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Abstract. We study the definability of maximal towers and of inextendible linearly ordered towers

(ilt’s), a notion that is more general than that of a maximal tower. We show that there is, in the

constructible universe, a ⇧1
1 definable maximal tower that is indestructible by any proper Suslin

poset. We prove that the existence of a ⌃1
2 ilt implies that !1 = !L

1 . Moreover we show that

analogous results hold for other combinatorial families of reals. We prove that there is no ilt in

Solovay’s model. And finally we show that the existence of a ⌃1
2 ilt is equivalent to that of a ⇧1

1

maximal tower.

1. Sets of reals and their definability

The current work belongs to a line of research studying the definability properties of combinato-
rial sets of reals, more specifically sets often associated with combinatorial cardinal characteristics
of the continuum. An excellent exposition of the combinatorial cardinal characteristics of R can
be found in [3]. Classical examples of such sets are maximal almost disjoint families, maximal
cofinitary groups, maximal independent families, ultrafilter bases. Before turning our attention to
the main object of study of this paper, definable towers, we give a brief overview of the area and
some of its central ideas.

1.1. Sets of reals and their projective complexity. Recall that in Gödel’s constructible uni-
verse L, there is a ⌃1

2 definable well-order of the reals. Moreover, the existence of a ⌃1
2-definable

well-order of the reals, implies that every real is constructible (see [22, Theorem 25.39]). Thus, in
models of ¬CH, the optimal (lowest possible) projective complexity of a definable well-order on the
reals is �1

3. The existence of a nicely definable wellorder of the reals gives rise in a natural way to
the existence of nicely definable combinatorial sets of reals as they can be often built inductively
along the given well-order. A di�cult and highly non-trivial task remains however the construction
of nicely definable combinatorial sets of reals, whose projective complexity is strictly smaller then
the complexity of the given projective well-order.

A celebrated result of Harrington states that the existence of a �
1
3-wellorder of the reals is

consistent with MA and c = @2 ( [19]), while the question if the continuum can be strictly above @2

remained an interesting open problem for more than three decades, until 2013 when it was answered
to the positive in [11]. Under MA all combinatorial cardinal characteristics of the real line are equal
to c and so in a sense certain infinitary combinators of the reals trivialize: all maximal almost
disjoint families, towers, maximal independent families are of cardinality c. The work in [11] was
shortly preceded by yet another interesting result, see [8]: The existence of a�1

3-definable well-order
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of the reals is consistent with c = @2 and each of the following cardinal characteristic constellations:
d = @1 < c = @2, or b = @1 < a = s = @2, b < g. Thus, the existence of a projective well-order of
the reals, leaves enough room for many interesting and exciting combinatorial possibilities.

The study of nicely definable combinatorial sets of reals is an area of its own interest, which
undoubtedly goes beyond the sets associated to the combinatorial cardinal characteristics of R.
Good examples are the prominent results of Mathias, that there are no analytic maximal almost
disjoint families (see [31]) and of Todorčević, that there are no analytic Hausdor↵ gaps (more
precisely no (⌃1

1, ·) Hausdor↵ gaps; see [39, Corollary 1]). Answering a question of Mauldin, Preiss
and Rataj [35] showed that in an uncountable Polish space there are no analytic maximal families
of pairwise orthogonal measures, result which was later proved using Hjorth’s theory of turbulance
by Kechris and Sofronidis, see [27]. Further interestnig examples are given by the fact that there
are no analytic maximal independent families [33], no analytic Hamel bases [33], no analytic C1-
small sets (see [20]; recall that an uncountable subset of R2 is said to be C1-small if it meets every
C1-curve in countable many points).

Many of the above “types of families” have co-analytic counterparts in L, making ⇧1
1 their op-

timal projective complexity in the constructible universe: there are co-analytic maximal almost
disjoint families [33]; co-analytic Hausdor↵ gaps [29]; co-analytic maximal families of orthogonal
measures [16]; co-analytic C1-small sets [45]; co-analytic maximal independent families (see for ex-
ample [5]). For many of those results, one can use a technique due to Erdös, Kunen and Mauldin [7],
a technique which found broad applications after its appearance in Miller’s [33]. A beautiful gen-
eralization of the technique giving a general framework for constructing co-analytic sets of reals is
developed by Vidnyánszky in [45].

Projective complexity gives an important distinction between various very closely related combi-
natorial sets of reals. While there are no analytic Hausdor↵ gaps, there are perfect Luzin gaps [39].
While there are no analytic maximal almost disjoint families, there are Borel maximal cofinitary
groups and Borel eventually di↵erent families (see [21] and [38]). Note that the latter two results
were only gradually obtained and remained open for long time. Major stepping stones towards
those results are the construction of a maximal cofinitary group with a co-analytic set of genera-
tors [18], followed shortly thereafter by the construction of a co-analytic maximal cofinitary group
in [25]. An interesting parallel can be drawn at this point with the study of two-point sets: while
in L there are co-analytic two-point sets [33], the existence of a Borel such set remains an open
question (the question is due to Erdös).

Another more recent line of investigations, which is of particular interest in the light of [19]
and [8], are the definability properties of various combinatorial sets of reals in models of large con-
tinuum. Studies of nicely definable maximal almost disjoint families in models of large continuum
can be found in [17], [9], [6]. For a Sacks indestructible co-analytic maximal independent families
and so a model of i = d < c in which i has an optimal projective witness see [5]. A co-analytic
maximal eventually di↵erent family of cardinality @1 in a model of ¬CH can be found in [13]. A
powerful strengthening of the notion of maximality for eventually di↵erent families, the notion of
tight eventually di↵erent families which proved to be very fruitful in this context, can be found
in [15]. A construction of a co-analytic Cohen indestructible maximal cofinitary group and so a
model of ag = b < d = c with an optimal projective witness to ag can be found in [14]. A construc-
tion of ⇧1

2 definable maximal cofinitary groups, as well as ⇧1
2-definable maximal almost disjoint
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families and ⇧1
2-definable maximal eventually di↵erent families, of cardinality � where @1 < � < c

can be found in [12] (note that for such families ⇧1
2 is optimal). Further results regarding projective

well-orders and cardinal characteristics constellations can be found in [10], for more recent work,
see [2].

1.2. Maximal Towers and their projective complexity. In this note we focus solely on the
definablity of maximal towers and inextendible linearly ordered towers (abbreviated as ilt). In-
teresting studies of the correlation between Hausdor↵ gaps and towers in P(!)/fin which are not
necessarily maximal, as well as examples of towers with various properties (e.g. Hausdor↵ or Suslin)
can be found in [4], [23]. For an example of a tower which can not be the half of any gap, see [4,
Example 32] and [42] where the proof originates.

