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Abstract. In this paper, we investigate the fresh function spectrum of forcing notions, where a new function
on an ordinal is called fresh if all its initial segments are in the ground model. We determine the fresh
function spectrum of several forcing notions and discuss the difference between fresh functions and fresh
subsets. Furthermore, we consider the question which sets are realizable as the fresh function spectrum of a
homogeneous forcing. We show that under GCH all sets with a certain closure property are realizable, while
consistently there are sets which are not realizable.

1. Introduction

The distributivity of a forcing is the smallest ordinal δ such that the forcing adds a new function from
δ to the ordinals. Clearly, on any ordinal larger than δ, a new function is added as well. The situation
becomes non-trivial if we ask on which ordinals a fresh function is added. We give the definition for
arbitrary models V ⊆ W:

Definition 1.1. Let V ⊆ W be models of ZFC with the same ordinals. For an ordinal δ, a function
f : δ→ Ord in W is a fresh function on δ over V if

(1) f < V , and
(2) f↾γ ∈ V for any γ < δ.

This concept has been considered, e.g., in [Ham01], and also in the context of guessing models (see,
e.g., [CK18, Definition 3.3]). The term used in [CK18] is that (V,W) has the weak δ-approximation
property1 if (in W) there exists no fresh function on δ over V .

Now we define the central notion of the paper, which to the best of our knowledge has not been con-
sidered before. Let (P,≤) be any (non-atomic) forcing notion.2

Definition 1.2. The fresh function spectrum of P (denoted by FRESH(P)) is the set of regular cardinals λ
such that in some generic extension by P, there exists a fresh function on λ (over the ground model V).
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Section 5) could be formulated as statements about arbitrary models V ⊆ W, as we did in Definition 1.1.

1



2 VERA FISCHER, MARLENE KOELBING, AND WOLFGANG WOHOFSKY

To understand the behaviour of a forcing extension with respect to fresh functions, it is enough to
restrict the attention to regular cardinals, because the existence of fresh functions on ordinals is only a
matter of their cofinality (see Proposition 5.2).

Clearly, the distributivity of P, denoted by h(P), is the minimum of the fresh function spec-
trum FRESH(P), and P is δ-distributive if δ < h(P); in particular, the distributivity number h equals
the minimum of FRESH(P(ω)/ f in).

Note that, even though the definition of the fresh function spectrum as stated in Definition 1.2 talks
about all generic extensions of the ground model by P, it can actually be rephrased as a statement in the
ground model: a regular cardinal λ is in FRESH(P) if and only if there exist p ∈ P and a P-name ḟ such
that p⊩ “ ḟ : λ→ Ord is a fresh function”.

For the rest of the paper, let us fix the following notation: Let RegCard denote the class of infinite
regular cardinals, and for α, β ∈ Ord, let

[α, β]Reg := {λ ∈ RegCard | α ≤ λ ≤ β},

and define [α, β)Reg analogously.
In Section 2, we argue that P having a certain chain condition or P×P having a certain chain condition

implies that certain cardinals do not belong to the fresh function spectrum of P. The same is implied
by P having the Y-c.c.. Furthermore, we consider two-step iterations of forcings with a chain condition
and sufficiently closed forcings, connecting to work of Usuba [Usu] and Hamkins [Ham01]. In particular
it follows that it is possible to collapse a cardinal without adding a fresh function on this cardinal. In
Section 3, we show that cardinals which get collapsed to the distributivity of a forcing belong to its fresh
function spectrum and use this to determine the fresh function spectra of collapse forcings, including the
Lévy collapse.

In Section 4, we consider the question which sets are realizable as the fresh function spectrum of a
homogeneous forcing under GCH. We introduce the notion of Easton closure (see Definition 4.8) and
show that any Easton closed set is the fresh function spectrum of an Easton product of Cohen forcings,
and that the fresh function spectrum of any such product is Easton closed; in fact, we show the following
(see Theorem 4.24):

Theorem. Assume GCH, and let A be a set of regular cardinals. Then FRESH(E∏
α∈A C(α)) is equal to

the Easton closure of A.

In Section 4.7, we show that it is possible that the fresh function spectrum with respect to a single
generic extension is not in the ground model. In Section 5, we discuss the relation between fresh functions
and fresh subsets. Furthermore, we analyze the general structure of the class of ordinals which have a fresh
subset and argue that it is enough to consider indecomposable ordinals.

