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1. Introduction

The categorical equivalence between J*-triple systems and simply-connected symmetric
complex Banach manifolds with base point is done by W.Kaup and presented in his
article ” Algebraic Characterization of Symmetric Complex Banach Manifolds”.

In chapter 2, following [8] we introduce the notion of a J*-triple system and give a
geometric characterization in terms of polynomial vector fields. Due to the last, we
obtain and study the properties of certain Banach Lie algebras connected with the
J*-triple systems, which play an important role in the construction of the categorical
equivalence.

In chapter 3 we give the notion of a symmetric Banach manifold as it is presented in
[8]. An important step in giving the categorical equivalence is the fact that the group
of all biholomorphic isometries of a Banach manifolds carries the structure of a real
Banach Lie group [16]. Furthermore following [8] we prove that the existence of a point
in the manifold satisfying 3.10.i and 3.10.ii, implies the existence of a symmetry at each
point of the manifold. In connection with the same article [8], Vigué proved that for
a connected normed Banach manifold, the converse implication also holds ( compare
[18]) and so is obtained the modern definition of a symmetric Banach manifold. We give
also a construction of a J*-triple system from a symmetric Banach manifold, as it is
presented in [8] and show that it induces a functor § from the category of symmetric
complex Banach manifolds with a base point into the category of J*-triple systems.

In chapter 4, we give a construction of a simply-connected symmetric complex Banach
manifold with base point from a J*-triple system. We use also the notion of algebraic
groups in infinite dimensions and the fact that every algebraic group in infinite dimen-
sions is a Banach Lie group in the norm topology, compare [6]. The construction of the
canonical chart about the base point follows [17].

In chapter 5, we give the proof of the following statement, which is the main result of
our work.

Every morphism of J*-triple systems determines a morphism of the corresponding
simply-connected symmetric complex Banach manifolds.

Hence the construction given in chapter 4, determines a functor J from the category
of J*-triple system, into the category of simply-connected symmetric complex Banach
manifolds with base point and so is obtained the categorical equivalence between the
both considered categories.

In chapter 6, we give some further notions connected with the theory of hermitian
Jordan triple systems and consider Cartan factors of type I - VI.

In this place I would like to express my gratitude to Prof. Dr. W. Kaup for his constant
help. Thanks to him this work was possible. Thanks are due and to PD Dr. D. Zaitsev.

Notation: For every complex Banach space U, L(U) denotes the Banach algebra of
all endomorphisms of U and LF(U) the Banach space of all continuous homogeneous
polynomials U — U of degree k. With P we denote the Banach Lie algebra of all
polynomial vector fields on U. For every v € {-1,0,1,-- -}, P, is the Banach subspace of
all polynomial vector fields of the form p, 8/5: ,» Where p, is a homogeneous polynomial
of degree v + 1. Note that P = &2 _Pv. In the following IK is the field of real or
complex numbers. For complex Banach spaces U and V, and a holomorphic mapping
h:U — V, we denote by dh(a) the differential of h at the point a € U.
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2. Hermitian Jordan Triple Systems

Suppose A is a normed algebra over IK with a unit element e, such that |le]] = 1. Denote
by A’ the dual space of A, i.e. the space of all continuous linear functionals on A. Let

S(A)={z e A: |z|| = 1} .

For every fixed z € S(A) define

D(A,0) = {f e A" flz) =1=II/lI}-
By the Hahn-Banach theorem, D (A, z) is non-empty for every = € S(A).
2.1 Definition. Suppose a € A and z € S(A). Define

V(A a,z) = {f(az): f € D(A,z)}

and

V(A a) = U {V(Aja,2): z € S(A)} .
The set V (A, a) is called the numerical range of a. The real number v(a), defined by

v(a) =sup{ |A\l: A€ V(4,a)}

is called the numerical radius of a.

2.2 Definition. Suppose A is a complex unital Banach algebra and h € A. We say
that h is hermitian if

V(A,R) CTR .
The set of all hermitian elements of A is denoted by H(A).

In the case A € L(U) for some complex Banach space U, X is hermitian if and only if
exp(itA) € GL(U) is an isometry for every ¢ € IR. The subset H(U) of all hermitian
operators in L(U) is a real Banach space.

Suppose U is a complex Banach space. Consider the Banach space L2(U) of all contin-
uous homogeneous quadratic polynomials ¢ : U — U. For every ¢ € L*(U) define

(2.3 fwgz} = 7 (alw +2) — aw) = 9(2)) -

Obviously the mapping {wgz} is symmetric, bilinear in (w, z) € U?. Furthermore, for
every o € U and ¢ € L?(U) define

Mz) = {agz} .
Then A(z) € L(U). We use the following notation A = ang.

2.4 Definition. The pair (U, %) is called a hermitian Jordan triple system ( or simply
a J*-triple) if and only if

(i) * : U — L*(U) is a conjugate linear (continuous) mapping (we write o instead
of *(a) for every a € U).

(i) é{va*w}ﬁ*z}—k{{va*z}ﬁ*w}~{va*{wﬂ*z}} = {w{av*B}*z} for allv,a,w, B,z €

(iii) The operator croc* € L(U) is hermitian for every a € U.
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2.5 Definition. A morphism of hermitian Jordan triple systems (U, *) — (V, ) is a
continuous linear mapping A : U — V such that

(iv) Mza*w} = {(Az)(Aa)*(Aw)} for all z,a,w € U.
Every morphism of J*-triple systems is called a J *_triple morphism.

2.6 Definition. Suppose X is a J*-triple morphism. The mapping A is called a metric
J*-morphism, if ||Al| < 1.

The class of all hermitian Jordan triple systems is a category. If we consider only metric
J*-morphisms, we get a subcategory.

2.7 Proposition. Let (U, *) be a J*-triple system. The group of all J*-automorphisms,
denoted by GL(U, %), is a real Banach Lie group in the norm topology. The Lie algebra
of GL(U, *) is the set Der(U, ) of all X € L(U) satisfying

(2.8) A{zorw)) = {(D2)arw} + {z(he) w} + {za" (Aw)}

for all z,a,w € U.
Proof. For every z,a,w € U consider the mapping

Paaw(M AT = Ma(ATH @) wh = {A(z)aAw)}

where A € GL(U). Then p, q,w is a homogeneous polynomial of degree 2 ( over IR) in
the sense of [6]. Furthermore consider the set

P = {pz’a)w D Z,0,W E U} .
Then we have
GL(U, x) = {)\ e GLU) :p(A\, A7) =0forallp € P} )

and in particular GL(U, *) is an algebraic subgroup of GL(U) in the sense of [6]. Therefore
([6], Th.1 ) implies that GL(U, ) is a real Banach Lie group in the norm topology and
has a Banach Lie algebra

g= {A € L(U) : exp(t)) € GL(U, %) for all t € IR} .

Consider an arbitrary element A € g. We shall prove that A € Der(U, x). Suppose that
z,a,w are arbitrary elements in U. We have

exp(tA) ({za*w}) = {exp(tA)(2) (exp(tA) (@) (exp(tA) (w)) }

for all £ € IR. Then differentiating at ¢ = 0 we obtain

& exp(n) (e w) g = {5 () (2)| )} + (o (N (), _y) )

+ {rat (5 o) ),

which implies

A{zorw)) = {(A2)arw} + {z(Ae) w} + {za" (Aw)} -
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Hence A € Der(U, *).

Now suppose A € Der(U, ). We shall prove that A € g, i.e. exp(tA) € GL(U, ). Fix
arbitrary elements z, @, w € U and consider the differential equation

d

g(t)h:o = A\{za*w}), ¢(0) = {za"w} .
The mapping y(£) := exp(tA) for all ¢ € IR is a solution of 2.9. Furthermore consider

the mapping
h(t) == {(exp(tA)(2))(exp(tA)(a))" (exp(tA)(2))}
for all £ € IR. We have

SR, = (M)} + (@) ) + (a0 )

and using the assumption that A € Der(U, x) we obtain

d ]
Zl—ih(t)‘bo = Mza*w} .
Also we have h(0) = {za*w}. Therefore h(t) is a solution of 2.9. Since 2.9 has a unique

solution, we have obtained

exp(tA) ({zarw}) = {(exp(tX)(2)) (exp(tA) (@) (exp(¢A) (w)) }

for all ¢ € IR. Since z,o,w € U were arbitrary, the last equation implies exp(tA) €
GL(U, %) for all t € IR.

O

We shall give a characterization of hermitian J ordan triple systems in terms of polyno-
mial vector fields.

Suppose U is a complex Banach space and * : U = L?(U) is a conjugate linear, con-
tinuous mapping. For every a € U denote by go: U X U — U the uniquely determined
bounded, symmetric, bilinear mapping such that gq (2,2) = a*(z) for all 2 € U.

The following basic equalities associated with the triple product will be of constant use.

2.10 Lemma. Suppose U is a complex Banach space and *:U — L2?(U) is a conjugate-
linear continuous mapping. Then the following equalities hold.

(i) {aB*y} = qp(a, ) for all elements a,B,vinU.

(i) do*(2)(y) = 2¢a(z,y) for all o, z,y in U, where da*(2) is the differential of o™ in
the point z € U.
Proof. Equality (i) is a direct conclusion of the definition of the triple product, (com-
pare 2.3). To prove (ii) suppose ¢ is a homogeneous polynomial in L?(U) and denote by
g the corresponding bilinear symmetric mapping ¢: U xU — U, such that §(z, z) = q(z)
for all z € U. Then

dq(2)(y) = 24(2,y)

for all z,y in U. ]

The following sets of polynomial vector fields on U will be of main importance for the
construction of the functorial correspondences § and J, ( compare chapter 1). Define

(2.11) pi={(@-a")0p, acUlcB 0P,
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and
(2.12) b= {i)ﬁ/g)z ‘A€ H(U) and [iA0/y,,p] C p}c Po -

Note that p is a closed IR-linear vector subspace of 1 @ Bi.

2.13 Lemma. The vector space ¢ is a closed real Lie subalgebra of Po.

Proof. The set ¢ is a real vector subspace of J3o. We shall prove that it is closed under
the bracket product. Notice that

(X0, in9p, | = (7 i) . = i(i[\ul) oz €t
since for every A, p € H(U) we have i(Ap — pA) € H(U) ( compare (2], p.47 ), and
(133l 09 ), 8] = ~ [0z ) 83Tl | [ Uz o6z |-
Consequently for every iA 8/3 20 bl 8/(9 , € € we have

(X9 i %y, |et.
0

2.14 Lemma. Let (U, *) be a J*-triple system. Then [p,p] C L
Proof. Consider arbitrary elements , 8 in the space U, and the corresponding vector

field
19, = (e =) gy, (667 %]
For the holomorphic mapping u(z) we obtain
(2.15) u(z) = —da*(2)((8 — 8*)(2)) + dB"(2) (e — &™) (2)) -

Using the notation go ( resp. qg) for the symmetric, bilinear, bounded mappings asso-
ciated with the homogeneous polynomials o* € L*(U) (resp. 8" € L*(U) ), we obtain

(2.16) u(z) = —24a(2, (8 = B°)(2)) + 2q8(2, (& — ") (2)) -
Then 2.16 and 2.10.i imply
(2.17) w(z) = —2{za* B} + 2{z0*a} + 2{za"{20"2}} - 2{z3" {za"z}} .

Applying property 2.4.ii of the triple product for w = v = z we obtain the following
equalities

({28 2}a* 2} + {2872} 2} — (2" {20 2}} = {z{Bz"a} 2},
{{za*2} B2} + {{z0" 2} 3" 2} — {za* {267 2}} = {z{az" B} 2}
Subtracting we get

2/ {262 a*z} — 2{{za" 2} 5" 2z}
= ({287 {2a"2}} + {2{Bz"a}*2}) — ({z{oz" B} 2} + {za" {267 }})
= {{za*2}B" 2} — {{2B"2}a" 2} .
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Therefore

(2.18) {zp*2}a*z} = {{za" 2} 8" 2} .
By 2.18 and 2.17 we get
u(z) = —2{z0" B} + 2{zB"a) .
Claim: There exists a hermitian element A € L(U) such that p = 1A.
Using the conjugate linearity of * we obtain
—{za*B} + {z6*a} = —i*{aB 2} + i*{Ba*z}
= —i{(ia)B* 2} — {B(icr)" 2}
= —i({(ie) "2} — {Blia)"2}) -
But,
{(i0) B2} — {Blic)*2} = {(ia+ B)B*z} — {BB 2} + {(B + i) (i) 2} — { (i) (icr) "2}
{(ia + B)(ic + B)*2} — {802} — {(ia) (i) "2}
((ia + B)o (i + B)" — (i) (ic)” — Baf")(2) -
Therefore the mapping p(z) admits the following representation,
u(z) = —2i((ior + B)o (i + B)* — (i) o (ia)" — B0 ") ()
Hence u(z) = iA(z), where
Az) 1= =2((ia + B)o o+ B) — (ia)aia)” — Bo ") (2)
From 2.4.iii and the fact that the set of all hermitian elements in L(U) is real vector
subspace, follows that A is a hermitian element. The claim is proved.

Claim: The vector field u(2) 9/g, satisfies [u 95,9 Cp.

Consider an arbitrary element v € U, and denote by x(z) 8/8z the bracket product of
the vector fields u(z) 9/g, and (y —v*)(2) /5, ( taken in this order). Using the same
arguments like above and 2.4.ii we obtain

x(2) = dp(2)((v = 7")(2)) — d(v = ) (2) (u(2))
= —2{ya*B} + 2{{zv" 2}’ B} + 2{vB"a} — 2{{z7"2} 0"}
— d{zv*{za B}} + {2y {20 a}}
= —2{yo" B} + 2{yB"a} — 2(2{{Ba" 2}y 2} — {Be’{zv"2}})
+2(2{{ap"2}v"2} — {af*{z7"2}})
= —2{ya" B} + 2{vB*a} — 2({z{aB v} 2} — {#{Ba"v} 7)) -

[l

I

TN

Therefore
x(2) = 2(({18%a) ~ (70" B)) = (18"} = (7" B))") )
or x(z) = 2(z — 3*)(z), where the element z is defined as follows
= {yB"a} —{ra"f},
i.e. x(2) 9y, € p. The claim is proved.
As a result of the preceding two claims we obtain [p, p] C €. O
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2.19 Lemma. Suppose U is a complex Banach space and  : U — L?(U) is a continu-
ous, conjugate-linear mapping. Furthermore suppose that the inclusion [p,p] C € holds.
Then the pair (U, %) is a J*-triple system.