A tower will be, as usual, a set X ✓ [!]! which is well ordered with respect to reverse almost
inclusion, i.e. the relation x  y given by 9n 2 !(y \ n ✓ x). A tower is maximal if it has no
pseudointersection. In the definition of a linearly ordered tower we drop the requirement that the
order is well-founded. An inextendible linearly ordered tower is one that has no top-extension, i.e.
has no pseudointersection. Note that neither maximal towers nor ilt’s can be analytic. On the
other hand in Section 3 we show that ⇧1

1 maximal towers do exist in L (Theorem 3.2). In Section 4
we study forcing indestructible, nicely definable towers and show that in L there is a ⇧1

1 maximal
tower that is indestructible by any proper Suslin partial order (Theorem 4.3). Section 5 deals with
the value of !1 in models where ilt’s can have simple definitions. As a main result we show that the

existence of a ⌃1
2(x) ilt implies that !1 = !L[x]

1 (Theorem 5.3). The same has been shown for mad
families in [43]. Using similar ideas we show that this holds analogously for maximal independent
families, Hamel bases and ultrafilters (Theorem 5.7, 5.9 and 5.11). In [6] Brendle and Khomskii ask
whether there is some notion of transcendence over L that is equivalent to the non-existence of a
⇧1

1 mad family. The same question can be asked for other families and our observations contribute
to this question by giving a su�cient condition of this kind. In Section 6 we show that there is no
ilt in Solovay’s model (Theorem 6.1). For mad families this was a long standing open question first
asked by Mathias in [31] and solved by Törnquist in [43]. For Hausdor↵ gaps this follows from [41,
Theorem 1]. In Section 7 we show that the existence of a ⌃1

2 ilt is equivalent to that of a ⇧1
1 ilt

which is equivalent to that of a ⇧1
1 tower (Theorem 7.3). This theorem fits into a series of results

stating that we can canonicaly construct ⇧1
1 objects from given ⌃1

2 ones. For mad families this was
shown in [44]. For maximal independent families see [5], for maximal eventually di↵erent families
see [13] and to the best knowledge of the authors still open for maximal cofinitary groups.

We will always stress the di↵erence between lightface (⇧1
1,⌃

1
1,⌃

1
2) and boldface (⇧1

1,⌃
1
1,⇧

1
2)

definitions as well as definitions relative to a fixed real parameter (⇧1
1(x),⌃

1
1(x),⌃

1
2(x)) to stay as

general as possible.

2. Towers and Definability

Definition 2.1. A tower is a set X ✓ [!]! which is well ordered with respect to the relation
defined by x  y i↵ y ✓⇤ x. It is called maximal if it cannot be further extended, i.e. it has no
pseudointersection.

Theorem 2.2. A tower contains no (uncountable) perfect set, i.e. is thin. In particular there is

no ⌃
1
1 maximal tower.
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Proof. Assume X ✓ [!]! is a tower and P ✓ X is a perfect set. The set R = {(x, y) : x, y 2
P ^ y ✓⇤ x} is Borel. P is an uncountable Polish space and R is Borel as a subset of P ⇥ P . But
R is a well order of P , which contradicts R having the Baire property by [26, Theorem 8.48]. A
maximal tower must be uncountable and an uncountable analytic set has a perfect subset by the
Perfect Set Theorem. Thus there is no analytic maximal tower. ⇤

Theorem 2.3. Every ⌃1
2(x) tower is a subset of L[x] and thus of size at most !L[x]

1 .

Proof. If X is a ⌃1
2(x) tower then it contains no perfect set and is thus a subset of L[x] by the

Mansfield-Solovay Theorem [32, Theorem 21.1]. ⇤

Corollary 2.4. The existence of a ⌃1
2(x) maximal tower implies that !1 = !L[x]

1 .

All of the proofs above rely mostly on the fact that towers exhibit a well ordered structure
and the maximality is inessential. Thus it is natural to ask for a more general version of a tower
which is not trivially ruled out by an analytic definition. We call a set X ✓ [!]! an inextendible
linearly ordered tower (abbreviated as ilt) if it is linearly ordered with respect to ✓⇤ and has no
pseudointersection. We call Y ✓ X cofinal in X if 8x 2 X9y 2 Y (y ✓⇤ x).

Theorem 2.5. There is no ⌃
1
1 definable inextendible linearly ordered tower.

Proof. Assume X = p[T ] is an ilt where T is a tree on 2⇥ !.

Claim 2.6. There is T 0 ✓ T so that for every (s, t) 2 T 0
, p[T 0

(s,t)] is cofinal in X.

Proof. Let T 0 = {(s, t) : p[T(s,t)] is cofinal in X}. For every (u, v) 2 T \ T 0, we let xu,v 2 X be such
that 8y 2 p[T(u,v)](xu,v ✓⇤ y). The collection {xu,v : (u, v) 2 T \ T 0} is countable and therefore
there is x 2 X so that x (⇤ xu,v for every (u, v) 2 T \ T 0. Now let (s, t) 2 T 0 be arbitrary and
x0 2 X such that x0 ✓⇤ x. As p[T(s,t)] is cofinal in X, there is y 2 p[T(s,t)] so that y ✓⇤ x0. Say
(y, z) 2 [T(s,t)]. For every n 2 !, (y � n, z � n) 2 T 0 because else we get a contradiction to y ✓⇤ x.
Thus y 2 p[T 0

(s,t)]. ⇤

By the claim we can wlog assume that for every (s, t) 2 T , p[T(s,t)] is cofinal in X. Now consider
T as a forcing notion (which is equivalent to Cohen forcing). The generic real will be a new element
of p[T ] together with a witness. Let ċ be a name for the generic real. Notice that the statement
that p[T ] is linearly ordered by ✓⇤ is absolute. Thus for every y 2 X there is a condition (s, t) 2 T
and n 2 ! so that either

(s, t) � ċ ✓ y \ n
or

(s, t) � y ✓ ċ \ n.
The second option is impossible, because p[T(s,t)] is cofinal in X. We can thus find (s, t), n 2 !

and Y ✓ X cofinal in X, so that for every y 2 Y , (s, t) � ċ ✓ y \n. Let (x, z) 2 [T(s,t)] be arbitrary.
As Y is cofinal in X, there is y 2 Y so that y (⇤ x. But this clearly contradicts (s, t) � ċ ✓ y\n. ⇤

Corollary 2.7. Every ⌃
1
2 inextendible linearly ordered tower has a cofinal subset of size !1.