In Section 6, we show that consistently not all sets are realizable as the fresh function spectrum of a
forcing notion. In fact, we show the following (see Theorem 6.3):

Theorem. Assume that Todorčević’s maximality principle holds, and 0# does not exist. If P is a forcing
such that ω1 ∈ FRESH(P), then ω ∈ FRESH(P) or ω2 ∈ FRESH(P). In particular, there exists no
forcing P with FRESH(P) = {ω1}.
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In Section 7, we determine the fresh function spectra of several forcing notions. First, we consider
P(ω)/fin, P(κ)/<κ, Mathias forcing and Silver forcing, and then we show the following general theo-
rem about Miller-like tree forcings, which include Sacks forcing, Miller forcing, full Miller forcing, and
Namba forcing (see Theorem 7.11):

Theorem. If λ is a cardinal, P ⊆ P(λ<ω) is a Miller-like forcing and δ > λ<ω is regular uncountable, then
δ < FRESH(P).

We also consider Laver forcing and variants of it, using their Y-properness, and remark on minimality
of forcing notions. Finally, we consider Namba forcing and Prikry forcing, which are our main examples
of forcings which add fresh functions on cardinals for which they do not add fresh subsets.

Finally, in Section 8, we consider refining matrices, which give rise to a combinatorial distributivity
spectrum of forcing notions; we compare it with the fresh function spectrum, and we show that each
Easton closed set is the combinatorial distributivity spectrum of a homogeneous forcing, by again using
an Easton product of Cohen forcings.

2. Chain conditions

In this section, we discuss the connection between certain variants of the chain condition and the fresh
function spectrum. In particular two strengthenings of the usual chain condition of a forcing P, the chain
condition of P×P and the Y-c.c., are helpful to compute the fresh function spectrum. Furthermore, we
consider two-step iterations of forcings with a chain condition and sufficiently closed forcings, connecting
to work of Usuba [Usu] and Hamkins [Ham01]. The results of this section are mostly well-known or slight
generalizations of known facts.

It is easy to see that no regular cardinal strictly above the size of P belongs to FRESH(P): if there
were such a fresh function, then all its initial segments are in the ground model, so they can be decided
by conditions in P; by cardinality, one condition appears cofinally often, hence forces the entire function
to be in the ground model. This also directly follows from the more general fact on the connection of
FRESH(P) and the chain condition of P×P (see Proposition 2.2 and Corollary 2.3).

As an example let us look at Cohen forcings. For a regular cardinal α, let C(α) denote α-Cohen forcing,
i.e., the set of partial functions from α to 2 of size strictly smaller than α, ordered by reverse inclusion. If
α is inaccessible or GCH holds, |C(α)| = α, therefore its fresh function spectrum is easy to compute (for
the general case, see Proposition 6.1):

Proposition 2.1. Let α be a regular cardinal and assume that 2<α = α. Then FRESH(C(α)) = {α}.

Proof. First observe that C(α) adds an α-Cohen real, which is a fresh function on α. By assumption,
|C(α)| = |2<α| = α, so by the above discussion (see also Corollary 2.3) no cardinal above α belongs to the
fresh function spectrum. On the other hand, C(α) is <α-closed and hence γ-distributive for every γ < α,
so no γ < α belongs to the fresh function spectrum. □

The following result generalizes a well-known fact about branches of certain trees, which was essen-
tially proved by Mitchell in [Mit73, Lemma 3.8] (see also [Mit70]). A slightly stronger generalization of
Mitchell’s result yielding the δ-approximation property was proved in [Ung13]. For the convenience of
the reader we give a detailed proof.
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Proposition 2.2. If P × P has the χ-c.c. and δ ≥ χ, then δ < FRESH(P).

Proof. Assume δ ∈ FRESH(P), i.e., there exists p ∈ P and a P-name ḟ such that p forces ḟ : δ → Ord is
not in V and ḟ↾γ ∈ V for each γ < δ. Therefore, we can, by induction on i < χ, construct αi < δ, pi ≤ p,
and qi ≤ p such that pi and qi decide ḟ up to αi, and αi is the first point on which pi and qi disagree; more
precisely, there is si: αi + 1→ Ord and ti: αi + 1→ Ord such that

(1) α j < αi for each j < i,
(2) pi ⊩ ḟ↾(αi + 1) = si,
(3) qi ⊩ ḟ↾(αi + 1) = ti,
(4) si , ti, and si↾αi = ti↾αi.