Proof. Consider arbitrary elements c, 8 in the Banach space U. Denote by Fap(2) 9,
the bracket product of the vector flelds (o — o*)(2) 9y, and (8 — 5*)(2) /5, . For the
holomorphic mapping f. g(z) we obtain

fap(z) = d(a— ™) (2)((B — B)(2) — d(B — 5)(2)((a = a7)(2))
= —do*(2)((8 — B°)(2)) + dB" () (e — &")(2)) -

By the properties of the differential of a homogeneous polynomial we get

fas(2) = —24a(2, B) + 24a(z, B°(2)) + 245(2, @) — 24p(2, & (7))
= —2{zo" B} + 2{28"a} + 2{za* {20" 2} } — 2{z{B"{2a 2} } .

The hypothesis [p,p] C ¢ implies that fa g(2) is a linear mapping. Therefore the terms
in the last sum of order higher than 1 are identically zero, which is equivalent to

{za* {267 2}} = {20"{2c"2}} .
In particular we have obtained the following representation

(2.20) fap(?) = 2800 (2) +2a00"(2) .

Fix an arbitrary element o € U and apply the above results to the vector field cor-
responding to the elements o and ia. The conjugate-linearity of the mapping * and
representation 2.20 imply

faia = —2(ic)oa* + 2a0(iQ)* = —i2a0a” — 2iaoa* = —4i(ana”) .

Since fa.ia(2) 9y, lies in € and H(U) is a real vector space, we obtain that the linear
operator o is hermitian. This result does not depend on the choice of o and therefore
condition (iii) in the definition of a J*-triple system holds.

Consider arbitrary elements o, 3,7 € U. Denote by fo,8,+ 8/32 the bracket product of

the vector fields
fa,8 a/82 = [(O‘ —a”) 6/é)z (B —B") a/f)z]
and
O, = =%
le.

fa.By 8/82 = [fa,ﬁ 8/8vaw 8/82} :

Using representation 2.20 we obtain

Fap(2) = d(fap) (2) (f2(2)) — d(f)(2) (fap(2))
— “2(y0*B} + 2B a} + 2{{z7 =)o B} — 2{{z7" 2}
(2.21) — 4fzy* {za” BY} + ey (267 a})
= o({y7a} - {va"BY) — 2(2{zy" (20" B}} - ({27 2e"6})
+2(2{z7" (2B a}} — ({2126 0)) -
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By the definition of & we have [¢,p] C p. The vector field fa g /5, lies in € and f, /s,
lies in p. Therefore fq g € p. The representation 2.21 and property 2.4.ii imply

(2.22) fapn(z) =2( ({18°a} = {ya"B}) - ({vB7a} — {ve"B})") -

Applying 2.21 and 2.22 we obtain
(2{z7* {228} — {{zv*2}a"B}) — (2{zv" {26 a}} — {{z772}8"a}) =
{z{vB a} 2} — {2{ya" B} 2} .

Consider the case when 8 := ic. Then the last equality implies

{z{ya*a}*z} = 2{{aa" 2}y 2} — {aa™{z7"2}} -
Using polarization we get that 2.4.iii is satisfied and hence (U, %) is a J*-triple. O

2.23 Proposition. Suppose U is a complex Banach space and * : U — L*(U) is
a continuous, conjugate-linear mapping. The pair (U, %) is a hermitian Jordan triple
system if and only if the real vector space [=¢t@p is a real Lie subalgebra of ‘3.

Proof. Consider arbitrary vector fields X,Y in [. Then X = X; + Xs, Y =Y+ Y5,
where X1, Y7 are vector fields in € and X, Y are vector fields in p. Furthermore consider
the bracket product

(X, Y] = [X1, V1] + [X1, Y] + [Xo, V1] + [X2,Ys) .

The first term of the above sum is in €, since £ is a real Lie algebra. The second and the
third terms are in p, by the definition of & Since the last term is a sum of polynomial
vector fields of first and third order, we may conclude

[X,Y] el ifandonlyif [Xz,Y2]€t.

Therefore the real vector space | is a real Lie subalgebra of ‘B if and only if [p,p] C €. O

Suppose (U, *) is a J*-triple system. Denote by t the smallest closed real Lie subalgebra
of By containing [p, p] and the element 10 = iz 8/32 € Po. Furthermore define

t= {XG‘BO:[X,p]Cp}.

Since p is a closed real vector space, % is a closed vector subspace of §o. The Jacobi
identity implies that € is closed under bracket products and therefore is a real Banach
Lie subalgebra of Py.

2.24 Proposition. The real Banach Lie algebras E,/{; and ¢, associated with a J*-triple
(U, *), satisty bcece

Proof. The second of the two claimed inclusions follows directly from the definitions
of the algebras ¢ and & By Lemma 2.14 we have [p,p] C ¢ and therefore in order
to obtain the second one it is sufficient to prove that ¢0 € € Consider the vector
field iz 0/, . Obviously id is a Hermitian element of L(U). Suppose « is an arbitrary
element of the vector space U. Denote by f; o 8/32 the bracket product of iz 8/82 and
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(o — o) 3/32 ( taken in this order). Using the notation g, for the symmetric bilinear
mapping corresponding to o* € L?(U), we obtain

fia(z) =i —ia™(z) + 2q,(2,12) ,
for all z € U. The conjugate linearity of % and 2.10.1 imply
fia = i — ia*(2) + 2ia*(2) = (ia — (i2)*)(2) ,
for all z € U. Since U is a complex Banach space, the vector field f; 8/32 € p and

therefore 10 € &. O
By proposition 2.14 we get that

i—f@p and T=t®p.

are closed real Lie subalgebras of ‘B.

2.25 Proposition. Suppose (U,*) is a J*-triple. Then we have:
Q) Ict c 1 are real Banach Lie algebras without center and [ is an ideal in 1.
(i) €= {A9,: X € Der(U,%)}.
(iii) 1Nl = {a 9y, € P_1: a* =0} ind the sum ¥ + it in Py is topologically direct.
(iv) Bvery (continuous) derivation of | is inner if

U —=U"

is homeomorphism, where U* := {a* : a € U}.
Proof.

(i) Consider an arbitrary vector field X in the center 7(1) of . The definition of [
implies that it has a representation of the form X = )\8/32 + (o — a*) 9y, for some
vector fields A\ 0/y, € tand (o — a*) /5, € p. Denote by ¥ = g(2) 99, the bracket
product of X and iz 9/5,. Then by

(2.26) 7z ={X el: [X,Y]=0forallY €1},

we have
9(2) = d(A+ (= a"))(2)(iz) — d(iz)(z)(A + (@ = ") (2))
= A\(iz) — 2¢u(2,12) — iX — o +ia"(z) = —2ia* (2) — 1 + 10" (2)
= ((ia)* = (i) (z) = = ((ier) = (1)")(2) = O
for all z in U. Therefore (i) = (ia)*(z) for all z € U. But *(0) = 0, and therefore
o = 0. Then the vector field X is of the form X = Aa/az € Po.

Using the same arguments we find an explicit representation of the vector field ¥V =
he(2) 95, , which denotes the bracket product of the vector fields X and (a—a*) 9y, .

Then
ha(z) = dA(2)((a — a)(2)) — d(a — ") (2)(A(2))
—a)(2)) + 24a(2,A(7))
— Ma*(2)) + 2{za" A(2)}
— Mza*z} +2{za"A(z)} =0

I

d
A

I

(o

(
AMa)
Aa)

I
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for all z in U. In particular he(0) = A(a) = 0. Since X is in the center of 1, the last
equation holds for all @ € U, i.e. A is identically zero. Therefore X = 0, and hence the
Banach Lie algebra [ is without center. Since Z([) CZ(hC Z([) the Banach Lie algebras

[ and T are without center. The Jacobi identity implies that {is an ideal in 1.

(i) Consider an arbitrary vector field X in the Banach Lie algebra €. It has a repre-
sentation of the form X = A\(2) 9/y,, where A(z) € L(U).

Fix an arbitrary element o € U. Denote by fx «(2) /5, the bracket product of X and
(a — a*) 9y, (taken in this order). In particular for the holomorphic mapping fx,«(2)
we obtain

f/\,a(z)

|

dA(z)((a — *)(2)) — d((a — ")(2))(A(2))
M(a = a*)(2)) + da” (2)(A(2))

Ma) = Aa*(2)) + 24a(z, A(2))

AMa) — Mza*z} + 2{za" (A (2))}

I

(2.27)

I

o

for all z € U. The definition of ¢ implies that fr.(2)9/g, € p. Representation 2.27
implies

(2.28) Pralz) = (Ma) = A(@)*)(z) forall z€U.
As a direct consequence of 2.27 and 2.28 we obtain
(M@)*(2) = {2(M@))*7} = Mza*z} — 2{za*(A\2)} forall z€U,
and therefore
(2.29) Mzatz) = {(M)az} + {z(M@))* 2} + {za"A(2)} forall z€U.

Since « was arbitrary element of U, the last equation holds for all a in U. Consider
arbitrary elements w,«,z in U. Applying 2.29 to the fixed elements we obtain the
equalities

Meaz) = {(A2)a*z} + {z(Aa) 2} + {za" (A2)}
AMw + 2)a* (w + 2)} = {(AMw + 2))a" (w + 2)}
+ {(w+ 2)(Aa)*(w + 2)} + {(w + 2)a" (Mw +2))}
Muworw} = {Qw)a*w} + {w(ra) w} + {wa” (Aw)} .

Therefore
Muwa'z) = A3 (e (w +2) - a*(w) — a* ()

— L+ 2ot (w+ 2)) = M{wa"w}) ~ A({za"2})
= {Mw)a’z} + {wM ()2} + {za" (A(w))} -

Suppose A € Der(U, #) and « is an arbitrary element of the vector space U. Then 2.27

implies
A=) g, (a— o) g, ) = (Ma) = (M@)) Tz € -
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Hence A0y, lies in ¢

(iii) Suppose the vector field X lies in [Nl Since X liesin [ = £ & p, X admits the
representation

X =ix0g, + (a—a*) g, = @A+ (@ —a") oy

where A € H(U) and o € U. Since X lies in il, we have that X = iX1 for some vector
field X; € I. The above arguments show that X; = i\ /g, + (B — B%) 99, for some
hermitian element \; € H(U) and B € U. Using the conjugate-linearity of * we obtain

(A + (o — a) 9y, = i(A + (—ia +ia")) 9,
= i(A + (—ia + (—ia)*)) 9g, -

Therefore X; admits the representation X1 = (A + (—ia + ia™)) 9/g, € 1. As a conse-
quence we obtain that A = 1A;. From —ia+ (—ia)" /g, € p follows (—ia)* = —(—ia)*.
Hence ia* = —ia*, i.e. 2ia* = 0. Therefore o* = 0. Then the considered vector field X
is of the form X = (A(z) 4+ a) 9/, . Since A = iA; and A, A1 are hermitian elements for
the numerical range of A we obtain:

V(LU),\) = V(LU),i\) = iV (LO),X) C iR,

since V(L(U), A1) € IR. But V(L(U), A) C R, since A is hermitian. So we have obtained
V(L(U), \) = 0. The algebra L(U) is a complex Banach algebra, and therefore for the
numerical radius v(\) the following inequality holds v(A) > L[|l ( compare [2], p. 34).
This implies ||A|| = 0 and hence A = 0. Therefore the considered vector field X is of the
form X = a9y, , where a* = 0.

Obviously every vector field of the form -y 5/32, for some v in U, such that v* = 0 lies
in [Nl

The sum H(U) + iH(U) is topologically direct in L(U) by ( 2], p. 50 ).

(iv) Suppose D is an arbitrary derivation of /[\, ie. D:1 — [ is a continuous linear
mapping satisfying
D([X,Y)) = [D(X), Y]+ [X, D(Y)]

for all X,Y in T. Consider the image D(i0). We show that without loss of generality we
may assume that D(:0) lies in . Suppose that D(id) = A9y, + X, for some linear
mapping A € Der(U, ¥) and vector field X := (a—a”) /g, € p. Then n := D—ad(Xia),
where Xio = (ia — (ia*)) Oy, € p is a derivation of T, such that 7(id) € . Now if we
prove that 1 is an inner derivation, we can conclude directly that D is an inner derivation
as a sum of n and ad(Xi,). So we assume that D(:0) = A0/g, lies in £ Furthermore
consider the equality

-~ A~ -~

D(0) = 0 = D([id, ¥) = [D(id,®)] + [i9, D(B)] .

So we obtain
[D(X),i0] = [D(i0), X]

for every vector field X € € But [\ y,,X] € T for every X € ¥ and so we obtain also
[D(X),i0] € T for all X €&, ie. [D(€),i0) C €t Therefore D(£) C t. Analogously we
obtain that D(p) C p. Now consider the complexification

—~

g ::/[\692'[:9_16990@91
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of /[\, where g, C b, for every v € {—1,0, 1}. The mapping D extends to a continu-
ous linear derivation of g. Furthermore D(g_1) C g_1 for every v € {—1,0, 1}. Since
D(g_1) C g1 and g1 = U, the restriction Dyg_, determines a continuous linear mapping
AU — U. Define A(a) := 8, if D(a9/y,) = B9/, So is defined also a linear vector
field

X =X93, €Bo -

As a direct conclusion of the Jacobi identity, we have
Y, [X, 2] = [X,[Y; Z]] - [[X, Y], Z]
for all vector fields Y, Z in g. For every vector field ¥ = aa/az € g_1 we have that
[X,Y] = Aa) 9y, lies in g—1, and so
(X, Y]=D() forall Y €g:.