Proof. Assume X is ⌃1
2. Then it is the union of !1 many Borel sets (see e.g. [34]). By Theorem 2.5

each of these Borel sets has a lower bound in X. ⇤
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Note that the above results can be applied similarly to inextendible linearly ordered subsets of
(!!,⇤).

3. A ⇧1
1 definable maximal tower in L

In this section we will show how to construct in L a maximal tower with a ⇧1
1 definition. For

this we apply the coding technique that has been developed by A. Miller in [33] in order to show
the existence of various nicely definable combinatorial objects in L.

Let O be the set of odd and E the set of even natural numbers.

Lemma 3.1. Suppose z 2 2!, y 2 [!]! and hx↵ : ↵ < �i is a tower, where � < !1, so that

8↵ < �(|x↵ \O| = !^ |x↵ \E| = !). Then there is x 2 [!]! so that 8↵ < �(x ✓⇤ x↵), |x\O| = !,
|x \ E| = !, z T x and |y \ ! \ x| = !.

Proof. It is a standard diagonalization to find x so that 8↵ < �(x ✓⇤ x↵), |x\O| = !, |x\E| = !
and |y \ ! \ x| = !. We assume that z is not eventually constant, else there is nothing to do. Now
given x find hniii2! increasing in x so that ni 2 O i↵ z(i) = 0. Let x0 = {ni : i < !}. Then x0

works. ⇤

Theorem 3.2. Assume V = L. Then there is a ⇧1
1 definable maximal tower.

In the rest of the paper, <L will always stand for the canonical global L well-order. Whenever
r 2 2!, we write Er ✓ !2 for the relation defined by

mErn i↵ r(2m3n) = 0.

If Er is a well-founded and extensional relation then we denote with Mr the unique transitive
2-model isomorphic to (!, Er). Notice that {r 2 2! : Er is well-founded and extensional} is ⇧1

1.
If Er is a well-order on ! then krk denotes the unique countable ordinal ↵ so that (!, Er) is

isomorphic to (↵,2). We also say that r codes ↵. The set of r so that Er is a well-order is called
WO. WO is obviously ⇧1

1.
For any real x 2 2! we define !x

1 to be the least countable ordinal which has no recursive code
in x, i.e. the least ordinal ↵ so that for any recursive function r : 2! ! 2!, r(x) does not code ↵.

Proof of Theorem 3.2. Let hy⇠ : ⇠ < !1i enumerate [!]! via the canonical well order of L. We will
construct a sequence h�(⇠), z⇠, x⇠ : ⇠ < !1i, where for every ⇠ < !1:

� �(⇠) is a countable ordinal
� z⇠ 2 2! \ L�(⇠)+!

� x⇠ 2 [!]! \ L�(⇠)+!

The sequence is defined by the following requirements for each ⇠ < !1:

(1) �(⇠) is the least ordinal � greater than sup⌫<⇠ �(⌫) so that y⇠, h�(⌫), z⌫ , x⌫ : ⌫ < ⇠i 2 L� and

L� projects to !1.
(2) z⇠ is the <L least code for the ordinal �(⇠).
(3) hx⌫ : ⌫ < ⇠i is a tower and 8⌫ < ⇠(|x⌫ \O| = ! ^ |x⌫ \ E| = !).
(4) x⇠ is <L least so that 8⌫ < ⇠(x⇠ ✓⇤ x⌫), |x⇠ \ O| = !, |x⇠ \ E| = !, z⇠ T x and

|y⇠ \ ! \ x| = !.

1This means that over L� there is a definable surjection to !. The set of such � is unbounded in !1.
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Notice that z⇠ and x⇠ indeed can be found in L�(⇠)+! given that y⇠, hx⌫ : ⌫ < ⇠i 2 L�(⇠), and that
L�(⇠) projects to !. It is then straightforward to check that (1)-(4) uniquely determine a sequence
h�(⇠), z⇠, x⇠ : ⇠ < !1i for which hx⇠ : ⇠ < !1i is a maximal tower.

Claim 3.3. {x⇠ : ⇠ < !1} is a ⇧1
1 subset of 2!.

Proof. Let  (v) be the formula expressing that for some ⇠ < !1, v = h�(⌫), z⌫ , x⌫ : ⌫  ⇠i. More
precisely,  (v) says that v is a sequence h⇢⌫ , ⇣⌫ , ⌧⌫ : ⌫  ⇠i of some length ⇠ + 1, that satisfies the
clauses (1)-(4) for every ⌫  ⇠.

The formula  (v) is absolute for transitive models of some finite fragment Th of ZFC which holds
at limit stages of the L hierarchy. Namely we need absoluteness of the formula '1(⇠, y) expressing
that y = y⇠, '2(�,M) expressing that M = L� projects to ! and '3(z, �) expressing that z is the
<L least code for �.

Moreover we have that h�(⌫), z⌫ , x⌫ : ⌫  ⇠i 2 L�(⇠)+! and that

L�(⇠)+! |=  (h�(⌫), z⌫ , x⌫ : ⌫  ⇠i)

for every ⇠ < !1.
Now let �(r, x) be a formula expressing that Er is a well founded and extensional relation,

Mr |= Th and for some v 2 Mr,

Mr |= v is a sequence h⇢⌫ , ⇣⌫ , ⌧⌫ : ⌫  ⇠i ^ (v) ^ ⌧⇠ = x.

We thus have that x = x⇠ for some ⇠ < !1 i↵ 9r 2 2!�(r, x). �(r, x) can clearly be taken as a
⇧1

1 formula.
For any ⇠ < !1, the well order �(⇠) is coded by z⇠ and z⇠ T x⇠. Thus �(⇠) + ! < !

x⇠

1 and there
is r 2 L

!
x⇠
1

so that Mr = L�(⇠)+!. In particular

9r 2 L
!
x⇠
1

\ 2!(�(r, x⇠)).

We get that
9⇠ < !1(x = x⇠) $ 9r 2 L!x

1
\ 2!(�(r, x)).

The right hand side can be expressed by a ⇧1
1 formula. ⇤

⇤
Remark 3.4. By Theorem 2.3 the ⇧1

1 tower constructed above is a subset of L. This implies that
its definition will evaluate to the same set in any extension of L. As an immediate corollary, we
obtain that the existence of a ⇧1

1 definable tower is consistent with c > @1 (here c denotes the
continuum), a question which has been of interest for many combinatorial objects of the real line.
For some more recent results in this direction regarding maximal independent families and maximal
eventually di↵erent families of functions, see [5] and [13] respectively.