Consider ⟨(pi, qi) | i < χ⟩ and use that P× P has the χ-c.c. to obtain i0 < i1 such that (pi0 , qi0) and (pi1 , qi1)
are compatible, and fix ( p̄, q̄) with ( p̄, q̄) ≤ (pi0 , qi0) and ( p̄, q̄) ≤ (pi1 , qi1). It follows that both p̄ and q̄
force that ḟ↾αi1 = si1↾αi1 . Moreover, p̄ ⊩ ḟ↾(αi0 + 1) = si0 and q̄ ⊩ ḟ↾(αi0 + 1) = ti0 , but si0 , ti0 , which
easily yields (using αi0 < αi1) a contradiction. □

Since a forcing of size θ has the θ+-c.c., this immediately yields the above mentioned fact:

Corollary 2.3. If |P | = θ and δ > θ, then δ < FRESH(P).

Recall that if P is χ-Knaster, then P × P has the χ-c.c.; therefore, we also get the following:

Corollary 2.4. If P is χ-Knaster and δ ≥ χ, then δ < FRESH(P).

As an example, letting Cµ be the forcing adding µ-many (ω-)Cohen reals, Corollary 2.4 yields that
FRESH(Cµ) = {ω}.

Note that if (and only if) there exists a χ-Suslin tree, the χ-c.c. of a forcing itself is not sufficient to
obtain the conclusion of Proposition 2.2: Let T be a χ-Suslin tree. It has the χ-c.c., yet χ ∈ FRESH(T )
since forcing with the tree adds a new branch which is a fresh function on χ (indeed, FRESH(T ) = {χ},
due to the fact that T is <χ-distributive and of size χ). On the other hand, if there exists no χ-Suslin tree
and P has the χ-c.c., then it already follows that χ < FRESH(P): Let p ∈ P, and assume p⊩ “ ḟ : χ→ Ord
is fresh”; then

{g ∈ Ord<χ | ∃q ≤ p with q⊩ g ⊆ ḟ }

(the interpretation tree of ḟ ) is a χ-Suslin tree.
However, the χ-c.c. of the forcing P is always sufficient to obtain a conclusion slightly weaker than the

one in Proposition 2.2. This is a generalization of a folklore result about branches of certain trees (see,
e.g., [Kun11, Exercise V.4.21]). A further generalization yielding the δ-approximation property has been
proved in [Usu].

Proposition 2.5. If P has the χ-c.c. and δ > χ, then δ < FRESH(P).

The proof of the proposition is based on a lemma about the non-existence of very thin Aronszajn trees,
which was first proved by Kurepa (see [Kan09, Proposition 7.9]):

Lemma 2.6. Let δ be a regular cardinal and χ < δ. Then each tree of height δ all whose levels are of size
less than χ has a cofinal branch.
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In fact, we will use the following stronger lemma, which has a similar proof (see also [Kun11, hint
of Exercise III.6.32]). We say that a tree is well-pruned if each node can be extended to arbitrarily high
levels.

Lemma 2.7. Let δ be a regular cardinal and χ < δ. Then for each well-pruned tree T of height δ all
whose levels are of size less than χ there exists γ < δ such that T does not split above level γ.

Proof. Note that we can assume that χ is infinite (because otherwise the statement is trivial). In particular,
it follows that δ is uncountable.

First assume χ is regular. For every α < δ with cf(α) = χ consider the αth level Tα of T . For each
two nodes η, ξ ∈ Tα for which {τ ∈ T | τ <T η} , {τ ∈ T | τ <T ξ} let βη,ξ < α be such that there exist
τη , τξ in Tβη,ξ with τη <T η and τξ <T ξ. Let f (α) := supη,ξ∈Tα βη,ξ. Since |Tα| < χ = cf(α) it follows that
f (α) < α. So f : {α ∈ δ | cf(α) = χ} → δ is a regressive function on a stationary set. By Fodor’s Theorem
there exists a stationary subset X on which f is constant with value γ < δ. Since X is cofinal in δ and T is
well-pruned, it easily follows that T does not split above level γ.