Now consider arbitrary vector fields ¥ € g_; and Z € go. Then [Y; Z] lies in g1 and
the above result implies

[Y7 [X7 Z]] = D([Y’ Z]) - [D(Y)7Z]
[D(Y), 2]+ [Y, D(Z)] - [D(Y), Z]
= [YaD( )] .
Then
D(Z)=1[X,Z] forall Z€go-

Now we apply the same argument to arbitrary vector fields Y € g_1 and Z € g;. Then
the vector field [V, Z] lies in go and by the above result [X, [V, Z ] = D([Y, Z)]). Therefore

v, [X, 2] = [D(Y), Z] + [Y, D(2)] - [D(Y), Z]
=[Y,D(2)].
Then
D(Z)=[X,Z] forall Z€g.
In particular we obtain that X lies in t. Consequently D = ad(X) is an inner derivation

of T. 1

2.30 Definition. Suppose (U, *) is a J*-triple system. A closed C-linear subspace
V C U is called a subsystem if o*(V) C V for all @ € V. If V C U is only a closed
R-linear subspace with this property V is called a real subsystem.

For every real subsystem V of (U,x) the closure V€ of V 44V in U is a complex
subsystem.
2.31 Definition. Let V be a real subsystem of the J*-triple (U, *). Then

(i) V is called associative if

{{af*7}o"2} = {aB™{70"2}}

for all o, 3,v,0,z€ V

(ii) V is called flat if

{af"2} = {Bo" 2}

for all o, 8,z € V.

Every flat subsystem is associative. For every associative subsystem the expression in
9.31.i also coincides with {a{By*6}*z}.
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2.32 Proposition. Suppose (U, *) is a J*-triple system, and V' C U is an associative
subsystem such that U =V + V.
(i) The closed IR-linear subspace A of L(U) generated by VoV™ is a commutative

Banach algebra.
(ii) V is flat if and only if

{{a —a*) Oy, €€ V}ICTp
is a commutative Lie subalgebra.
Proof. Consider the set VoV* C L(U).
Claim: VoV* is closed under multiplication in L(U).
Suppose aoS*, yod* € VoV*. Then

(2o B 0 yud*)(2) = {aB {¥6*2}} = {a{By* 0} 2} = (an{By"3}")(2) ,
where we have used that U is associative. By the definition of the triple product we

have

1

(2:33) (By'5} = 5" (B+8) = 7"(8) = 7)) .

The space V is a flat subsystem. Therefore o*(V) c V for all @ € V, and hence by
9.33 we have {#y*6} € V. Therefore an{fy*0}* € VoV", or VaV* is closed under
multiplication in L(U).
Claim: The product in VoV* commutes.
Suppose oo 3*, yoé* € VaV*. Then
(@of* 0y8*)(z) = {af*{70"2}} = {af"{20"7}}

= {{af* 236"y} = {v6"{af"2}}

— (yos* o anf*)(2)
where we have used the symmetry of the triple product on the outer arguments, and
the fact that U is associative.

The above claims imply that A is a commutative Banach subalgebra of L(U), ie. (i) is
proved.

In order to obtain (ii) consider arbitrary elements o, f in V. Then for the bracket
product fo 595, of the corresponding vector fields (a—a*) 9y, and (6— %) 9y, we

get
fap(z) = d(a — a*)(2)((B— B)(2) — d(B = B () (e — a"(2))
= —do* (2)((B — 5°)(2)) + dB" (2) (e — a™)(2))
Then using the notation g, for the bilinear mapping corresponding to the homogeneous
polynomial o*, we get
foc,ﬁ(z) = —2Qa (Z, ﬁ) + 2qct(za /8* (Z)) + QQﬁ(za C\{) - 2q,3(z7 o (Z))
= —2{za*B} + 2{za* {207 2}} + 2{2B8"a} — 2{z03*{za" 2}}
and by 2.18
fap(2) = —2{za* B} + 2{20"a}.
Then obviously V is flat if and only if

{(a — a¥) 8/32 caeV}

is a commutative Lie algebra. |
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2.34 Example. Let S be a locally compact topological space and let ¢:S — IR a
bounded continuous function. Then U = Cy(S, C) is a complex Banach space. For all
a,z € U define o*(2) = caz®. Then (U, *) is a J*-triple system, which we denote by
(Co(8),¢). If c = 1, we write Co(S5).

2.35 Proposition. Suppose S is a locally compact topological space. Then
(i) The J*-triple system (Co(S),c) is associative.
(i) The real subsystem Co(S,R) in (Co(S5),¢) is flat.

Proof.

(i) Simple computations imply
{{aB*y}6* 2} = cozcPay

and o
{af*{y6*z}} = cBacdyz .
Therefore the system is associative.

(ii) Suppose a, f,z are arbitrary elements of Cy(S,IR). Then

1

(0f"2} = (" (0t 2) - (@)~ B°(2)
— %(cﬁ(a +2)? — caf — caz’) = cBaz = cBaz .

Equivalent computations imply

(o) = 5(a*(B+2) — o*(8) — a”(2))

= %(c&'(ﬁ +2)? - caf — caz’) = cafz = cafz .

Hence Cy(S,IR) is a flat subsystem. O

2.36 Example. Suppose a € U is a J*-triple system. Consider an arbitrary element
a € U. Denote by U, the smallest closed, IR-linear, a.oo*-invariant subspace of U
containing «. Then U, is a flat subsystem of (U, *) and the complex subsystem U,% is
associative.

3. Symmetric Banach Manifolds

3.1 Definition. Suppose D is a Hausdorff topological space. A triple (V, p, ) is called
o chart of D if V is an open subset of D, E is a Banach space over Kand p:V = &
is a homeomorphism onto an open subset of F. [fa € V is a point satisfying p(a) = 0,
(V,p, E) is called a chart about a. The charts (V,p, E) and (W,q, F) are said to be
K-analytically compatible if the homeomorphism

poq_l:p(VﬂW) - q(VﬂW)

between the open subsets of F and F', respectively, is bianalytic. In this case , £/ and F
are isomorphic provided VNW # 0. An atlas of D is a collection of pairwise compatible
charts covering D. A maximal atlas (under inclusion) endows D with the structure of
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o Banach manifold over IK. In case that IK = C we refer to D as a complex Banach
manifold.

For every complex Banach manifold we denote by Aut(D) the group of all biholomorphic
automorphisms and by aut(D) the set of all complete holomorphic vector fields. We
denote by T, D the tangent space at the point a € D, and by T'ah the differential at the
point a of every holomorphic mapping h: D — D', where D’ is also a complex Banach
manifold.

3.2 Definition. Let D be a complex Banach manifold and
v:TD —- 1R

a lower semi-continuous function. Then v is called a norm on T'D if the restriction of v
to every tangent space Ty, = € D, is a norm on Tj with the following property: There
is a neighborhood U of z € D biholomorphically equivalent to a domain in a complex
Banach space F such that

cllal| < v(u,a) < Cllal| for all (u,a0) €U x E=T(U)
and suitable constants 0 < ¢ < C.

3.3 Definition. A complex Banach manifold D together with a fixed norm v on the
tangent bundle T'D is called a normed complex Banach manifold.

3.4 Definition. Let (D, v) and (D, ) be normed complex Banach manifolds. A holo-
morphic mapping ¢ : D — D is called contracting if 7 o Ty < v, and an isometry if
equality holds.

For a normed complex Banach manifold D the length of every piecewise smooth curve
v:10,1] = D is well defined:

1
L,(y) = inf{ / h(t) dt : h integrable , h(t) > v oy(t) for allt € I} .
0

Suppose D is a connected normed complex Banach manifold. Then we define the (
depending on the norm v) distance d(z,y) for all 2,y € D the following way,

d(z,y) = nf{ Lo(r) : 7(0) =2, 7)) = v}
Furthermore for every connected normed Banach manifold D the metric d is compatible

with the topology of D ( compare [17], p. 201, Pr. 12.22 ).

3.5 Example. Suppose D is a complex Banach manifold biholomorphically equivalent
to a bounded domain in a complex Banach space. Denote by A = {z € C: |2 < 1} and
by § the set of all holomorphic functions defined on D with values in A. Further let

mAxC—1IR
be the norm on TA 2 A x € defined by 7(t,a) = |a|. Then
v:=sup{roTf: f €T}

is a norm on the tangent bundle T'D (known as the Carathéodory norm on D). Every
g € Aut(D) is an isometry with respect to this norm.

The following statement is due to Upmeier (compare [16] ).
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3.6 Proposition. Let D be a connected normed complex Banach manifold. Denote
by L the group of all biholomorphic isometries g : D — D. There exists a topology Tq
on L such that (L,7T,) is a real Banach Lie group with the properties:

(i) The mapping I x D — D defined by (g,z) — gz is real analytic.

(ii) A homomorphism A : IR — L is analytic if and only if the mapping IR x D — D
defined by (t,x) — A(t)z is analytic.

For the following L is always endowed with the topology 7,. Every isometry g € L is
also an isometry with respect to the metric d.

3.7 Definition. A closed subspace E of a Banach space L over KK is called split (or
direct subspace) if E has a topological complement in L, i.e. a closed subspace I' C L
such that L = E @ F is the topological direct sum. Any such decomposition is called a
splitting of L.

3.8 Definition. Suppose g: D — D is an analytic mapping between Banach manifolds
and let Thg: ToD — Ty D be the differential of g at a € D. The mapping g is called a
submersion at a if the following conditions hold:

T,qg is surjective and the null-space KerT,g is a split subspace of T, D.

The mapping g is called a submersion, if it is a submersion at each point of a € D.

3.9 Definition. Suppose g: D — D is an analytic mapping between Banach manifolds
and let T,g: To D — TyaD be the differential of g at a € D. The mapping g is called an
immersion at a it the following condition holds

T.g is injective and the image space T.g(T,D) is a split (closed) subspace of Tg(a)D.

The mapping g is called an immersion, if it is an immersion at each point of a € D.

3.10 Definition. Let D be a connected normed complex Banach manifold and L the
Lie group of all biholomorphic isometries of D. Then D is called symmetric if there is
a point a € D such that:

(i) There is an involution s € L with a as isolated fixed point.
(ii) The mapping L — D defined by g+ ga is a submersion.

For the following D will denote a symmetric complex Banach manifold and L the real
Banach Lie group of all biholomorphic isometries on D.

We use the following statement, known as the Surjective Mapping Theorem.

3.11 Proposition. (Graves). Let U be open in a Banach space E. Let f:U — F be
a C map into a Banach space F. Let zg € E. If df (o) is surjective, then f is locally
open in a neighborhood of zg. More precisely, there exists an open neighborhood V' of
zo contained in U having the following property. For each x € V and open ball B,
centered at , contained in V, the image f(B;) contains an open neighborhood of f(x).

Proof. ([13], p. 193).

3.12 Proposition. Suppose D is a symmetric Banach manifold and L is the Lie group
of all biholomorphic isometries of D. Then condition 3.10.ii implies that the group L is
transitive on D.

Proof. Suppose x: L — D, is defined by x(g) := g(a) for all g € L. The orbit L(a) is

equal to the image x(L) C D. Using 3.11 we prove that x(L) is open in D. Fix a point
be x(L) and g € L, such that b = x~1(b), and consider charts (U, ¢) and (V,1) about
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g and b respectively. Consider the diagram
r —*— D
t t
o(U) L2 (V).

By the definition of symmetric manifold we conclude that d(1oxoe1)(g) is surjective.
Apply 3.11 to the points ¢(g) € @(U) and 9(b) € (V). Therefore there exist an
open neighborhood W C ¢(U) of ¢(g), such that (o x o o )W) C ¢(V) is an open
neighborhood of (b). This implies that " ((po x o~ ")(W)) is an open neighborhood
of b in D. Moreover 1~ ((1h o x 0 o~ *)(W)) C x(L). Then L(a) is open in D.

The orbit L(a) is closed in D. Denote by U := L(a). Assume the contrary. Then U\U #
0, or there exists a point c € OU =UN D\U. Since U is open, a € U, and the metric
d is compatible with the topology of D, there exists a positive number r such that the
ball

B(a,r)={z € D: d(z,a) <1} CU .

Since ¢ € U, every open set containing ¢ has nonempty intersection with U. In particular
for the ball with radius r and center ¢ we obtain B(c,7) NU # 0, which is equivalent to
the existence of a point b € B(c,r)NU. From b € U follows the existence of an element
g € L, such that g(b) = a. Using the fact that every isometry in L is also an isometry
with respect to the metric d, we obtain

d(a, g(c)) = d(g(b),9(c)) = d(b,c) <.

This implies g(c) ¢ U. Therefore c € U, which contradicts the choice of the point c.
Hence U = U and hence the orbit L(a) is closed in D.

Since D is connected, the proof is complete. O

The following proposition is known as Cartan Uniqueness Theorem.

3.13 Proposition. Suppose D is a bounded domain in a complex Banach space U. A
holomorphic mapping g: D — D is the identity on D, if there exists a point a € D such
that g(a) = a and dg(a) = id € L(U).

Proof. ([11]) O

3.14 Proposition. Suppose D Is a symmetric Banach manifold. Then
(iii) To every « € D there exists a uniquely determined involution s, € L with x as
isolated fixed point.

Proof. Consider an arbitrary element z of D. Since L acts transitively on D there
exists a biholomorphic isometry g € L such that g(a) = z. Consider the mapping
sy 1= gosog L Obviously s; € L is involutive, and z is a fixed point of sg.

Claim: z is an isolated fixed point of s;.

Since g is isolated fixed point of s there exists a neighborhood V/ of a such that s(y) # v
for all y € V\{a}. The mapping g is in particular a bijective homeomorphism and
therefore is open. Hence V; := g(V) is an open neighborhood of g(a) = z. We shall
prove that s,(y) # y for all y € V1\{z}, and therefore z is an isolated fixed point of s;.
Assume the contrary. Then there exists y € Vi \{z} such that s5(y) = v. Therefore y =

(gosog)(y) = (gos) (g~ (y)), or equivalently g7 (y) = s(g7*(y)). Since y € Vi\{z}
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and g is bijective, we have g~ 1(y) € g~ (Vi\{z}) = V\{g7'(z)} = V\{a}. So we have
obtained that s has a different from o fixed point in V' which is a contradiction.

Claim: The involution s, is uniquely determined.

Assume the contrary. Then there exists an involution 7, € L with z as isolated fixed
point, 7, # S;. There exists a chart (W, p, E) about z, such that (W) is a bounded
domain in the complex Banach space E. Consider the mappings 7. = @OTO o~ and
s\ = posop L Since 7,5, € Aut(D) are involutions, we obtain dr) = ds}, = —id on
(W) as well as 7.(p(z)) = s, (¢(z)). By 3.13 we obtain 7! = s, Since  is a bijection,
Tiw = §jw- By the uniqueness of the analytic continuation on W we obtain 7, = Sz,
which is the desired contradiction. ]

S0 we have obtained that for every connected normed complex Banach manifold D the
existence of a point a € D satisfying the conditions 3.10.i and 3.10.i1 imply 3.14.iii. For
the inverse implication compare [18].

For every symmetric Banach manifold M and every z € M, we denote by s, the
symmetry at the point z.

3.15 Definition. Let D and D be symmetric complex Banach manifolds. A holomor-
phic mapping h : D — D is called a morphism of symmetric manifolds if

hos, =8pz0h
for all z € D.
3.16 Definition. A morphism of symmetric manifolds which is in addition a contrac-
tion is called a metric morphism.

Consider a symmetric Banach manifold D. Denote by I the Banach Lie group of all
biholomorphic isometries of D. The group L acts analytically, transitively and faithfully
on the manifold D (3.6, 3.12, 3.10). Therefore there is a uniquely determined analytic
and faithful action of the Banach Lie algebra [ = Lie(L) on the manifold D (compare
[17], p- 99, Pr. 6.12 ). In particular there is a uniquely determined mapping p such that
the diagram .

L ——'d——> Aut(D)

(3.17) Texp Texp

[ —% — aut(D)

commutes. Since p is injective, the Banach Lie algebra [ can be considered as a Banach
algebra, of holomorphic vector fields on D, i.e. [ = p(0) C aut(D). Further we have that
the mapping

(3.18) p:Ix D —TD defined by (X,a) — (pX)a

is analytic. As a consequence of 3.10.ii we obtain that the evaluation mapping p, asso-
ciated with p and each point a € D,

(3.19) po: L — ToD defined by X — (pX)a
is an analytic surjection.
Fix a point a in D called base point in the following. Denote by
K :={g € L:ga=0}
the isotropy subgroup at a. We denote the symmetry at the point a by s = $4.
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3.20 Lemma. The symmetry s is in the center of K.

Proof. Consider an arbitrary element g € K. Using the same ideas as in the proof
of 3.14, we obtain that o := go sog~! is involutive isometry in L, with a = )
as isolated fixed point. The uniqueness of the symmetry at each point implies ¢ = s.
Hence we have soo = gos. |

For every Banach Lie group G denote by Aut(G) the group of all (analytic) Lie au-
tomorphisms of G. For every Banach Lie algebra g denote by Aut(g) the group of all
(continuous ) Lie automorphisms of g. For every g € G

Int(g)h :=ghg™",

defines a bianalytic group automorphisms Int(g) of G called the inner automorphism
induced by g.

Suppose g is the Banach Lie algebra of a Banach Lie group G. Then there exists a
uniquely determined mapping Ad(g) € Aut(g) such that the diagram

Tnt
o ©), 4
(3.21) Texp Texp
Ad(g)
g —— 9

commutes. The mapping
Ad: G — Aut(g)

is a homomorphism and defines an analytic action of G on g called the adjoint action
of G on g.

Denote by [ the Banach Lie algebra of the Banach Lie group L. Since Ad is a homomor-

phism, we have
[Ad(s)]? = Ad(s®) = Ad(id) = id .

Hence the Banach Lie algebra | admits the representation
[=top,

where
(3.22) ti= {X € Ad(s)X = X} p= {X € LAd(s)X = —~X} ,

i.e. & and p are the (+1) and (-1)eigenspaces of Ad(s) in [ respectively.

3.23 Proposition. The Lie algebra £ can be identified with the Lie algebra of the
Banach Lie group K.

Proof. ( [17), p. 289, Cor. 17.18 ). O

3.24 Lemma. The Lie algebra ¥ consists of all vector fields in | vanishing at a.

Proof. Let X be a vector field in ¢ and g(a) denote the corresponding analytic flow.
By 3.23 we have g¢(a) = a for all ¢ € IR. Then it is sufficient to notice that

X,=0 <= gila)=aforall t€R.
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Let g:(a) = a for all ¢t € IR. Then:

_ dg:(a)
ot

_ o
Ot

Xa

t=0 t=0

Let X, = 0. The system

dg:(a
th(a) = éi )’ go(a) =a,

has a unique solution g;(a) = a for all t € IR. O

In order to obtain a J*- triple system from a symmetric Banach manifold consider the
tangent space to D at the base point a. Define U := T,D ( U is a complex Banach
space with respect to vyr,, where v is the norm on T'D ) and denote by W an open, K-
invariant local coordinate neighborhood of a. We may assume that W C Uand a=0.
Furthermore consider the mapping

oW —=U

defined by

for all z € W. Note that
(3.25) #(s(2)) = 3(s(2) — (2)) = 5(62) = ) = ~o(2)

for all z € W. Also we have ¢(0) = 0 and do(0) = id. Hence by the Implicit Function
Theorem there exist open neighborhoods Wi C W and Wa C U such that

O\wy Wy — W
is biholomorphic. We consider the following open neighborhoods of 0,
Vl = W1 NnNw and Vz = O’(Vl) .

Since W is K-invariant, V; is K-invariant. In particular 5(V1) = Vi. Then we have the

commuting diagram )
Vi — 1

P )
2 2

S0 we have obtained that under the biholomorphic transformation o, the symmetry s
transforms to the involutive isometry p := o o0s0 o~ 1. Note that a is an isolated fixed
point of p. We show also that p(z) = —z. Really, consider an arbitrary point z € V, and
its uniquely determined preimage under oyy;, i.e. the point z; € V; such that o(2z1) = 2.
Then by 3.25 we have

p(z) = (osoa t)(z) = (005)(z) = —o(z) = —2.
Therefore for every z € Vo we have p(z) = —z. Hence we may assume that
(3.26) s(z) = —z
for all z € W.
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3.27 Proposition. Every vector field X in the (+1)-eigenspace ( (—1)-eigenspace ) of
Ad(s) in [ respectively has a local representation in W of the form f(z)0/y,, where f
is odd ( even ).

Proof. Consider an arbitrary vector field X € & By 3.23 and 3.20 we obtain
(3.28) soexp(tX)=exp(tX)os

for all ¢ € IR. From the assumption s(z) = —z for all z € W follows
¢ ¢2
(3.29) s(z+tXz+ 5X2z+-~~)————z——th—EXzz—i-'--
for all t € IR and z € W. Therefore 3.28 and 3.29 imply
¢ t2
—z—tXz— §X2z+-~ =z +tX(—2)+ —2—X2(—z) 4+

Hence f(—2z) = —f(2).
Consider arbitrary vector field X € p. Then 3.22 and 3.21 imply
Int(s)(exp(tX)) = exp(Ad(s)t.X) = exp(—tX)
for all ¢ € IR. Therefore
(3.30) soexp(tX)os! = exp(—tX)
for all t € IR. Since we have s(z) = —z for all z € W, 3.30 imply
(s 0 exp(tX))(z) = (exp(—tX) 0 5)(2) = exp(~tX)(~2)

for all £ € IR and z € U. Expanding in power series we obtain

t2 t2
s(z+th+5X2z+-~-):—z—th—5X2z+~--

for all t € IR and z € W. Hence
t2 2
~z—th—5X 2=z t(—X)(—2) + = (=X)*(=2) + -

for all t € R and z € W. Therefore f(—z) = f(2)- O

3.31 Lemma. The space p is Ad(K)-invariant.

Proof. Consider an arbitrary elements X € pand g € K. Ad is a homomorphism and
the symmetry s of a is in the center of K (3.20). Then

Ad(s)(Ad(g)X) = (Ad(s) o Ad(g))X = Ad(s0g)X
— Ad(g o s)X = Ad(g)(Ad(s)X)
= Ad(g)(—=X) = - Ad(g) X -

Therefore Ad(g) lies in the (-1)-eigenspace of Ad(s) and the proof is complete. O
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3.32 Proposition. For every element o € U there exists a uniquely determined vector
field X in p such that X& = a. The local representation of X = fal(2) 8/3z in W
depends real-analytically on o and complex-analytically on z.

Proof. Define ®:p — T,D by & := pg,. Proposition 3.24 implies that Ker p, = ¢ and
d is a real-linear bijection. In particular it is a bianalytic mapping. Therefore the vector
feld X defined by X := (@) '(a) for every o € U, depends real-analytically on .
Tn particular this holds for the local representation X = fq (2) 9y, in W. O

The mapping ®: U — p defined in 3.32 is IR-linear, 1.e. ®(tX) =tX for all t € R. For
the vector fields in p this implies {X* = X te for all t € IR and o € U. For every a € U
define the vector field iX® := X and the vector space

ip:={iX* aeU}={iX: X €p}.
In the terms of the notation used in 3.32 this is equivalent to i®(c) := ®(icr). This
way we have obtained a C-linear mapping &: U — p + ip. For every g € K extend the
IR-linear mapping Ad(g):p — p on p + ip by
(3.33) Ad(g)(iX*) := i Ad(g)X“
(equivalent to Ad(g)(X*¥) := i Ad(g)X ). As a direct conclusion of 3.31 we obtain,

3.34 Lemma. The space p + ip is Ad(K)-invariant.

Proof. Consider an arbitrary elements X € p+4p and g € K. The vector field X has
a representation of the form X = X +1X,, for some X; and Xz in p. The 3.31 implies
that

Ad(g)(X) = Ad(g) (X1 +iX2) = Ad(g)(X1) + Ad(g)(iX5) = Ad(g) X1 + i Ad(g) X2

lies in p + ip. O
Consider the vector field

!

Y%= Z(Xa—iXm) ep+ip.

For a small neighborhood W of 0 € U the mapping
W =W
7(@) = exp(Y*)(0)
is well defined and is of the form
7(c) = o + terms in o of degree > 3 .

Therefore we may assume that
W —-W

is biholomorphic.
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3.35 Lemma. For every isometry g € K there exists a uniquely determined mapping
§ € GL(U), such that Ad(g9)X® = X9 for all a in U.

Proof. Define §:= ® ' o Ad(g) o ®. Then
X9 = 3(g(a)) = Ad(g)(®(a)) = Ad(g) X* .

3.36 Lemma. For every g € K and every a € W the following equation holds,
(3.37) g(r(a)) = (g(a)) .

Proof. Consider an arbitrary element g € K and o € W. Using the definitions of 7
and Y* we obtain

7(g(0)) = exp (Yg(o‘))(O) = exp (%(Xg"‘ - z'Xigo‘))(O) )

But i§(c) = §(ic). Using the R-linearity of Ad(s) and 3.33 we obtain that 7(g(a)) is
equal to

exp (H(Ad(g)X* — iX96))(0) = exp (Ad(g) 5 (X* — iX™D)(0).
The definition of Y* and 3.21 imply

exp (Ad(g)Y®)(0) = Int(g)(exp Y *)(0) = g((expY*)(0)) = g(7(a)) -
Therefore 3.37 is proved. O
For every a € U consider also the vector field:

Yo = Ad(r"HY® on W .
Using the same arguments as in the proof of 3.36 we obtain
exp(Y*)(0) = exp (Ad(r™HY*)(0) = (t7 oexp(Y¥) o 7)(0)
= T_l(exp(YO‘)(O)) =7 Hr(a))=a.

Replace the local coordinate W by W via 7. For every g € K we get a mapping f, such

that the diagram
w o —2— W

L
wo—L W
commutes, i.e. g(z) = (o for7)(z) for every z € W. Then 7~ logor = f. But

7710 goT = g. Consequently the isometry g transforms to §. Hence for every element
g of the isotropy subgroup K we may assume that gjw is linear.

In this way for every o € U we obtain that the vector field Y transforms to a vector
field Z such that the diagram

w s TWeWxU

|- |-

W —Z s TWEWxU,
commutes. From Z = Ad(771)Y® we obtain that Z = Y'*. Therefore we may assume
that o = exp(Y*)(0) for alla € W C U.



26 V. Oucheva

3.38 Proposition. &= { i\J, : A€ H(U) and [i g, 5] C b}

Proof. Consider an arbitrary vector field X in € By 3.23 we have exp(tX) € K for
every ¢t € IR. Hence X has a local representation on W of the form X = X0y, for
some A € H(U). Since Ad(s) is a homomorphism of Lie algebras we have

Ad(s) ([ 0., ,p)) = [Ad(s)ir T/, , Ad(s)p] = —[iA T, ]

and therefore [i1A 9/y,,p] C p. Therefore
ec{irdy, : Ae HU) and [iA0)p,,p] C b}

Consider an arbitrary vector field X in [ satisfying Ad(s)[X,Y] = —[X, Y] forallY € p.
Then Ad(s)X = X, and therefore X € ¢. O

3.39 Lemma. Nt =20

Proof. Suppose X € €Nt By 3.38 we obtain the existence of a hermitian element
A € H(U) such that X = 1A /9, . Since X € it, there is a vector field X1 € p such
that X = iX;. Applying 3.38 we get the existence of a hermitian element Ay € H (U)
such that X7 = 2\ 8/3Z. In particular A = ¢A;. Since A is hermitian the numerical
range V(L(U), \) C IR. Using the same argument for A; we obtain V(L(U), A1) C R.
The basic properties of the numerical range ( compare (2], p. 15 ) imply V(L(U), A) =
V(L(U),i\) = iV (L(U), A) C ilR. Therefore V(L(U), A) € IRNIR. So we have obtained
V(L(U), A) = 0. But for the numerical radius of A the following inequality holds v(A) >
Z|All (compare [2], p. 34, Th.1 ), and therefore ||A|| = 0. That is A = 0. O

3.40 Proposition. There exists a continuous, conjugate-linear mapping *: U — L?(U)
such that p = {(a —a*)9g,: a € U}

Proof. Consider a sufficiently small neighborhood of 0. Suppose X< is a vector field
in the (-1)-eigenspace of Ad(s). By 3.32 and 3.27 the local representation of X%, X% =
fa(z) 3/32 in W depends real-analytically on o € U and fa(2) is an even mapping.
Therefore for every « in U,

o0

x% = (a+ pe(a)) 9o, €

k=1

and

Ye = (a+2qk(a)> 9y, €p+ip.
k=1

where pi(e), qr() € L#*(U) and gi(a) depends C-linearly on o For every « and (3 in
U for the bracket product [Y,Y?] we have

e Y = in“’Xﬁ] — X%, X ) — X, XP) - (X0, X))
But ‘ | | |
[Xm,Xﬁ] + [Xa,X"g] = i[Xa,Xﬁ] _ i[Xwé’Xlﬁ]

is in €N ik and therefore vanishes. Hence the vector fields Y%, Y# commute. Therefore
for all z € W we get

exp(tY ®)(z) = exp(Y") exp(Y*)(0) = exp(Y™*T%)(0) =t + 2,
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ie.
Yo =ady, eP_y foral acl.

In particular ¢;(a) = 0 and therefore * := —p; is a conjugate linear mapping.
Since [X, Y] € By for all 8 € U( by the properties of Ad(s)) we obtain

X%=(a—-a")9y, €P_1dP1 forall acl.

Hence we have obtained
pc{la—a’)0y,: acU}.

Since ®: U — p is a bijection the proof is complete. O
Proposition 3.40 and 2.23 imply that (U, x) is a hermitian Jordan triple system.

3.41 Proposition. Suppose D and D are symmetric complex Banach manifolds with
base points a and @ respectively and h: D — D is a morphism with h(a) = a@. Denote
by (U, *) and (U, *) the corresponding J*-triple systems. Then the differential of h at
the base point a of D is a J*-morphism.

Proof. Denote by ) the differential of i at the base point a. Suppose g € P :=exp(p) C

L. Obviously g(a) is a fixed point of gosog™".

Since a is isolated fixed point of s, there exists an open neighborhood V' C D of a with
the property s(z) # = for all z € V\{a}. The mapping g is open and therefore g(V) is
an open neighborhood of g(a) in D. Assume there is a point z € g(V)\{a} such that
gsg~*(z) = x. Then g~!(z) € V\{a} is a fixed point of s which is a contradiction with
the choice of the neighborhood V. Hence g(a) is an isolated fixed point of the involution
gsg™".

By 3.14 we obtain

(3.42) sga:gosog“lzgzos.

By the definition of a morphism of symmetric Banach manifolds, we have sz o h =
Sha © b = hos,. Then 3.42 implies

(3.43) shgaosaoh:shWOhosa:hosgaosa:hog2osos:hog2.

Consider an arbitrary vector field X € p, X = (o — a”) /9, for some a € U. In
particular for every t € IR we have g; := exp(tX) € P. Furthermore define

Gt := Shg,a08a foralltelR.
2
Then the equality 3.43 implies
gt © h=hog;

for all t € IR. There is a uniquely determined vector field Y € p, where p is defined for
U the same way as p for U, such that exp(tY) = g for all t € R. For some 6 e U we
have Y = (8 — %) 9/5,,. Hence

hoexp(tX)=exp(tY)oh forall ¢tclR.
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We may assume that the local coordinate neighborhoods W of a € D and WofaeD
satisfy h(W) C W. Differentiating at t = 0 we obtain

Mop(EX)(2) _ dexm(iY)E)
ot t=0 0z t=0"
That is
(3.44) W(z)(a—a*(2)) = (8- B (h(z))) forall zeW.

For z = 0 this implies #/(0)(c) = 3, which is equivalent to A(a) = 8. Therefore for every
fixed z € W the mapping h'(z)(c)— 8 depends conjugate-linearly on a. Since A'(z) (a)—p
depends also C-linearly on a we obtain h'(2)(a) — 8 =0, or R (2)(a) = AMa) = W' (0)(c)
for every z € W. In particular we have obtained h(z) = A(z) for all z € W. Then 3.44
implies

which is equivalent to
A({zez}) = {A(2) (M) " (M2))}
for all z € W. Therefore X is a J*-morphism. U

Proposition 3.41 implies that the given construction is a functor § from the category
of symmetric complex Banach manifolds with base point into the category of hermitian
Jordan triple systems.

4. Construction of a Symmetric Complex Banach Manifold from
a Hermitian Jordan Triple System

Suppose (U, *) is a J*-triple system. As we have shown in chapter 2, conditions (ii) and
(iii) of the definition of a hermitian Jordan triple system imply [p,p] C € and hence

i—topcli=tepcl=top

are real Banach Lie algebras. Let V denote the closure (uniform closure) of U™ in L*(U),
ie. V = U*. Consider the following complex Banach subspaces of 3,

go1:=P_1,
g1: =199, :q €V} CP1,
90¢:{X€$03[X,91]C91}Cq30-

4.1 Lemma. The direct sum g := g_1 D go @ g1 is a graded complex Banach Lie
subalgebra of the Banach Lie algebra 3 of all polynomial vector fields associated with
U.

Proof. Obviously g is a complex Banach space as a direct sum of complex Banach
spaces. Notice that the following relations hold,

(4.2) 9-1,0-1] =0, [g-1,80] Cg-1, [80,80] Cgo and [g1, 90] C 81;

(i) We shall prove that [g_1, g1] C go-
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Consider arbitrary vector fields X in g—; and Y in gy. Notice that they have repre-
sentations of the form X = a9y, for some element o € U and ¥ = q9/s, for some
homogeneous polynomial ¢ € V. Denote by Z their bracket product, [X,Y]. Then Z
has a representation of the form, Z = g(z) 3/az for some holomorphic mapping ¢(z).

1. Suppose ¢ = (* for some element 8 € U. Using the basic properties of the triple
product we obtain

0(2) = da(2)(B"(2)) — dB"(2)(0) = —2qp(z, @) = —2{zB" 0} = ~2(@af*)(2) .

Therefore Z lies in PBo.

Therefore it is sufficient to show that the inclusion [Z, g1] C g1 holds. Consider a vector
field pa/az in gi.

1.1 Suppose p = ¥* 8/82 for some v in U. Then for the bracket product h(z) 5/32 of the
fields Z and p 9y, , we obtain

h(z) = d(—2{z0"B})(2) (7" (2)) — dv" (2)((—2B0a7)(2))
= —2{{z7"2}a* B} — 2¢y(2, —2{za"0})
= —2{{zy"z}a" B} + 4{z7"{2a" B}}
= 2{z{af v} 2} -
That is h(z) = 2{ef*7y}*(z) and hence the vector filed Z lies in g1.

1.2 Suppose p = lim, 00 7" for some sequence (vn) C U. Using 1.1 we obtain
h(z) = lim 2{z{af v} 2z} =2 lim ({ef"1m}")(2) -
n—0o0 n—r00

Since the space g is closed, we have obtained Z € gi1.

The considered cases 1.1 and 1.2 imply [g—1, g1] C go-

2. Suppose ¢ = limy,_,c0 B, for some sequence (B,) in U. The case 1 and the uniform
continuity imply Z € g1.

(ii) We shall prove that [g1,91] = 0. Suppose X = q0/5, and Y = p9)y, are vector
fields in g1. Denote by Z = g(2) 9/, the bracket product [X, Y]

1. Suppose ¢ = o* and p = 3* for some o, § € U. Then

g(2) = da* (2)(8"(2)) — dp"(2)(a" ()
= 24 (2, 67(2)) — 248(2) (" (2))
= {za™{20"2}} — {207 {za"2}}
=0

because of 2.18. Therefore the vector field Z vanishes.

2. Suppose ¢ = limy, 00 0™ and v = 5* for some sequence () in U and some element
B in U. The considered case 1. implies that the vector field Z vanishes.

3. Suppose ¢ = limy, 00 @ and v = limy 00 B, for some sequences (o) and (Br) in
the Banach space U. Then the cases 1. and 2. imply that the vector field Z vanishes.

So we have obtained [g1,91] = 0.

The two considered cases (i) and (ii), as well as 4.2 imply that g is a graded complex
Banach Lie algebra. O
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4.3 Lemma. The complex Banach Lie algebra g has no center.

Proof. Suppose X is a vector field, which lies in the center of g. It has a representation
of the form

X:oza/az +)\3/az +x*a/3z, where a € U, z* €V Aa/az € go -

For every vector field Y = z 5/52 in g, the product [X,Y] vanishes. In particular ¥ =
2 0/g,, implies:

X, 205,] = [0 s, 200, + N az. 2 Op) + [ Flp ) = 1(2) Yoz
where
h(z) = —a+dz*(2)(z) — z7(2)
= —o + 2q2(2, 2) — z¥(2)
=—a+2*(z)=—a+z"(2) =0
for all z in U. Then z*(z) = « for all z € U. But z = 0 implies & = 0 and therefore

z* = 0. As a consequence we obtain X = )\a/az € go. Consider an arbitrary element
a € U. Then

Mgy, (@ —a®) g, ] = (Me) — M({za"2}) - 2{za” (A(2)}) Vg =0

implies A(a) = 0. But the last holds for all @ € U, therefore A = 0. Hence X vanishes
and the proof is complete. O

4.4 Lemma. Every derivation of g is inner.

Proof. Consider an arbitrary derivation D of g, i.e. continuous C-linear mapping
D:g — g, such that
D([X,Y]) = [D(X), Y]+ [X, D(Y)]

for all X,Y in g. Suppose that D(za/az) = X_; + Xo + X1, where X, € g, for
every v € {—1,0,1}. Then the mapping 7 := D — ad(X; — X_1) is a derivation of g,
such that 1(29/5,) = Xo lies in go. Here we have used that [20/5,,X_1] = X1 and
(X 1,z3/3z] — X,. If we prove that 7 is an inner derivation of g, then D is an inner
derivation of g as a sum of 7 and ad(—X_1 -+ X1), where the vector fields X 1 €9
and X; € g1 are uniquely determined from the image D(z 3/3 ). Therefore without loss
of generality we may assume that D(z 9/9,) € go. This implies that D(g,) lies in g,
for all v = {—1,0,1}. In particular for v = -1 we obtain

Dlg—lzg—l — g1

is a continuous linear mapping and therefore ( since g—1 = U) uniquely determines a
continuous linear mapping A: U — U, and hence a linear vector field X = A 5/5 € PBo
(define A(e) := B, when D(a g, = B9/5,)). Then for all vector fields ¥ = ozé/az in
g_1 we get [X,Y] = A(c) /5, . This implies

D(Y)=[X,Y] forall Y eg_1.
For all constant vector fields Y € g_1 and all linear vector fields Z € go we have that the

vector field [Y, Z] lies in g_1, and hence the above result implies [X,[Y, 2] = D(Y, Z]).

So we obtain
[Ya [X7ZH:[X7[Y7Z]] [[X’YLZ]

:D([sz]) [D(Y)’Z]
= [D(Y), 2]+ Y, D(2)] - [D(Y), Z]
[Y,D(Z)] .

=
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Then
D(Z) = [X, Z] forall Ze€go.

Now we apply the same argument to all constant vector fields Y € g_; and all quadratic
vector fields Z € gi1. In this case the vector field [Y, Z] lies in go. So using the the result
that [X,[Y, Z]] = D([Y, Z]), we obtain

D(Z)=[X,Z] forall Z€g.

In particular the above result implies that the vector field [X, Z] lies in g; for all Z € g1
( we have that D(g1) is a subset of g1 ) and hence X lies in go. Therefore D = ad(X)
is an inner derivation of g. O

4.5 Proposition. The Banach Lie algebra g is isomorphic to the Banach Lie algebra
Der(g) of all derivations of g via ad.

Proof. Consider the continuous Lie algebra homomorphism ad: g — Der(g). Proposition
4.4 implies that ad is surjective. Since Ker(ad) is equal to the center of g, proposition 4.3
implies that ad is injective. Therefore ad is a topological isomorphism of Lie algebras.
O

4.6 Proposition. The group Aut(g) of all Lie automorphisms of g is a complex Lie
subgroup of GL(g). Its Lie algebra is the set

w = {g € L(g) : exp(tg) € Aut(g) forall t¢€ R} .

Proof. For every g € GL(g) the following holds
g € Aut(g) <= g([X,Y]) =[g(X),g(Y)]forall X, Y € g .
For all vector fields X,Y in g define
Pxy(g) = [9(X),9(Y)] - g([X,Y]) forall geGL(g).
Note that Py y:L(g) x L(g) — ¢ is a homogeneous polynomial of deg < 2. Then
Aut(g) = {g € GL(g) : Px,y(g9) =0forall X, Y € g}

is algebraic subgroup of GL(g) of deg < 2 in the sense of [6] and consequently is a Lie
subgroup of GL(g) with Lie algebra to. O

4.7 Lemma. Der(g) = 1o

Proof. We shall prove that to C Der(g). Consider an arbitrary element # € . Then
the mapping 0: g — g is linear and exp(t0) € Aut(g) for every ¢ € IR, which implies

exp(t0)[X, Y] = [exp(t0) X, exp(t0)Y]

for all £ € IR and all X,Y € g. In particular then we obtain
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Therefore 6 € Der(g).