Corollary 3.5. The existence of a coanalytic tower is consistent with the bounding number b
being arbitrarily large.

Recall that the bounding number is defined as the least size of an unbounded family in (!!, <⇤).
It is a natural lower bound for many other classical cardinal characteristics.

Proof. It is well known that finite support iterations of Hechler forcing for adding a dominating
real preserve all ground model maximal towers to be maximal (see [1] for more details). ⇤
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4. Indestructible Towers

Recall that the pseudointersection number p is the least cardinal  so that any set F ✓ [!]! with
the finite intersection property and |F| <  has a pseudointersection. F has the finite intersection
property if for any F 0 2 [F ]<!,

T
F 0 is infinite. We obtain the following result.

Theorem 4.1. Assume p = c. Let P be a collection of at most c many proper posets of size c.
Then there is a maximal tower indestructible by any P 2 P.

Proof. Let us call a P name ẋ for a real a nice name whenever it has the form
S

n2!{(p, ň) : p 2 An}
where the An’s are countable antichains in P. Remember that when P is proper, then for any P
name ẋ for a real and any p 2 P, there is a nice name ẏ and q  p such that q � ẏ = ẋ. The
number of nice P names is |P|@0 .

Let us enumerate all pairs h(P↵, p↵, ẏ↵) : ↵ < ci where p↵ 2 P↵, P↵ 2 P and ẏ↵ is a nice P↵ name
such that p↵ � ẏ↵ 2 [!]!.

We construct a tower hx↵ : ↵ < ci recursively. At step ↵ we first choose a pseudointersection x
of hx⇠ : ⇠ < ↵i (here we use ↵ < p). Next we partition x into two disjoint infinite subsets x0, x1.
Now note that p↵ �P↵ (ẏ↵ ✓⇤ x0 ^ ẏ↵ ✓⇤ x1) is impossible. Thus we find i 2 2 and q↵  p↵ such
that q↵ �P↵ ẏ↵ 6✓⇤ xi. Let x↵ = xi.

Now let ẋ be an arbitrary P name for a real for some P 2 P. We see easily that the set
D = {q 2 P : 9↵ < c(q � ẋ 6✓⇤ x↵)} is dense. Namely for any p we find (P↵, p↵, ẏ↵) where p↵  p
and p↵ � ẋ = ẏ↵. Then we have q↵  p with q↵ 2 D. ⇤

Definition 4.2. A forcing notion (P,) is Suslin if

(1) P ✓ 2! is analytic,
(2) ✓ 2! ⇥ 2! is analytic,
(3) the incompatibility relation ?✓ 2! ⇥ 2! is analytic (and in particular Borel).

The next thing we want to show is that (in L) for P the collection of all proper Suslin posets,
we can get an indestructible maximal tower which is coanalytic.

Theorem 4.3. (V=L) There is a ⇧1
1 maximal tower indestructible by any proper Suslin poset.

Proof. First let us note that there is a recursive map f : Tree⇥[!]! ! 2!, where Tree is the set of
trees on ! ⇥ !, such that f(T, y) 2 WO i↵ 8x 2 p[T ](|x \ (! \ y)| = !) (see [34, Theorem 4A.3]).
Fix this map f .

For the construction of our tower we now enumerate via the canonical well order of L all trees
hT↵ : ↵ < !1i on !⇥!. Now as in the proof of Theorem 3.2 we define a sequence h�(⇠), z⇠, x⇠ : ⇠ <
!1i with

� �(⇠) is a countable ordinal
� z⇠ 2 2! \ L�(⇠)+!

� x⇠ 2 [!]! \ L�(⇠)+!

and the following properties:

(1) hx⌫ : ⌫ < ⇠i is a tower and 8⌫ < ⇠(|x⌫ \O| = ! ^ |x⌫ \ E| = !).
(2) �(⇠) is the least ordinal � greater than sup⌫<⇠ �(⌫) so that

� h�(⌫), z⌫ , x⌫ : ⌫ < ⇠i, T⇠ 2 L�,
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� there are disjoint pseudointersections x0, x1 2 L� of hx⌫ : ⌫ < ⇠i both hitting O and E
infinitely,

� either (a) there is (x,w) 2 [T⇠] \ L� such that x ✓⇤ x0 or (b) f(T⇠, x0) 2 WO,
kf(T⇠, x0)k < � and there is in L� an order preserving map (!, Ef(T⇠,x0)) ! kf(T⇠, x0)k,

� and L� projects to !.
(3) z⇠ is the <L least code for the ordinal �(⇠).
(4) x⇠ is <L least so that x⇠ ✓⇤ x1 or x⇠ ✓⇤ x0 depending on whether (a) or (b) holds true,

|x⇠ \O| = !, |x⇠ \ E| = ! and z⇠ T x⇠.

As in the proof of Theorem 3.2 we see that this definition determines a tower hx⇠ : ⇠ < !1i which
is ⇧1

1.
Now let us note the following for a proper Suslin poset P. Whenever ẋ is a nice P name for a

real and p 2 P, then the set

{z 2 [!]! : 9q  p(n 2 z $ q 6� n 2 ! \ ẋ)}

is analytic (q 6� n 2 ! \ ẋ i↵ 9r 2 dom ẋ[(r, n) 2 ẋ ^ r 6? q]).
Thus for any P, p 2 P and ẋ a nice name there is ↵ < !1 so that

p[T↵] = {z 2 [!]! : 9q  p(n 2 z $ q 6� n 2 ! \ ẋ)}.

Consider x↵ and the respective disjoint sets x0 and x1 at stage ↵ of the construction. There are
two options:

(a) There is (x,w) 2 [T↵] such that x ✓⇤ x0. In this case we have chosen x↵ ✓⇤ x1 and there is
q  p so that |{n 2 ! : q 6� n /2 ẋ} \ x1| < !. In particular p 6� ẋ ✓⇤ x↵.

(b) Or L�(↵) |= “(!, Ef(T⇠,x0)) is isomorphic to an ordinal”. This means that L |= “(!, Ef(T⇠,x0))
is isomorphic to an ordinal” and this means that for any x 2 p[T↵], x has infinite intersection
with ! \ x0. In this case we chose x↵ ✓⇤ x0. Now if q  p and n 2 ! are arbitrary we can find
r  q and m � n such that r � m 2 ẋ \ x↵. This means again that p 6� ẋ ✓⇤ x↵.

Thus we have shown that for any proper Suslin poset P, ẋ an arbitrary P name for a real and
p 2 P, p 6� ẋ is a pseudointersection of hx⇠ : ⇠ < !1i. ⇤

5. !1 and ⌃
1
2 definitions

Definition 5.1. Let F be a filter on ! containing all cofinite sets. Then Mathias forcing relative to
F is the poset M(F) consisting of pairs (s, F ) 2 [!]<!⇥F such that max s < minF . The extension
relation is defined by (s, F )  (t, E) i↵ t ✓ s, F ✓ E and t \ s ✓ E.

Lemma 5.2. Assume that X is a ⌃
1
2 definable subset of [!]!, linearly ordered with respect to ✓⇤

.

Then there is a ccc forcing notion Q consisting of reals so that for any transitive model V 0 ◆ V Q

(with the same ordinals), the reinterpretation of X in V 0
is not an ilt in V 0

.

Proof. As X is ⌃
1
2, X can be written as a union

S
⇠<!1

X⇠ of analytic sets. Namely whenever
X = p[Y ] where Y ✓ [!]! ⇥ 2! is coanalytic then Y can be written as {(x,w) : f(x,w) 2 WO} for
some fixed continuous function f related to the definition of Y (see [34] for more details). Then
X⇠ is defined as {x 2 [!]! : 9w 2 2!(kf(x,w)k = ⇠)}.

Moreover we see that in any model W ◆ V where !W
1 = !V

1 , the reinterpretation of X is the
union of the reinterpretations of the X⇠.
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IfX has a pseudointersection x in V , then x will stay a pseudointersection of (the reinterpretation
of) X in any extension by absoluteness. The statement 8y(y /2 X _ x ✓⇤ y) is ⇧1

2. In this case let
Q be the trivial poset.

If X is inextendible in V , then for any ⇠ < !1 there is x⇠ 2 X so that 8y 2 X⇠(x⇠ ✓⇤ y). As
X is linearly ordered with respect to ✓⇤, {x↵ : ↵ < !1} generates a non-principal filter F . Let
Q = M(F). Then in V Q there is a real x so that x ✓⇤ x↵ for every ↵ < !1. By absoluteness
8y 2 X⇠(x⇠ ✓⇤ y) will still hold true in V Q. In particular 8y 2 X⇠(x ✓⇤ y) will hold true for any
⇠ < !V

1 .

As Q is ccc we have that !V Q
1 = !V

1 . This implies that x is actually a pseudointersection of X
in V Q. Again, this will hold true in any extension. ⇤

Theorem 5.3. If there is a ⌃1
2 ilt, then !1 = !L

1 . More generally, the existence of a ⌃1
2(x) ilt

implies !1 = !L[x]
1 .

Proof. We only prove the first part as the rest follows similarly.
Suppose that X is a ⌃1

2 ilt and !L
1 < !1. Apply Lemma 5.2 to (the definition of) X in L to get

the respective poset Q in L. As !L
1 < !1, V |= |P(!)\L| = !. But this means there is a Q generic

x 2 V over L. L[x] ✓ V , thus by Lemma 5.2 X has a pseudointersection in V , contradicting our
assumption. ⇤

Remark 5.4. We think that the proofs of Lemma 5.2 and Theorem 5.3 showcase something inter-
esting about Schoenfield absoluteness. Recall that Schoenfield’s absoluteness theorem says that ⌃1

2

formulas are absolute between any inner models W ✓ W 0, but it does not say anything about the
relationship between !W

1 and !W 0
1 . In fact in many applications of ⌃1

2 absoluteness W and W 0

have the same !1 (e.g. when W 0 is a ccc or proper forcing extension of W ). But in this case it
can be deduced directly from analytic absoluteness and the representation of ⌃1

2 sets as the same
!1 union of analytic set in any extension with the same !1. The reason is that the existential
quantifier 9↵ < !1 stays the same. So the full strength of Schoenfield absoluteness is only needed
in the case where !W

1 is countable in W 0 and this is the case that we crucially used in the proof of
Theorem 5.3.

We also want to remark that the proofs of Lemma 5.2 and Theorem 5.3 are very general and can
be applied to many other maximal combinatorial families. For example A. Törnquist has shown
the following theorem in [43], using a similar argument.

Theorem 5.5. If there is a ⌃1
2 mad family, then !1 = !L

1 . More generally, the existence of a

⌃1
2(x) mad family implies !1 = !L[x]

1 .

The argument for maximal independent families is a bit di↵erent. Let us recall the definition of
a maximal independent family.

Definition 5.6. A set X ✓ [!]! is called independent if for any F 2 [X]<! and G 2 [X]<! where
F \ G = ;,

T
x2F x \

T
y2G(! \ y) is infinite. An independent family is called maximal if it is

maximal under inclusion.

The set
T

x2F x \
T

y2G(! \ y) is often denoted �(F,G). We will also use this notation below.
Note that an independent family X is not maximal i↵ there is a real x so that x \ �(F,G) and
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(! \ x) \ �(F,G) are infinite for all F,G 2 [X]<! where F \ G = ;. Such a real will be called
independent over X.

We obtain the following result.

Theorem 5.7. If there is a ⌃1
2 maximal independent family, then !1 = !L

1 . More generally, the

existence of a ⌃1
2(x) maximal independent family implies !1 = !L[x]

1 .

In [33] Miller basically proved that a Cohen real is independent over any ground model coded
analytic independent family. He did not put his theorem in these words, so before we go on let us
repeat his argument.

Lemma 5.8 ([33, Proof of Theorem 10.28]). Let '(x) be a ⌃
1
1 formula defining an independent

family and let c be a Cohen real over V . Then in V [c], c is independent over the family defined by

'(x).

Proof. Let X denote the set {x 2 [!]! : '(x)} in any model extending V . Note that in any model
X is an independent family by Schoenfield absolutness. Let

K = {x 2 [!]! : 9F 2 [X]<!9G 2 [X]<!(F \G = ; ^ |�(F,G) \ x| < !)}

and

H = {x 2 [!]! : 9F 2 [X]<!9G 2 [X]<!(F \G = ; ^ |�(F,G) \ (! \ x)| < !)}.
These sets are both analytic. Note that x is independent over X i↵ x /2 H [ K. To show that
any Cohen real c is independent over X, i.e. c /2 H [ K it su�ces to prove that H and K are
meager. Why? When H [K is meager then there is a meager F� set C so that H [K ✓ C and
this statement is absolute (8x(x 2 H [ K ! x 2 C)). As c is Cohen, V [c] |= c /2 C and thus
V [c] |= c /2 H [K which implies that in V [c], c is independent over X.

So let us prove:

Claim. K and H are meager.

Proof. Suppose e.g. that H is nonmeager. The argument for K will follow similarly. Because H is
analytic it has the Baire property and is thus comeager somewhere. It is well known and easy to
see that any comeager set contains a perfect set of almost disjoint reals. So let P ✓ H be a perfect
almost disjoint family. For each x 2 P we have Fx and Gx so that �(Fx, Gx) ✓⇤ x. By the Delta
system lemma, there is a set S 2 [P ]!1 and R 2 [P ]<! so that

8x 6= y 2 S((Fx [Gx) \ (Fy [Gy) = R).

For any x 2 S we define R0
x = R\Fx and R1

x = R\Gx. As S is uncountable there is an uncountable
S0 ✓ S so that

8x, y 2 S0(R0
x = R0

y ^R1
x = R1

y).

But now note that for any x 6= y 2 S0, Fx \Gy = (R\Fx)\ (R\Gy) = R0
x \R1

y = R0
x \R1

x = ;.
By symmetry we also have that Fy \Gx = ; and this implies that

(Fx [ Fy) \ (Gx [Gy) = ;.

In particular we can form �(Fx [ Fy, Gx [Gy). By choice of Fx, Gx, Fy, Gy we have that

�(Fx [ Fy, Gx [Gy) ✓⇤ x \ y =⇤ ;
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as P was an almost disjoint family. But this contradicts the independence of X. ⇤

⇤

Proof of Theorem 5.7. Assume X is a ⌃1
2 maximal independent family. Then in L, X is also

independent and it can be written as a union
S

⇠<!L
1
X⇠ of analytic sets X⇠. Assuming for a

contradiction !L
1 < !1, there is a Cohen real c over L. We have that !L[c]

1 = !L
1 and in L[c], X

still corresponds to the union
S

⇠<!L
1
X⇠. By the above lemma c is independent over all the X⇠ so

in particular c is independent over X. This statement is ⇧1
2 and thus absolute between any inner

models containing c. In particular in V , X is not maximal. ⇤

Theorem 5.9. If there is a ⌃1
2 Hamel basis of R, then !1 = !L

1 . More generally, the existence of

a ⌃1
2(x) Hamel basis of R implies !1 = !L[x]

1 .

A Hamel basis of R is a maximal set of linearly independent reals over the rationals Q. Again it
was Miller who first showed that a Cohen real in R is independent over any ground model coded
analytic linearly independent family.

Lemma 5.10 ([33, Proof of Theorem 9.25]). Assume A ✓ R is an analytic set of reals that are

linearly independent over the field of rationals. Assume c 2 R is a Cohen real over V . Then in

V [c], c is linearly independent over (the reinterpretation of) A.

Proof. We assume that A 6= ;, else the argument is trivial. Let x 2 A \ V be arbitrary. Suppose
that U � “ċ is not independent over A” where U ✓ R is some basic open set. Say x0, . . . , xk 2 A\V
and q0, . . . , qk 2 Q are such that

U � 9xk+1, . . . , xn 2 A \ V 9qk+1, . . . , qn 2 Q(ċ = q0x0 + · · ·+ qnxn)

for some n 2 !. Now let c 2 U be Cohen over V and xk+1, . . . , xn 2 A \ V, qk+1, . . . qn 2 Q so that

c = q0x0 + · · ·+ qnxn.

Let s 6= 0 be a small enough rational number so that c+ sx 2 U . Recall that, as x 2 V , c+ sx is
also a Cohen real over V . Thus let yk+1, . . . , yn 2 A \ V, rk+1, . . . , rn 2 Q so that

c+ sx = q0x0 + · · ·+ qkxk + rk+1yk+1 + · · ·+ rnyn.

But now we have that

rk+1yk+1 + · · ·+ rnyn � (qk+1xk+1 + · · ·+ qnxn) = sx

and so A is not linearly independent in V [c]. But this is impossible by absoluteness. ⇤

Proof of Theorem 5.9. Same as the proof of Theorem 5.7. ⇤

For ultrafilters the proof is not much di↵erent. It will appear in [37].

Theorem 5.11. If there is a ⌃1
2 ultrafilter, then !1 = !L

1 . More generally, the existence of a ⌃1
2(x)

ultrafilter implies !1 = !L[x]
1 .

We want to remark the ideas above can also be used to show that under Martin’s Axiom none
of the families above have ⌃

1
2 witnesses.
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Theorem 5.12. MA(!1) implies that there is no ⌃
1
2 ilt, mad family, maximal independent family,

Hamel basis or ultrafilter.

Proof. For mad families this was proven in [43]. For ilt’s Theorem 2.3 is enough. For ultrafilters it
su�ces to note that under MA(!1) every ⌃

1
2 set is Lebesgue measurable (see [24]) and an ultrafilter

cannot be Lebesgue measurable. The argument for independent families and Hamel bases is the
same. Write X =

S
⇠<!1

B⇠ where the B⇠’s are analytic. Let M be an elementary submodel of
size !1 containing all the parameters defining the B⇠’s. Then let c 2 V be Cohen over M and use
Lemma 5.8 or Lemma 5.10 to conclude that c is independent or linearly independent over X. ⇤

6. Solovay’s model

In this section we prove the following result.

Theorem 6.1. There is no ilt in Solovay’s model.

Let us review some basics about Solovay’s model. A good presentation of Solovay’s model can
be found in [22, Chapter 26]. Assuming  is an inaccessible cardinal in the constructible universe L
we first form an extension V of L in which !1 =  using the Lévy collapse (see again [22, Chapter
26]). Then we let W ✓ V consist of all sets which are hereditarily definable from ordinals and reals
as the only parameters. W is then called Solovay’s model. The only facts that we use about W are
listed below and are well-known.

Suppose a 2 2! \W is arbitrary, then

(1) for every poset P 2 H()L[a], there is a P generic filter over L[a] in W ,
(2) whenever x 2 2! \W , there is a poset P 2 H()L[a], � 2 H()L[a] a P name and G 2 W a

P generic over L[a] so that x = �[G].

Suppose X 2 P(2!) \W . Then there is a 2 2! \W and a formula '(x) in the language of set
theory using only a and ordinals as parameters so that

(3) for any poset P 2 H()L[a], � 2 H()L[a] a P name and G 2 W , P generic over L[a],

�[G] 2 X $ 9p 2 G(p � '(�)).