Now assume that χ is singular. Let {νi ∈ RegCard | i < cf(χ)} be cofinal in χ. It follows that for every
level Tα there exists i such that |Tα| < νi. So, by the pigeonhole principle, there exists a regular ν < χ
such that |Tα| < ν for unboundedly many α < δ. Consider the set T ′ :=

⋃
{Tα | |Tα| < ν}, which is a

well-pruned tree of height δ all whose levels are of size less than ν. Since ν is regular, there exists (by what
we proved above) a level above which T ′ does not split. This implies (again using that T is well-pruned)
that the same holds for the tree T . □

We now derive the following lemma from which Proposition 2.5 will easily follow. Moreover, we will
use the lemma later (see Theorem 7.11).

Lemma 2.8. Let P be a forcing and ḟ a P-name, δ regular with δ > χ, and p ∈ P such that p⊩ “ ḟ : δ →
Ord is fresh”. Then there exists β < δ such that

(1) |{g | ∃q ≤ p with q⊩ ḟ↾β = g}| ≥ χ.

Proof. Assume |{g | ∃q ≤ p with q⊩ ḟ↾β = g}| < χ for every β < δ, i.e., the levels of the interpretation
tree T := {g ∈ Ord<δ | ∃q ≤ p with q⊩ g ⊆ ḟ } are all of size smaller than χ. Since ḟ is forced to be fresh
(and hence all proper initial segments are in V), T is well-pruned. By Lemma 2.7, there exists some γ < δ
such that T does not split above level γ. Let g : γ + 1 → Ord and q ≤ p be such that q⊩ g ⊆ ḟ . Since the
interpretation tree does not split above level γ, the whole function ḟ is already decided by q. So q⊩ “ ḟ is
in V”, contradicting the fact that p⊩ “ ḟ is fresh”. □

Proof of Proposition 2.5. Assume p ∈ P is a condition, ḟ is a name such that p forces that ḟ is a fresh
function from a regular cardinal δ into the ordinals, and χ < δ. So, by Lemma 2.8, we can fix β < δ such
that (1) holds. Observe that for any two distinct g, g′ and q, q′ such that q⊩ ḟ↾β = g and q′ ⊩ ḟ↾β = g′,
the conditions q and q′ are incompatible. Therefore, there is an antichain of size χ below p, contradicting
the χ-c.c. of P. □

Recall that the ω1-Cohen real added by C(ω1) is a fresh function over V . However, if this forcing is the
second step of a two-step iteration after, e.g., (ω-)Cohen forcing C, the ω1-Cohen real is not fresh over
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V any more (since by a density argument, the ω-Cohen real appears in the ω1-Cohen real). In fact, the
following has been shown in [Ham01, Key Lemma]:

Proposition 2.9. Assume that P is non-atomic and |P | ≤ β. Let Q̇ be a P-name for a ≤β-strategically
closed forcing and δ > β. Then δ < FRESH(P ∗Q̇).

Using [Usu, Lemma 1.5], the above fact for closed forcings can be generalized to the following:

Proposition 2.10. Assume that P is non-atomic, has the χ-c.c., and χ < FRESH(P). Let Q̇ be a P-name
for a <χ-closed forcing and δ ≥ χ. Then δ < FRESH(P ∗ Q̇).

Proof. The assumption for P in particular implies that P has the strong3 χ-c.c.. Therefore, by [Usu, Lemma
1.5], P ∗Q̇ has the χ-approximation property, which easily implies that δ < FRESH(P ∗ Q̇) for each
δ ≥ χ. □

Note that the assumption on P in Proposition 2.9 is stronger than the assumption in Proposition 2.10,
while the assumption on Q is stronger in Proposition 2.10. It is not so clear how to reconcile the proof
strategies of these two propositions in order to only need the weaker assumptions on both P and Q. For
χ = ω1, however, we can use a different approach to show that the two weaker assumptions are sufficient:

Proposition 2.11. Assume that P is non-atomic, has the c.c.c., and ω1 < FRESH(P). Let Q̇ be a P-name
for a σ-strategically closed forcing and δ ≥ ω1. Then δ < FRESH(P ∗ Q̇).

Proof. A close examination of the proof of [Usu, Lemma 1.5] shows that, in Proposition 2.10, the as-
sumption of Q being <χ-closed can be weakened to Q having a dense <χ-closed subset.