Consider arbitrary element 6 € Der(g). We shall prove that exp(tf) € Aut(g) for every
t e R.

Fix arbitrary vector fields X,Y € g and consider the differential equation

(48) Lo, =0(XY]) 90 =[X,¥].

Obviously the mapping y(t) = exp(t6)[X,Y] is a solution of 4.8. Furthermore consider
the mapping h(t) = [exp(t0)X, exp(t0)Y]. We have

since 0 € Der(g). Note also that 2(0) = [X,Y]. Since the differential equation 4.8 has a
unique solution, we have obtained h(t) = y(¢) for all ¢ € IR, which is exactly

exp(t0)[X, Y] = [exp(t0) X, exp(t0) Y]

for every t € IR. Since the vector fields X and Y were arbitrary, we have obtained
exp(t0) € Aut(g) for every ¢ € IR. O

Denote by G the connected identity component of Aut(g). Then G is a complex Banach
Lie group with Lie algebra Der(g), isomorphic to g via ad. Counsider the closed complex
Banach Lie subalgebra b := go @ g1 of g, and the closed subgroup H:={g€eG: g(h) =
h} of G.

4.9 Proposition. H is a complex Banach Lie subgroup of G with Lie algebra isomor-
phic to the Banach Lie algebra §.

Proof. ( [17], p. 147 ). O

Denote by Q := G/H the quotient space. Using Godement’s theorem we shall prove that
there exists a unique complex Banach manifold structure on (@ such that the canonical
projection is a holomorphic submersion. For convenience we give the definition of a
submanifold and Godement’s Theorem, see also [17].

4.10 Definition. A subset N of a Banach manifold M is called a ( direct) submanifold
if for every point o € N, there exist a chart (P,p, Z) of M about o and a split subspace
W of Z such that

p(NNP)=Wnp(P) .

4.11 Theorem. Let R be an equivalence relation on a Banach manifold M. Then the
following conditions are equivalent:

(i) R is a closed submanifold of M X M and the projections mx: R — M are analytic
submersions.

(i) R is a (Hausdorff ) Banach manifold such that the projection mg: M — M/R is
an analytic submersion.
In this case the manifold structure on M/R is uniquely determined by the condition
that g is an analytic submersion.
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We divide the proof in several claims.
Claim: There exist an equivalence relation R in G such that Q= G/R.

Proof: Consider the holomorphic mapping ¥: G x H — G x G defined by U(g,h) :=
(g,gh). Define R := ¥(G x H).

(i) R is reflexive: For every element g € G we have (g,9¢) = ¥(g,e) € R.

(ii) R is transitive: Suppose (g1,92) € K and (g2,93) € R. Then there exist elements
hi,ho € H such that go = g1h1 and g3 = gahe. Therefore g3 = gihiha, or (g1,93) =
\If(gl, hlhg) € R.

(iii) R is symmetric: Suppose (g1, g2) € R. Then there exists an element h € H with
the property gz = gih. Then g1 = g2h™", or (92, 91) = ¥(g2, h~') e R.

Therefore R is an equivalence relation in G. Furthermore for any two elements g1,92 € G
we have (g1, 92) € R if and only if there exist an element h € H such that go = g1h. The
last is equivalent to g; 19y = h € H, which holds if and only if g1H = go2H. Therefore
Q=G/R. O
Claim: R is a closed submanifold of G x G.

Proof: R is closed in G x G, since H is closed in G.

Consider the differential of ¥ at (e,e) € G X G, i.e. the mapping
Te,e)V: T.G x T.H — T.G x T.G.

Then Tie,ey¥(v,u) = (v,v + w) for all (v,u) € TeG x T.H and therefore Te,e)V is
injective. Since b is a direct subspace of g, we have

T(e,e)(TeG X TeH> - {(U,’UJ) & TeG X T@GZ w—vEc TeH}

is a split subspace of T.G x T.G. Therefore U is an immersion at (e, e). Using the fact

that the diagram o
GxH — GxG

ngXRh ngXLth
G x H —r , GxG
commutes for all g € G and h € H, we conclude that ¥ is an immersion. (Here L, and

Ry, denote left and right multiplication in G, with g and h respectively).

Consider an arbitrary point a € G x H. Since ¥ is a holomorphic immersion at a, there
exist charts (P,p, E) of G x H about a and (T,q,F) of G x G about ¥(a) such that
U(P)CT,F=E®V for some complex Banach space V, and the diagram

p —Y— T

Jr Lo

E ——'d——> F
commutes. Since ¥ is a homeomorphism onto R, we may assume that U(P)=RNT.
Then ¢(RNT) = ¢(¥(P)) = p(P). Denote by m the continuous projection from F' onto
E, and define

T :={beT: n(qb)) € p(P)} .
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T' is an open neighborhood of ¥(a) and ¢(RNT") = p(P) = EN q(T"). Therefore R is
a submanifold of G x G. O

Claim: The projections my: R — G, for k = 1,2, are holomorphic submersions.

Proof: We prove that the mapping ¥ is biholomorphic. Suppose m is an arbitrary point
in G x H. The tangent space at m satisfies

(T (myq) Te(myR) = E = (Tmp) (T (G x H))
=Ty (qo U)T,, (G x H)
= (Ty(m)q © Tm¥) (T (G x H)) .
Therefore Ty, U: Ty, (G x H) — Ty (m) R is an isomorphism for every m € G x H. By the
inverse mapping theorem we obtain that ¥ is biholomorphic.

Denote by m1: G x G — G the projection onto the first factor. We have
7T1[R oY = T1GxH-"

Therefore 71| p: R — G is a holomorphic submersion. O

Hence by Godement’s Theorem we have obtained the following proposition.

4.12 Proposition. The quotient space () := G /H can be endowed with a unique com-
plex structure such that @ Is a complex Banach manifold and the canonical projection
m: G — ( is a holomorphic submersion.

4.13 Lemma. The left translation action r of the group G on the complex Banach
manifold @ is holomorphic.

Proof. Denote by rg the product mapping in G and by m: G — @ the canonical
projection. We have the commuting diagram

GxG —C<— G
lidxw lw
GxQ —— Q.

Since id X7 is a surjective holomorphic submersion, the mapping is holomorphic. [

For the following r will denote the left translation action of the group G on the manifold
Q and p the corresponding holomorphic action of the Banach Lie algebra g on Q. Recall
that given 7, the mapping p is uniquely determined as the differential of r, i.e. the
uniquely determined holomorphic mapping p such that the diagram

G —— Aut(Q)

Texp TBXD

g —2 5 aut(@)

commutes. Denote the point H in @ by a.

4.14 Proposition. There exist an open neighborhood P of a in Q and a biholomorphic
mapping p: P — g—1 such that p(a) = 0 and

(porgoexp)(ady,)=a forall acU.
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In the following we will refer to the triple (P,p,U) as the canonical chart about a in Q).
Proof. Consider the holomorphic mapping ¢: g — G defined by

p(X +Y) = exp(X) exp(Y)

for all X,Y in g. Denote by « the canonical projection of g onto g_1 and by 7 the
canonical projection of G onto Q. Then for the holomorphic mapping v defined by

Y(X) = (rao exp) X

for all X € g1, the diagram
g —* 5 G

L I
W
g1 ——
commutes. Taking differentials we obtain the commuting diagram

g P, T.G

B |7n

T
g-1 __91,0__) T.Q .

For the group H we have H = n~'(a). Since 7 is a holomorphic submersion ( 4.12 ), by
([17] Cor. 8.9 ), we obtain TeH = Ker Te, or Ker Tem = pe(h). Therefore To7p is an iso-
morphism and by the inverse mapping theorem the mapping 1 is locally-biholomorphic
at 0 € g—1.

For every vector field 8 a/@z € g_1 consider the diagram

g1 —4— Q

lLﬁ lr(g)

P
g1 —— @,

where Lg(a0/y,) = (a + B) /5, for all adly, € g1, 9 = exp(89/y,) € G and
r(g)(kH) := gkH for all kH € Q. Then for every vector field a9y, € g_1 we have

(r(g) o $)(@Fp,) = r(9) ((ra o exp)(@ )
= 1(g) (ra(exp(@ 95, )
= ro(exp(89/p;) exp(@ ;)
= ra(exp(a+5)9s;)
= (rq o exp oLg)(a 8/32)
= (Yo Lp) (@) -
and hence the above diagram commutes.

Therefore 1 is locally biholomorphic on g—1. Then 9 is locally biholomorphic on g—1.
Then P :=1(g_1) is an open subset on Q. For all o, 8 € U the mapping

g:=exp((a—P)9y,) €C
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satisfies g(I) = I + (8 — @) 9y, . Therefore g € H if and only if a = B. Then 1 is
injective on g_1. In particular ¢: g1 — P 1s biholomorphic. Define p := 9~ 1. Then

(porgoexp)(X) = (W o)(X) = X

for all X € g—1.

Since U and g_; are isomorphic ( via o+ a0y, for all o € U), we may assume that
@ is defined on U, i.e. 9: U — P and

(a) = (ra o exp)(a9,)

for all & € U. Then 4.12 holds. Also p: P — U and the triple (P,p,U) is the desired
canonical chart about a in Q. O

4.15 Lemma. For every vector field X € g the following equation holds
p:(pX) =X,

where (P,p,U) is the canonical chart of () about a.

Proof. ([17], p. 154, Th. 9.21 ). O
4.16 Proposition. Let L be a subgroup of G containing exp(i). Suppose oo € U
satisfies (1 — ana*) € GL(U). Then the orbit L(m) is open in Q, where m == p~'(a)
and (P,p,U) is the canonical chart of Q about a := H.

Proof. For every § € U define X5 := (8 — 8) 95, and X7 = X + §[Xa, Xg] € .
Furthermore consider the mapping ¢:U — [ defined by ¥(8) := X Bforall BcU.In
particular ¢ is IR-linear and continuous.

Consider the mapping ¢: U — @ defined by ¢ := rmoexp otp. Then ¢ is real-analytic. We
claim that Top: U — Ty @ is an isomorphism. Hence by the inverse mapping theorem
we get that ¢ is real-bianalytic on a neighborhood of 0 € U. Since ¢(U) C L(m), the
orbit L(m) is a neighborhood of m € @ and is therefore open.

Note that (Tow)(B) = pm(XP) for all § € U. Furthermore since p: P — U is a bi-
holomorphic mapping, it induces an isomorphism of Banach Lie algebras such that the

diagram
 L—

le lp* (pX*)

P — ., TU

commutes. Therefore

(Top © Tow)(B) = (Tmp) (To0) (8)) = (Tmp) (P (X7))
= (Tpp) (0XP)m) = (Pu(pX ")) -

Proposition 4.15 implies
(p*(PX'B))a =Xy = (idy —ana”)(B) -
We have obtained

(Tynp o Tow)(B) = ¢a(B) for all gelU,
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where 1o := (idy —aoa*) € GL(U). Since Trn,p is an isomorphism, the mapping Toyp is
an isomorphism. So our claim is proved. O

For the following we consider the Banach Lie groups
L= (exp p(D) C L:= {expp(l)) C L= {exp p(/[\)> C Aut(Q)

with Lie algebras [, | and T respectively acting analytically on @ with differentials Pis Pt
and Pir

4.17 Proposition. The orbit N :=r,(L) = L(a) is an open connected submanifold of

Q) on which the group L acts transitively.
Proof. Applying 4.16 to o = 0 we obtain that E(a) is an open connected submanifold

-~

of @ containing L(a) as an open subset. Since 1is an ideal of I, for all vector fields X €I
and Y € [ we get:

exp(X) exp(Y) exp(—X) = exp(exp(ad X)Y).

Therefore L is a normal subgroup of L.

Consider an arbitrary element n € L(a). There exist a mapping g € L such that n =
g(a). Then

L(n) = L(g(a)) = g(g7 " Lyg(a)) = g(L(a))

is open in L{a). Then L(n) is both closed and open in L(a). Since L(a) is connected we
obtain L(a) = L(a) = N = L(a). O
In particular we have obtained that the action p: [ — aut(N) is analytic and faithful.

The manifold N is connected, as well as locally connected and locally simply-connected.
Therefore N admits a universal covering u: D — N, where D is a connected and simply-
connected topological space and p is a covering projection. Furthermore there exists a
uniquely determined complex Banach manifold structure on D such that p is locally
biholomorphic.

Fix a point @ in D over a € N, i.e. a point a € D satisfying p=(a) =a € D.

Denote by p1 the lifted action of [ on D. It is analytic and faithful, since p is analytic
and faithful. Define

(4.18) Ly := (expp1()) C Aut(D) .

The group L; is a connected Banach Lie group, with Lie algebra [ acting analytically
on D with differential p1. Recall the following definition

4.19 Definition. An analytic action » of a Banach Lie group G on a Banach manifold
M is called locally transitive at o € M if the evaluation mapping

ro:G—> M

is an analytic submersion at e € G. The action 7 is called locally transitive, if it is locally
transitive at every point m € M.
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4.20 Proposition. The canonical action of Ly on D, denoted by 71, is locally transitive
and hence transitive.

Proof. The proof is based mainly on the following
Claim: The canonical action r of the Banach Lie group L on N is locally transitive.

Proof: We shall prove that r,: L — N is a submersion, which is equivalent to prove
that pg:! — TN is surjective and has a split null-space. Consider the canonical chart
(PNN,p,U) about a in N. Note that T,p: T,N — U is an isomorphism. Further consider
an arbitrary vector field X € . The mapping p induces an isomorphism of Banach Lie
algebras, such that the diagram

p —2 5 U

|x Joox

P 2, TU

commutes. Therefore

(Tap) (an) - (Tap)((pX)a) - p*<pX)p(a) - p*(pX)O-

Proposition 4.15 implies
p«(pX)o = Xo = (X),

where (X) := Xo for all X € [. This implies

(Tap) 0 pg =

and therefore Ker(p,) = Ker(t) = €. We have obtained that Ker(p,) is a split subspace
of I. Furthermore p, is surjective, since T,p 1s an isomorphism and 1 is surjective. The
group L acts transitively on N and hence the claim is proved.

As a consequence of the above claim we obtain that the lifted action 7 of the covering
group L of L, on D is locally transitive. But 7 and the action 71 can be identified.
Therefore the action of L; on D is locally-transitive. O

4.21 Proposition. There exists a chart (Py,p1,U) of D about a such that
pr. (1 X)=X forall X €Ll

The isotropy subgroup at a, K1 := {g € L1 : 71(9, a) = a} is a connected Banach Lie
subgroup of Ly with Lie algebra t. The canonical mapping : L1/Ky — D defined by
o(gK1) = r1(g,a) is real-bianalytic. In the following we refer to the chart (P1,p1,U)
as the canonical chart of D about a.

Proof. By 4.20 the action vy of L on D is locally-transitive. In particular the evaluation
mapping 71, at the point a, is a submersion at e € L,. Then the diagram

Ll__rla__+D

2 l“(g)

L, —2~ D
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commutes for all g € L1, where L, is the left multiplication with g € L and r1(g)(b) =
r1(g, b) for all b € D. Therefore r1,: Ly — D is a submersion. By ( [17], Cor. 8.9, p.128)
the group K; = r1,”'(a) is a closed submanifold and hence a Banach Lie subgroup of
L;. Furthermore

TeKl = KerTerla = ple(Kerpla) .

Then for the Banach Lie algebra of K1, denoted by £(K1), we have
£(Ky) = Kerpy, -
Denote by n: Ly — Ly /K, the canonical projection and note that
POT=T14 -

Since r1, and 7 are analytic submersions, the mapping ¢ is bianalytic. Therefore L1 /K
is simply-connected in the quotient topology. By ( [4], p-59, Cor.1 ) the group K; is
connected (since L; is connected). Let (PN N,p, U) denote the canonical chart of N
about a. Since D is the universal covering of N, there exists an open neighborhood P
of a in D such that pp 1is a homeomorphism onto an open subset of P M N. Define
p1 = po pp,- The triple (Py,p1,U) is a chart of D about a satisfying

P (pX)=X

for all X € L. Therefore (T,py o p1,)(X) = Xo for all X € [. Hence Ker(p1,) = & That

4.22 Lemma. Suppose X is a vector field € and define g := exp(X). Then the diagram

Tl(g)_lﬂpl __7"1_(_9)__> Pl

(4.23) lpl lpl

exp(X)

U U
commutes.
Proof. According to proposition 4.15

X = pl*(PlX) .

Then
exp(X) o p1 = exp(pr.(p1X)) o p1 -

Therefore by ( [17], Pr. 5.16, p.80 ) we have
(exp(p1,(p1X)) o p1 = p1 o exp(p1X) op1™+ o p1 = p1oexp(p1X) -
Since p; is the differential of 71 we have
exp(p1X) = (r10exp)(X) = r1(g) -

Therefore
exp(X)op1 =p1ori(g),

or the diagram above commutes. O
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4.24 Proposition. The simply-connected complex Banach manifold D associated with
the J*-triple system is a circular, symmetric complex Banach manifold.

Proof. Consider the canonical chart (Py,p1,U) about ¢ in D. The mapping p; is
locally bianalytic in a neighborhood of 0 in P; and therefore induces an isomorphism
Top1:T,D — U. Endow T,D with a compatible norm such that T,p; becomes an
isometry. Note that K; = <exp(¥3)>. Therefore using proposition 4.22 and passing to the
differentials in 4.23 we obtain the commuting diagram

7.p L@ opop
lTapl j{Tapl
U fi‘.p(_X_)_> U.

Therefore T,r1(g) is a linear isometry for every g € K1 (exp(X) is a linear isometry for
every X € t). Hence the norm on T, D is invariant under K.

For every m € D define vp,: 15 D — IR by
Vi (v) 1= T (r1(R))0]
where h € L; is such that r1(h,m) = a. Then
v:TD—1Ry, V7,0 '="Vm

is well-defined norm on the tangent bundle 7'D. v is invariant under L.

The evaluation mapping 71,: L1 — D is an analytic submersion. Therefore there exists
a chart (I, 7, Z) of D about a and a real-analytic mapping x: I' — L1 such that x(a) =
e € Ly and 71, o x = idp. In particular v is continuous.

Consider the mapping (:I' — L(Z), defined by
¢(m) = Toy 0 T (r1(x(m))) o (Tmy) ™"

The mapping ¢ is real-analytic. Therefore we may assume that

C(m) ~idz | < 5,

for all m € I', where Z carries the norm induced by To7: T,D — Z. Then we have

T T (e(m)v — (Lo < 3 (Ty)o].

Hence ) 5
5\(Tmfy)(v)\ < vm(v) < §|(Tm7)(v)l forall veT,D.

Therefore (D, v) is a connected normed Banach manifold.

Note that L; is the Banach Lie group of all biholomorphic isometries of D. Furthermore
the vector field il := iz-Z is in € and p1,(p1(i])) = oI, according to 4.21. Therefore
t s exp(tp1(il)) defines an isometric circle action on D with fixed point a. Hence D
is circular about @ and s, := exp(mp1(iI)) is a symmetry of D about a. So we have
obtained that the simply-connected symmetric complex Banach manifold associated

with the J*-triple system (U, *) is a symmetric Banach manifold. O
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5. Morphisms

For every complex Banach manifold M denote by (M) the Lie algebra of all holomor-
phic vector fields on M. For every open subset V' C M denote by H(V) the space of all
complex valued holomorphic functions defined on V.

Note that for all Banach manifolds M and M’ the space B(M) x B(M') carries the
structure of a Lie algebra, where the bracket product is defined componentwise,

[(Xa X/)v (Y> Y/)] = ([X’ Y]) [X/7Y,]) '

Suppose that M and M’ are complex Banach manifolds and that o:M — M'is a
holomorphic mapping. We say that the vector fields X € U(M) and X' € U(M') are
p-related if

(5.1) (Top)(Xa) = X' o0

for all @ in M. If we consider the vector fields X and X' as differential operators condition
5.1 is equivalent to

X(fogoy)=Xf)opyw
for all open V C M, V' C M’ such that (V) C V' and every function f € HVT).

5.2 Proposition. Suppose M and M' are complex Banach manifolds and o: M — M’
is a holomorphic mapping. Then the vector space

U= {(X,X") € B(M) x B(M') : X and X' are ¢ — related }

is closed under the bracket product and therefore is a Lie subalgebra of (M) x B (M’ ).

Proof. Consider arbitrary pairs of vector fields (X, X'), (Y, Y”) in 9 and their bracket
product ([X, Y], [X’,Y"]). We shall prove that [X; Y] and [X', Y] are @-related.

Suppose V and V' are open subsets of M and M " respectively such that p(V) C V'
Furthermore consider an arbitrary function f € H(V’). Then we have

(X, Y1) ooy = [Y(X'f) - X' Y')] cow
=Y'(X'flopy —X' Y flowy .

Since X and X' are p-related, we have
X(gopw)=Xgoopy
for all g € H(V'). By the same reasons, we have
Y(gopw)=Y'gopyw
for all g € H(V’). Therefore
X'V fopy =X fopy)=XY(fo o))

V(X 'fogy =Y (X' fopy)=Y(X(fopw))-
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So we obtain

(X, Y')f) ooy = Y(X(fopw)) — (XY (fopw))
= [X7Y](fo(10|V) )

which implies that the vector fields [X,Y] and [X', Y] are ¢-related and therefore the
pair ([X,Y],[X’,Y")) lies in 0. ]
Suppose (U, ) and (U',x) are J*-triple systems. Denote by (D,a) and (D',a’) the
simply-connected, symmetric complex Banach manifolds associated with them according
to the construction given in chapter 4. Furthermore suppose A: (U, x) = (U', %) is a J*-
morphism. We shall prove that A uniquely determines a morphism A:(D,a) — (D',a’)
of the corresponding symmetric Banach manifolds, such that dA(a) = A ( recall the
properties of the canonical charts about a and o', in D and D’ respectively).

Let I; and Li’ be the connected real Banach Lie groups with Banach Lie algebras |
and I, acting analytically and transitively on D and D' respectively, introduced also
in chapter 4, compare 4.18. Denote by L and L' their universal covering groups. Then
L and L' are simply-connected Banach Lie groups with Banach Lie algebras [ and U,
acting analytically and transitively on D and D’ respectively. Denote the action of L on
D by r, and the action of L' on D' by 7’. Furthermore denote by K and K’ the isotropy
subgroups at a and a’ respectively, 1.e.

K:={gelL:r(g,a)=a} and K :={g el :r'(¢',d)=4d'}.

Note that K and K’ are Banach Lie subgroups of L and L' respectively. The canonical
projections m: L — L/K and n': L' — L'/K' are analytic (submersions). The canonical
bijections
p:L/K — D, p(¢K) :=r(g,a) =r(g)(a)

and

(P/:LI/K/%DI’ (p/(g/K/) = T‘l(g/,a,):T/(g/)(a/)
are bianalytic. Note that p o = rq and ¢’ o7’ = r,. In the following we identify D
with L/K and D’ with L'/K' via ¢ and ¢ respectively. In this case 7, is identified with
7 and r!, with 7.

According to proposition 5.2 the subspace Tof I&Y, consisting of all pairs of vector fields
(X, X" such that X and X' are A-related is a (real) Banach Lie subalgebra. Since the
action of [ on D and the action of I’ on D’ are faithful, there exists a simply-connected
Banach Lie group L with Banach Lie algebra I ( compare [17], Th.7.5).

Denote by # and 8’ the restrictions on I, of the canonical projections of (@I onto the first
and the second factor respectively. Since the groups L, L' and L are simply-connected,
0 and @' uniquely determine Banach Lie group homomorphisms © and ©' such that the
diagrams

T —2 [
(5 3) j{eXP l exp lexp J/exp
L —2 4 L A J

commute. Denote by K the Banach Lie group ©~*(K). The space L/K carries uniquely
determined Banach manifold structure such that the canonical projection 7: L — L /K
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is an analytic submersion. The mapping (g1, f]gf() =0 ggf{ defines an analytic action
of L on L/K. Note also that 7z = &, where @ := K € L/K.

In the following we consider the analytic mappings
U:L/K — L/K, U(§K) := 0(3)K

and
v L/K - L'/K', V' (GK) := @'(§)K’

Note that by the definitions of ¥ and ¥’ we have the commuting diagrams

i —25 L i 25 I
(5.4) lfr lfr lﬁ' lﬂ'
i)k —Y— L/K i)k —Y— L/K'.

Furthermore since ©(K) C K the mapping ¥ is injective. As a direct conclusion of
the definition of | we have that p C u(l) ( recall that p = {(a — &) g, ra€lU})
and hence ¥ is surjective. So we have obtained that the mapping ¥ is bijective, which
implies that ¥ is bianalytic.

Identifying L/K with D and L'/L" with D’ via ¢ and ¢ respectively we obtain the
commuting diagram 1.

L 2 i 5
p Y )k %X D
Diagram 1
We shall prove that
(5.5) AD =D, A:=T o0t

is a morphism of symmetric manifolds. Obviously A(a) = a.

5.6 Lemma. For a sufficiently small open neighborhood W of a in D and up to a
biholomorphic transformation of W the equality A = A holds.

Proof. Passing to the differentials of diagram 1 we obtain

[<—L— i —el——>[’

lp“ ‘LTé(ff) lp'a:
p &Y iR =Y D

Diagram 2
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where we have used that T,(ra) = po and Te (rh,) = pl-

Consider an arbitrary pair of vector fields (X, X') in 1. Considering diagram 2 we obtain

(Toh) ((pa 0 0)(X, X)) = (Tah) ((Ta¥ o Te(m) (X, X))

(Ta
= (T30 o T5(¥™") 0 Ta¥ o Ty(a)) (X, X)
= (T3 ¥ o T5(7))(X, X")

= (py 00 ) (X, X'),

where we have used that the lefthand side and the righthand side of diagram 2 commutes,
as well as the definition of A. So we have obtained

(5.7) (TaM)((pX),) = (0" X"ar

for every pair of A-related vector fields in [ @ 1.

There exist charts (P,p,U) and (P',p’,U’) about a and a' in D and D' respectively
such that p and p’ are bianalytic and

(5.8) p(pY)o=Ys and p,(p'Y)o=Yy,

for all vector fields Y € land Y' € 1.

In particular equality 5.7 implies

(Tuh o (Tup) ™ 0 Top) ((pX)a) = ((Tarp) ™ o (Twp) (P X )ar) -

Since p and p’ induce homomorphisms of Banach Lie algebras we obtain

(Tup) (pX)a) = P« (pX)p(a) = P+ (pX)o

(Tor ) (0 X" Var) =0 (0" X Vpr(ary = P (P X )0

Therefore we have
(Tah) o (Tap) ™) (P (pX)o) = (Twrp') ™ (P (0’ X )o) -
Using 5.8 and the definition of | we obtain

(5.9) ((Tp' o (TaA) 0 (Top) ™)) (Xo) = X'o = M(Xo) -

Suppose « is an arbitrary element of U and consider the pair of vector fields (X, X') in
[ where

X = (a—a") 0y, €l and XN = (A(a)— A e)) T, -

Then 5.9 implies
((Ta’p/) © (TaA) © (Tap)—l)(a) = )‘(a) .

Hence for a sufficiently small open neighborhood W of a in D we have A=A
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5.10 Lemma. For every o € L the equalities
(5.11) To5=0(G)o¥ and ¥os=0'(s)0¥

hold.
Proof. Since the mapping ¥ is bianalyitc we may identify ]3/ K with D. Then a is
identified with a. So we may assume that ¥ € Aut(D) and obtain the commuting

diagrams
agra o

L —— L L —— I

s |- |5 2
N ' / /

D —— D D —— L/K

i —°% 5 i —° 5 I

lm lw(m) J{'Fm l’"(mm)
NG v’ / 7

D —— D D —— L'/K

for all z € D. The last diagrams are exactly
To@) 0O =Vorg and T‘(I,/(m) 0® =V'or,

for every x € D.