Until the end of the section we are occupied with proving Theorem 6.1. To prove Theorem 6.1,
assume that X 2 P(2!) \W is linearly ordered with respect to ✓⇤. We will show that X cannot
be an ilt. Let a 2 2! \W and '(x) be as in (3). To simplify notation we will assume that a 2 L
and thus L[a] = L. From now on let us work in L.

Lemma 6.2. Let P 2 H(), p 2 P and � a P name so that p � '(�). Then there is p0, p1  p and

n 2 ! so that for any m � n,

9r  p0(r � m 2 �) ! p1 � m 2 �.

Proof. Consider P⇥ P 2 H() and �0 and �1 the P⇥ P names so that whenever G0 ⇥G1 is P⇥ P
generic over V then �0[G0 ⇥G1] = �[G0], �1[G0 ⇥G1] = �[G1].

Note that (p, p) � '(�0) ^ '(�1), because whenever G0 ⇥ G1 is P ⇥ P generic over V with
(p, p) 2 G0 ⇥ G1 then G0 and G1 are P generic over V with p 2 G0, G1. But then there must be
(p0, p1)  (p, p) and n 2 ! so that either,

(p0, p1) � �0 \ n ✓ �1
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or
(p0, p1) � �1 \ n ✓ �0.

Say wlog that (p0, p1) � �0 \ n ✓ �1. Note that whenever 9r0  p0(p0 � m 2 �) for some m � n
then p1 � m 2 �. Suppose this was not the case. Then there is r1  p1 so that r1 � m /2 �. But
then (r0, r1) � 9m � n(m 2 �0 ^m /2 �1) which is a contradiction to (r0, r1)  (p0, p1). ⇤

Still in L, let hP⇠, p⇠,�⇠ : ⇠ < i enumerate all triples hP, p,�i, where P 2 H(), p 2 P and
� 2 H() is a P name so that p � '(�). This is possible as |H()| = .

For every ⇠ <  we find p0⇠ , p
1
⇠  p⇠ in P⇠ and n 2 ! so that for every m � n

9r  p0⇠(r � m 2 �⇠) ! p1⇠ � m 2 �⇠.

Let x⇠ = {m 2 ! : p1⇠ � m 2 �⇠} for every ⇠ < .

Claim. {x⇠ : ⇠ < } has the finite intersection property.

Proof of Claim. Suppose x⇠0 , . . . x⇠k�1
are such that

T
i<k x⇠i is finite, say

T
i<k x⇠i ✓ n. Consider

the poset Q =
Q

i<k P⇠i 2 H(), (p0⇠0 , . . . , p
0
⇠k�1

) 2 Q and for every i < k, �i the Q name so that

whenever (G0, . . . , Gk�1) is Q generic then �i[G0 ⇥ · · ·⇥Gk�1] = �⇠i [Gi].
We have that (p0⇠0 , . . . , p

0
⇠k�1

) � '(�0) ^ · · · ^ '(�k�1) and thus, as X has the finite intersection

property, there is m � n and (r0, . . . , rk�1)  (p0⇠0 , . . . , p
0
⇠k�1

) so that

(r0, . . . , rk�1) � m 2
\

i<k

�i.

But this means that ri � m 2 �i and thus m 2 x⇠i for each individual i. This contradictsT
i<k x⇠i ✓ n as m � n. ⇤
Let F be the filter generated by {x⇠ : ⇠ < }. We have that F 2 P([!]!) and thus F 2 H().

Moreover we have that M(F) 2 H(). Thus in W there is y 2 [!]! a M(F) generic real over L.

Claim. For every x 2 X, y ✓⇤ x. In particular X is not an ilt.

Proof of Claim. Let x 2 X be arbitrary. Then we have in L a poset P 2 H() and a P name �
so that there is in W a P generic G over V so that x = �[G]. Moreover there is p 2 G so that
p � '(�).

It su�ces to show that there is some ⇠ <  and q 2 G so that q � x⇠ ✓⇤ �. To see this we
simply show that the set of conditions q 2 P so that 9⇠ < (q � x⇠ ✓⇤ �) is dense below p. To
show this fix p0  p arbitrary. Let ⇠ be such that hP, p0,�i = hP⇠, p⇠,�⇠i. But then p1⇠  p⇠ and

p1⇠ � x⇠ ✓⇤ �⇠. ⇤
This finishes the proof of Theorem 6.1.

7. ⌃
1
2 vs ⇧

1
1

Theorem 7.1. Any ⇧1
1(x) ilt contains a ⇧1

1(x) maximal tower.

Proof. We are going to prove the statement only for lightface ⇧1
1 as everything will relativize. So

let X be a ⇧1
1 ilt.

Claim. X \ L is cofinal in X (where L is the constructible universe).
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Proof. By Theorem 5.3 we have that !1 = !L
1 must be the case. Thus X can be written as a unionS

⇠<!1
X⇠ of analytic sets X⇠ which are coded in L (see the proof of Lemma 5.2). Note that X \L

is an ilt in L by a downwards absoluteness argument. This implies that for every ⇠ < !1 there is
x 2 L\X which is a pseudointersection of X⇠. The statement “x is a pseudointersection of X⇠” is
absolute. Thus X \ L is indeed cofinal in X. ⇤

We may now work entirely in L, assume X 2 L and construct a ⇧1
1 tower that is cofinal in X

(which implies that it is cofinal in X as interpreted in V ).
Recall that C1 = {x 2 2! : x 2 L!x

1
} is the largest thin ⇧1

1 set and for any y, C1(y) = {x 2 2! :
x 2 L!x

1
[y]} is the largest thin ⇧1

1(y) set (see e.g [34]).

Claim. C1 \X is cofinal in X.

Proof. Suppose not, i.e there is y 2 X so that C1 \X ✓ {x 2 [!]! : y ✓⇤ x}. The set Y := {x 2
X : x ✓⇤ y} is ⇧1

1(y). We distinguish between two cases.

� Case 1: Y is thin. Then Y ✓ C1(y). Moreover {!z
1 : z 2 Y } is unbounded in !1 = !L

1 (if r is
recursive such that X = {x : r(x) 2 WO} and � bounds {!z

1 : z 2 Y }, then {x : kr(x)k < �}
is a Borel subset of X that is cofinal in X which is impossible). But note that there is
↵ < !1 large enough so that L↵[y] = L↵ and further L� [y] = L� for any � � ↵. So if
!z
1 > ↵ and z 2 Y then z 2 L!z

1
[y] = L!z

1
. This is a contradiction to our assumption.

� Case 2: Y contains a perfect set P . By a theorem of Martin and Friedman (see [30]), P
contains reals in any �1

1 degree above the degree of some d 2 2!. The set C1 is unbounded
in the �1

1 degrees of L (see [34]) and is closed under �1
1 bi-reducibility. Thus there is z 2 P

so that z 2 C1. Again we get a contradiction to our assumption.

⇤

From now on we may assume that X ✓ C1. In the next step we will thin out X even further.
For each x 2 X let ↵x < !x

1 be such that x 2 L↵x (this is possible as x 2 L!x
1
). Further let

rx : [!]! ! 2! be recursive so that ↵x = krx(x)k. As there are only countably many recursive
functions, there is one r so that the set {x 2 X : rx = r} is cofinal in X. Fix such an r. Let

Y := {x 2 X : x 2 Lkr(x)k}.

Y is a ⇧1
1 cofinal subset of X. Thus let s : [!]! ! 2! be a recursive function such that Y = {x 2

[!]! : s(x) 2 WO}. We define the following well-order C on Y :

xC y $ ks(x)k < ks(y)k _ (ks(x)k = ks(y)k ^ x <L y)

Let '0(w, v) be a ⌃1
1 formula expressing that (!, Ew) is properly embedable into (!, Ev) and let

'1(w, v) be a ⌃1
1 formula expressing that (!, Ew) is isomorphic to (!, Ev). Moreover let  (x, y)

be a ⌃1
1 formula so that whenever y 2 Y and x is arbitrary then  (x, y) is equivalent to x 2

Lkr(y)k ^ Lkr(y)k |= x <L y. Let �(x, y) be the ⌃1
1 formula

'0(s(x), s(y)) _ ('1(s(x), s(y)) ^  (x, y)).

We see that when y 2 Y then

�(x, y) $ xC y.

In particular, when y 2 Y then �(x, y) implies that x 2 Y .
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Finally we define T := {y 2 Y : 8xC y(y ✓⇤ x)}. We have that T is ⇧1
1 as y 2 T i↵

y 2 Y ^ 8x(¬�(x, y) _ y ✓⇤ x).

T is obviously a tower as the order ⇤ ◆ on T coincides with C. T is cofinal in Y as for any x 2 Y
if we let y be C least in Y so that y ✓⇤ x then y 2 T . ⇤
Theorem 7.2. The existence of a ⌃1

2(x) ilt implies the existence of a ⇧1
1(x) ilt.

Proof. Again we are going to prove the statement only for lightface ⌃1
2 ilt, as the proof will relativize.

Let X be a ⌃1
2 ilt. As in the proof of Theorem 7.1 we can show that X \L is cofinal in X (and this

uses !1 = !L
1 ). So as [!]! \ L is ⌃1

2 we may just assume that X ✓ L. Let '(x,w) be ⇧1
1 such that

x 2 X i↵ 9w'(x,w). Using ⇧1
1 uniformization we can further assume that x 2 X i↵ 9!w'(x,w).

The idea will now be to get a linearly ordered tower that basically consists of x 2 X together
with their unique witness w. To do this we have to introduce some notation.

� For y ✓ [! ⇥ !]!, we write yn for y’s n’th vertical section.
� For x 2 [!]!, we write x(n) for the n’th element of x.

We now define the new ilt Y which lives on ! ⇥ !. A set y 2 [! ⇥ !]! is in Y i↵ the following
are satisfied:

(1) For every n � 1, yn = y0 \ y0(n) or yn = y0 \ y0(n+ 1).

(2) If w 2 2! is such that w(n) =

(
0 if yn+1 = y0 \ y0(n+ 1)

1 if yn+1 = y0 \ y0(n+ 2)
then '(y0, w) and in particular

y0 2 X.

Claim. Y is ⇧1
1 ilt.

Proof. (i) Checking whether y 2 [! ⇥ !]! is as described in (1) is �1
1. Checking whether for the

function w 2 2! as in (2), '(y0, w) holds is ⇧1
1.

(ii) Y is linearly ordered by ✓⇤: Let us note first that whenever x (⇤ y then eventually x(n) >
y(n). Why is this the case? As x (⇤ y (so x 6=⇤ y), there is a big enough n 2 ! so that
8m � n(|y \ x(m)| > m). But this means that x(m) > y(m) for all m � n.

Now let’s assume that x 6= y 2 Y and without loss of generality that x0 (⇤ y0. By the observation
above there is an n so that for every m � n, x0(m) > y0(m) and x0(m) 2 y0. But this also means
that 8m � n,

xm ✓ x0 \ x0(m) ✓ y0 \ y0(m+ 1) ✓ ym.

In particular xm ✓ ym for m � n. For k < n we have that xk (⇤ yk. Thus all together we have
that x (⇤ y.

(iii) Y has no pseudointersection: Suppose z is a pseudointersection of Y . If there is n 2 !
so that |zn| = !, then zn is a pseudointersection of X. Else let x = {min zn : n 2 ! ^ zn 6= ;}.
It is easy to see that x must be infinite (else z would not be ✓⇤ below any member of Y ). We
claim that x is a pseudointersection of X. Namely let y0 2 X be arbitrary where y 2 Y . As
z ✓⇤ y, there is an n so that 8m � n(zm 6= ; ! (m,min zm) 2 y). This means in particular that
8m � n(zm 6= ; ! min zm 2 y0). ⇤

⇤
Theorem 7.3. The following are equivalent:
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(1) There is a ⌃1
2(x) ilt.

(2) There is a ⇧1
1(x) ilt.

(3) There is a ⇧1
1(x) maximal tower.

(4) There is a ⌃1
2(x) maximal tower.

Proof. We have shown above that (1) ! (2) ! (3). (3) ! (4) ! (1) are trivial from the definitions.
⇤

Acknowledgements: The authors would like to thank Dr. Zoltán Vidnyánszky for valuable discus-
sions on the subject of this paper and drawing our attention to [30].

References

[1] J. Baumgartner, P. Dordal Adjoining dominating functions. J. Symbolic Logic 50 (1985), no. 1, 94-101.

[2] J. Bergfalk, V. Fischer, C. Switzer Projective well-orders and co-analytic witnesses, arXiv:2016.15359.

[3] A. Blass Combinatorial cardinal characteristics of the continuum. Handbook of set theory. Vols. 1, 2, 3, 395 -

489, Springer, Dordrecht, 2010.
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