By [Jec84, Addenda, 5], a forcing Q is σ-strategically closed if and only if there exists a forcing R such
that Q×R has a dense σ-closed subset. So we can fix Ṙ such that P forces that Q̇∗ ˇ̇R has a dense σ-closed
subset. Now use the above mentioned stronger version of Proposition 2.10 for χ = ω1 to conclude that
δ < FRESH(P ∗ Q̇ ∗ ˇ̇R) for any δ ≥ ω1. Since any fresh function in the extension by P ∗ Q̇ remains fresh in
any further extension (see Lemma 4.5), it follows that δ < FRESH(P ∗ Q̇) for any δ ≥ ω1, as desired. □

In the hypothesis of the above proposition, theσ-strategic closure cannot be weakened toω-distributivity,
as can be seen by the following counterexample. Assume that there exists a Suslin tree T in V . Note that T
is still a Suslin tree in V[C], i.e., ⊩C “Ť is a Suslin tree” (this is due to the fact that each set of ground model
objects of size ω1 in V[C] contains a set of size ω1 in V). Since FRESH(T ) = {ω1} and C ∗ Ť is forcing
equivalent to C×T , it follows4 that FRESH(C∗ Ť ) = {ω,ω1}. Since a Suslin tree is always ω-distributive,
this shows that σ-strategically closed in Proposition 2.11 cannot be replaced by ω-distributive.

Another strengthening of the c.c.c. is the Y-c.c. as defined in [CZ15]. As the property that P×P has the
c.c.c. (see Proposition 2.2), also P being Y-c.c. is sufficient for ensuring that only ω is in the fresh function
spectrum of P. The same holds for the more general notion of Y-properness, also defined in [CZ15].

Proposition 2.12. If P is Y-c.c. (or Y-proper) and δ ≥ ω1, then δ < FRESH(P).

3P has the strong χ-c.c. if P has the χ-c.c. and does not add new cofinal branches to χ-Suslin trees.
4For details, see the discussion after Example 4.4.
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Proof. This follows5 easily from [CZ15, Theorem 2.8] (or, in case P is only Y-proper, from [CZ15, The-
orem 4.1(1)]). □

Note that “P×P is c.c.c.” does not imply “P is Y-c.c.” (with random forcing being a counterexample).
On the other hand, consistently, there exists a forcing P which is Y-c.c., while P×P is not c.c.c. (an ex-
ample can be constructed6 from variants of the partition-type forcing discussed in [CZ15, Corollary 3.5]).
Note that such a forcing cannot exist in ZFC because Y-c.c. implies c.c.c., and under MA every c.c.c.
forcing is Knaster and therefore its square is c.c.c..

3. Collapsing cardinals

In this section, we discuss the connection between collapsing cardinals and fresh functions. Let us start
with the following well-known easy fact:

Proposition 3.1. If a cardinal δ > λ is collapsed to λ (i.e., |δ| = λ in the extension), then there is a new
subset of λ.

The following lemma shows that cardinals which are collapsed to the distributivity of the forcing are
in the fresh function spectrum:

Lemma 3.2. Let λ be a regular cardinal and P a forcing which collapses λ to h(P). Then λ ∈ FRESH(P).

Note that it is possible to collapse a cardinal λ (to a cardinal larger than the distributivity) with-
out adding a fresh function on λ, which can be seen, e.g., using Proposition 2.9 with P = C and
Q̇ = Coll(ω1, λ), where Coll(µ, λ) denotes the forcing collapsing λ to µ by conditions of size < µ.

Proof of Lemma 3.2. We can assume that λ > h(P) in the ground model. In the extension by P, we have
|λ| = h(P); in particular, cf(λ) ≤ h(P), i.e., there exists α ≤ h(P) and g : α → λ cofinal, strictly increasing.
Since λ is regular in the ground model, g is a new function in the extension. Now consider the function
k : λ → 2 which maps i to 1 if and only if i ∈ rng(g). Since g can be redefined from k, and g is new, k is
new as well. Assume there exists δ < λ with k↾δ new. Since rng(g) is cofinal in λ, it follows that g↾β is
new for some β < α. But β < h(P), so there are no new functions on β, a contradiction. It follows that k is
fresh, hence λ ∈ FRESH(P). □

Recall that [µ, λ]Reg denotes {δ ∈ RegCard | µ ≤ δ ≤ λ}, and note that from the hypothesis of
Lemma 3.2 we actually get that

(2) [h(P), λ]Reg ⊆ FRESH(P).

Also note that (2) holds even if λ is singular and P collapses λ to h(P).
In the following two propositions we compute the fresh function spectra of Coll(µ, λ) and of the Lévy

collapse.

Proposition 3.3. Assume GCH. Let µ be regular, let λ be a cardinal with cf(λ) ