which almost disjointly via F codes

〈aν : ν < ξ〉; let c̄ξ(2) be the ≺-least such subset.

By construction c̄ξ � 3 is a minimal 3-witness. Let c̄ξ(3) be the ≺-least 3-localizer for

c̄ξ � 3, which exists by Lemma 4.18. Continue de�ning c̄ξ � k + 1 by recursion on k for

k > 3, letting c̄ξ(k) be the ≺-least k-localizer for c̄ξ � k, using Lemma 4.21, arriving at a

minimal local witness c̄ξ to 〈aν : ν < ξ〉 with c̄ξ(0) = dξ.

Finally, we write cξ for the element of P(ω) such that Seq (cξ) = c̄ξ and de�ne

aξ = cd(c̄ξ(0), c̄ξ(1), cξ),

�nishing the recursive de�nition of 〈aξ : ξ < ω2〉. Write A = {aξ : ξ < ω2}. Clearly, by
choice of cξ(0) = dξ and c̄ξ(1) and by the properties of the function cd from Fact 4.5,

this is an almost disjoint family.

It is not hard see that A is maximal. We �rst point out the following simple observa-

tion:

Claim 4.23. Whenever ν < ξ < ω2, dν ≺ dξ.

Proof. This is clear by the de�nition: Suppose otherwise that dξ � dν . Since Aν ⊆ Aξ,
dξ is almost disjoint from every set in Aν . So by minimality of dν , we infer dν = dξ.

But then since dν ∩ aν is in�nite by the properties of the function cd from Fact 4.5,
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dξ is not almost disjoint from every element of Aξ, contradicting how dξ was chosen.

Claim 4.23. �

Claim 4.24. The set A is a maximal almost disjoint family.

Proof. Suppose towards a contradiction that d ∈ [ω]ω\A and A∪{d} is an almost disjoint

family. Let ξ < ω2 be the least ordinal such that d � dξ; such an ordinal exists since

≺ well-orders the reals in ordertype ω2 and so the sequence 〈dξ : ξ < ω2〉 is ≺-co�nal
in P(ω). But since at stage ξ in the construction of A, dξ was chosen to be the least

element almost disjoint from every element of {aν : ν < ξ}, we have d = dξ. Then since

aξ = cd(c̄ξ(0), c̄ξ(1), c̄ξ) and c̄ξ(0) = dξ = d, aξ ∩ d is in�nite by the properties of the

function cd from Fact 4.5, contradiction. Claim 4.24. �

We now show that A is Π1
2(cA). We �rst show:

Claim 4.25. There is a Π1
2(cA) formula Θ(x) such that Θ(c̄) holds if and only if c̄ is a

minimal local witness.

Proof. It is easily seen that for each k ∈ ω \ 3 the set

{(c, c′) ∈ P(ω)× P(ω)k : c is a k-localizer for c′}

is de�nable by a Π1
2(cA) formula Θk(x, y), namely, the formula obtained by expressing

(∗)k in the language of set theory. In fact, 〈Θk(x, y) : k ∈ ω〉 is a recursive sequence

of formulas, and so using a universal de�nable Π1
2 truth predicate we can �nd a Π1

2(cA)

formula Θ(c̄) equivalent to

(∀k ∈ ω) Θk(c̄(k + 3), c̄ � (k + 3)). �

Let now Ψ(a) be de�ned as follows:

Ψ(a)
def⇐⇒

[
(∃n ∈ ω) a = an

]
∨(

∀c ∈ (P(ω)
) [
c = dc(a)⇒

(
a = cd

(
(c)0, (c)1, c

)
∧Θ

(
Seq (c)

))]
.

Clearly this formula is Π1
2(cA). We will show that Ψ(a) ⇐⇒ a ∈ A. The non-trivial

direction is �⇒,� which we show �rst.

Lemma 4.26. (∀a ∈ [ω]ω) Ψ(a)⇒ a ∈ A.

Proof. Suppose Ψ(a) and to avoid trivialities let us suppose a /∈ {an | n ∈ ω}. Then

c̄ = Seq (dc(a)) is a minimal local witness and so ~b(c̄) is de�ned, namely as the unique

sequence coded by c̄(2) as in (∗)3(a). Let us write ~b(c̄) = 〈bξ : ξ < α〉. We need the

following claim:

Claim 4.27. The sequence ~b(c̄) = 〈bξ : ξ < α〉 is an initial segment of 〈aν : ν < ω2〉.

Proof. Suppose not. Let ν < α be least such that bν 6= aν . Write c∗ν = dc(bν) and

c̄∗ν = Seq (c∗ν). Since c̄ is a minimal local witness, ~b(c̄) is a coherent candidate, and

so (c∗ν)2 codes almost disjointly via F the sequence ~b(c̄) � ν, which by assumption is

〈aξ : ξ < ν〉.
We verify that c̄∗ν , too, is a minimal local witness: Firstly, c̄(3) is a 3-localizer for

c̄ � 3. Then by (b) in (∗)4 and by Lemma 4.18 it holds that c̄∗ν � 3 is a minimal 3-witness.

More generally, since c̄(k) is a k-localizer for c � k, by (b) in (∗)k we see that c̄∗ν � k is a
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minimal k-witness (cf. Lemma 4.21). Since this holds for each k ∈ ω, c̄∗ν is a minimal

local witness.

But then since c̄∗ν and c̄ν are both minimal local witnesses for the sequence 〈aξ : ξ < ν〉,
we must have c̄∗ν = c̄ν by the de�nition of minimal local witness (see also Lemma 4.22). It

follows that aν = cd(c̄ν(0), c̄ν(1), cν) = cd(c̄∗ν(0), c̄∗ν(1), c∗ν) = bν , contradicting the choice

of ν. Claim 4.25. �

By the claim we can �x ν < ω2 such that ~b(c̄) = 〈aξ : ξ < ν〉. By the same argument

as in the previous paragraph, a = aν . Lemma 4.26. �

Finally, for any ξ such that ω ≤ ξ < ω2 it is clear by construction that aξ =

cd(c̄ξ) and c̄ξ is a minimal local witness. Therefore Ψ(aξ) holds. So a ∈ A ⇒ Ψ(a).

Theorems 1.3 & 4.1. �

5. Infinite MAD families, sharps, and Bounded Martin's Maximum

In this section, we proove Theorem 1.4, i.e., that under ZFC + BMM there are no

in�nite Σ1
3 MAD families. In fact, we show the following:

Theorem 5.1. Suppose for every a ∈ P(ω), a] exists. Then there are no in�nite Σ1
3

MAD families.

Proof. Under the assumption of the theorem, any Σ1
3(a) set, where a ∈ P(ω), is equal

to p[T ] for some tree T on ω × κ (for some ordinal κ); in fact one can take T ∈ L[a]]

(this is implicit in [13]; see [11, pp. 198�204] for a proof, where the result is credited

to Martin). Since also (a])] exists, P(P(ω))L[a
]] is countable. Now let us suppose that

p[T ], for some such tree T , is an in�nite almost disjoint family. Following [2] we show

that p[T ] cannot be maximal: For let r be generic over L[a]] for Mathias forcing relative

to the ideal generated by p[T ], as computed in L[a]]; then r is almost disjoint from any

element of p[T ] by [2, Main Proposition 3.6]. �

Theorem 1.4 follows by a result of Schindler:

Proof of Theorem 1.4. As Schindler showed in [23, Theorem 1.3], BMM implies that

every set has a sharp. Now use the previous theorem. �

6. Questions

Question 6.1. Can BPFA be replaced by the Bounded Forcing Axiom for Axiom A in

Theorem 1.3?

Question 6.2. Can we assume a forcing axiom stronger than BPFA but still compat-

ible with an appropriate, weaker anti-large cardinal assumption and derive a form of

Theorem 1.3?
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