Consider arbitrary element o € L. We have
(T(a) © ©)(8) = ra(2)(0(3)) = O(3)(¥(x)) = (O(F) o ¥)(2)
(Vo) (o) = (Veoa)(z),
which implies
Analogously we have
(r'g/(z) © ©)(5) = (8(6) o ¥')(z)
(U 0 7,)(5) = V' (6(z)) =¥ 07,

which implies
O (@F) oV =000 .

So we have obtained the desired equalities. ]

5.12 Lemma. For every g € L the following equality holds

Ao©(g)=0'(g)oA.

Proof. Suppose g € L is an arbitrary element. By 5.11 we have

Vog=0(g)o¥.
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Therefore
O(g) =Vogol™t.

Hence
Ao®(g) = (¥ 0¥ o (TogoT™)

=0 ogoTt.

By 5.11 we have also
Vog=0'(g)o¥" .

Therefore we have
AoB(g) =0 (g)o¥ o T 1=0'(g oA,

which proves the claim. O

5.13 Proposition. The mapping A is a morphism of symmetric Banach manifolds.

Proof. As we have seen in chapter 3, we have s, = —id and s,» = —id on sufficiently
small neighborhoods of a in D and a' in D’ respectively ( compare 3.26 ). But Ao(—id) =
—id o), since A is a linear mapping. Then by lemma 5.6 and by the uniqueness of the
analytic continuations we obtain

ANosg =284 0A.
We shall prove that
Aosg=sp@m) oA

for every z € D.

For convenience consider diagram 1. Note that there exists an element o € L such that

O(s) =5, and O'(0)=sq -

Suppose z € D is an arbitrary element. Since ¥ is bijective there exists uniquely deter-
mined preimage &, € L/K of z, i.e. an element &, € L/K such that V(5,) = z. Let
& € (@)~ *(6x). The lefthand side of diagram 1, implies that

(Ta © 9)(&> =T,

which is equivalent to
6(&> =9,
where ¢ is an element of L such that 74(g) = g(a) = =.
Also we have A(z) = ¥/(5,). The righthand side of diagram 1 implies
(r'ar 0 ©)(6) = ¥'(Gx) = M)

which is equivalent to

e'(@)=4¢,

where ¢’ is an element of L' such that . (¢") = ¢'(a’) = A(z).
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Consider the symmetries s, and sp(;) at  and A(z) respectively, and recall that

Se=g0s,09 " and Sp@m =g 0Sa0g .

The above representation of g and g’ implies
55 =0(5)00(0)0(0() 1 =0(Gooo &Y,

SA(z) = ©'(5) o ®'(0) o (@/(5))"1 =0'(Ggooo &_1) ,
where we have used that © and ©’ are group homomorphisms.

Now applying 5.12 and using the fact that © and @' are group homomorphisms we
obtain

Aos, = (AoB(5)) 0O(s)0O(5)
=0'(5) o (AoB(0)) 0O
=0'(5)0® (0)o (AoO(E) ™)

(0/(3)0® ()00 (3) ") o A

= sp@) o .

Therefore A is a morphism of symmetric manifolds. O

So we have proved the following proposition.

5.14 Proposition. Suppose (U,*) and (U', ) are J*-triple systems. Denote by (D, a)
and (D', d') the corresponding simply-connected symmetric complex Banach manifolds.
Then every J*-morphism \:U — U’ determines a morphism A: D — D' of symmetric
complex Banach manifolds.

In diagram 3 we give the spaces and the connections between them used in the proof of
proposition (5.14).

—
—
<

exp

exp J/exp

— N —
b~ —

L/)K +—~— L/K —— LK

E |#

D

~
=~

Diagram 3

Here the mappings ® and &' are defined the same way as ¥ and U’ compare 5.4. Note
that A/ := ¢’ o (®' 0@ N op~t. Actually diagram 1 is obtained from diagram 3, through
the identification of the following spaces and mappings. The space L/K with D via ¢
and the space L' /K’ with D’ via the the mapping ¢'. Then obviously ¢ o ® is identified
with ¥ ( in diagram 1) and analogously ¢’ o ®" with ¥’ (in diagram 1). Then A’ is
identified with A (compare 5.5).
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Having proposition 5.14 we may conclude that the construction of a symmetric complex
Banach manifold from a J*-triple system given in chapter 3, determines a functor J from
the category of J*-triples into the category of simply-connected, symmetric complex
Banach manifolds with base point.

The functors § and J induce an equivalence of the categories of hermitian Jordan triple
systems and simply-connected symmetric complex Banach manifolds with base point,
which is the main result of [8].

It should be noted that in the case of metric morphisms, we obtain equivalence of
subcategories.

6. Examples

Suppose (U, *) is a J*-triple system. For every element z € U define the mapping
Q(z):U — U by Qz)(y) := {zy*z}. Obviously, Q(z) is an antilinear operator. We
refer to it as the quadratic representation associated with z. It satisfies the fundamental
formula

for all z,y € U, compare [17].

In the following we give some general notions of the theory of hermitian Jordan triple
systems and some examples.

6.1 Definition. An clement z of a hermitian Jordan triple system (U, ) is called
trivial, if the quadratic representation associated with z vanishes, ie. Q(z) = 0. The
element z is called invertible, if the quadratic representation associated with z is a
bijection.

6.2 Definition. A hermitian Jordan triple system (U, ) is called trivial, it every
element of U is trivial.

6.3 Definition. A linear subspace W ( not necessarily closed) of a hermitian Jor-
dan triple system (U, ) is called a subtriple, if QW)W C W, and an inner ideal, if
QW)U CU.

As a direct conclusion of the fundamental formula we obtain that for every z € U, the
space W = Q(z)U is an inner ideal, called the principle ideal generated by x.

6.4 Definition. A linear subspace W of a hermitian Jordan triple system U is called
an ideal, if
(WUU}+{UW'U}CW.

6.5 Definition. Suppose (U,*) is a hermitian Jordan triple system and A, B are
arbitrary subsets of U. Then A and B are called orthogonal if AnB* = 0 ( and hence
also BuA* = (AoB*)*=10).

6.6 Definition. A closed ideal W of a hermitian Jordan triple system (U, *) is called
direct, if there exists a closed ideal W’ C U such that U =W & w'.

6.7 Definition. A non-trivial hermitian Jordan triple system (U, *) is called alge-
braically simple ( resp. simple, resp. invertible), if the only ideals ( resp. closed ideals,
resp. direct ideals) in U are U and {0}.
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6.8 Definition. A hermitian Jordan triple system (U, *) is called prime, if for every
two ideals V,W C U such that Q(V)W =0 holds V =0 or W = 0.

A prime hermitian Jordan triple system does not contain orthogonal ideals different
from 0. Furthermore it can be shown that the following implications hold

algebraically simple = simple = prime = indivisible

and that none of them is invertible, compare [10].

Suppose (U, *) is a J*-triple system. For every real number ¢ we can define a new triple
product *{ } in U by

oy 2} = t{zy 2}

where z,vy,z are arbitrary elements in U, and hence a new hermitian Jordan triple
system, which we denote by *U. The triple systems U and tU are called proportional.
In the case that ¢ is a positive real number, the mapping = — vtz determines an J*-
isomorphism of U and *U. The J*-triple system ~U :="1 U is called the dual of U. In
general U and ~U are not isomorphic.

6.9 Definition. Suppose (U, %) is a J*-triple system. An element e #01in U is called
a tripotent, if {ee*e} = oe for o € {—1,1}. The coeficient o = o(e) is called the sign of
c. In the case that o = +1 the element e is called a positive tripotent, and in the case
that o = —1 the element e is called a negative tripotent.

Obviously when passing to the dual of a triple system, all tripotnets change their sign. If
e is a tripotent, the element ¢ := o(e)e is also a tripotent, called the tripotent associated
with e. Furthermore for every J*-triple system (U, ) and every tripotent e in U, the
product

(6.10) zy = {zc'y}

determines a Jordan algebra structure on U, according to which the element e is an
idempotent. Consider also the corresponding Peirce decomposition of U (compare [1})

UZUl@U%EBUo,

where for every v € R, U, := U,(e) := {z € U : ez = vz} denotes the v-eigenspace
of enc*. Since {U;U;*Ug} C Ui_jik, every Uy, is a subtriple. The space Uy = Q(e)U is
a complex Jordan algebra ( considered with the product 6.10) with unit element e and
involution z + z* := {ex*c}. In particular

Vi={zelU :2" =z}

is a real Jordan algebra with unit element e and complexification Ve .=V iV =U.
If e is a positive tripotent, we can represent the triple product in U; through the Jordan
product and the involution the following way

(wy"s} = (wy*)z + 2(y"2) — (@2)y"
for all z,y,z € Us.

6.11 Definition. A tripotent e # 0 of a hermitian Jordan triple system (U, %) is called
minimal, if Uy (e) = Ce. The tripotent e is called complete, if Ug(e) = 0.
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6.12 Definition. A subset A of a hermitian Jordan triple system (U, *) is called
complete, if the only element in U orthogonal to A is the zero element, i.e. if Aoz* =0
implies that z = 0.

6.13 Definition. A subset & of a hermitian Jordan triple system (U, x) is called an
orthogonal system, if the zero element does not belong to £ and any two elements of £
are orthogonal.

Obviously every orthogonal system is contained in a flat subsystem.

6.14 Definition. A hermitian Jordan triple system (U, ) is called atomic, if there
exists a complete orthogonal system £ C U of minimal tripotents.

Suppose n and m are cardinal numbers, and that H and K are complex Hilbert spaces
of dimension n, m. Consider the Banach space of all bounded linear operators L(H,K).
For convenience we denote the operator norm || |l by || ||. For every A € L(H, K)
we denote by A\* the corresponding adjoint operator. For every z € K and y € H the
mapping z +> (z|y)x determines an operator

r®y* € L(H,K).

We have
|z ®@y*|| = |zl ]yl and (z®y")* =y®z".

Identifying the Hilbert spaces H and K in a natural way with L(C, H ) and L(C, K)
the operator  ® y* can be written in the form zy*. We consider the following examples
of atomic hermitian Jordan triple systems.

6.15 Example. Suppose U = L(H, K) and define a triple product
* 1 * *
(6.16) {zy*z} = i(xy z + zy*x)

for all z,y, z € U. A subset & C U is a complete orthogonal system of minimal tripotents
if and only if the equality
&= {$i®yi*:’é€f}

holds, where {z; : i € I} C K, {y; : ¢ € I} C H are orthogonal subsets and at least
one of them is complete. We refer to (U, *) as a Cartan factor of type I and we write
U = Iy m. Since Inm and In, n are isometrically isomorphic, we can always consider
that n < m.

6.17 Example. Suppose z — 7T is a conjugation of the complex Hilbert space H (i.e.
an isometric , antilinear, involutive mapping of H into H ). Then through

2 (x) = 2*(T)

we define a C-linear transposition z — 2/ in L(H). Furthermore define z®y := 2 ® 7"
for all z,y € H. Then we have (z ® y')’ =y ® '. Consider the space

U:={z€ L(H): 2 =—z}.

Then U considered with the norm of L(H) and the triple product 6.16 is a J *~triple
system. We refer to U as a Cartan factor of type II and we write U = I1,,. A subset
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£ C U is a complete subsystem of minimal tripotents in U if and only if there exist
disjoint orthogonal subsets A and B of H and a bijective mapping f: A — B such that
the equality

E={z@y —yz 1zc A, y=f(z)},

holds, and the set A U B is an orthonormal basis of I, or an orthonormal basis of a
closed hyperplane in H.

6.18 Example. With the notation used in the previous example, consider the space
U={2€L(H): 2 =z}.

Then (U, #) is a J*-triple system, known as a Cartan factor of type II1I. We write
U = III,. A subset & C U is a complete orthogonal system of minimal tripotents, if
E={z®2 :z € A} where A is an orthonormal basis of H.

6.19 Example. Suppose again that z — T is a conjugation of H and n > 3. Then
U = H is a J*-triple system according to the triple product

fay") = £ (@)= + Cly)s — @127)

A subset & C U is a complete orthogonal system of minimal tripotents if and only if
£ = {a, B}, where «, f € U are unit vectors with (a|B) = 0 and a A § = 0. Furthermore

1

lelloo® = 5 ((2l2) + v/ (212)” = [(z[2)?) ,

is an equivalent norm in U. The space U considered with the norm || [|o is called also
a complex Spin factor or a Cartan factor of type IV. We write U = IV,,. If £ = {a, B}
is a complete orthogonal system of minimal tripotents, then e = o + (B is an unitary
element in U ( that is ene* = idy). The real Jordan algebra

V={zeU:z*=Q(e)xr =z}
is called a (real) spin factor of dimension n.

6.20 Example. Suppose U is a triple system, associated with the bounded symmetric
exceptional domains in T (resp. ©>") - compare [14]. According to the spectral norm
| lloo (compare [14]), U is a J*-triple system, called a Cartan factor of type V ( resp.
VI ).

We give also the notion of a JB*-triple system, which is introduced by W.Kaup in his
article [9] and which indicates part of the contemporary development of the theory of
hermitian Jordan triple systems.

6.21 Definition. A hermitian Jordan triple system (U, ) is called a JB*-triple if the
following conditions hold:

(i) o(aoa*)>0forallaelU

(i) [|aoa*| = |la||? for all « € U.
(Here o(coa*) denotes the spectrum of the hermitian element aoa* € L(U) ).

Furthermore it is proved that there exists a categorical equivalence between the category
of J B*-triples and the category of bounded symmetric domains with base point, compare
[9]. Every Cartan factor of type I — VI is a JB*-triple.
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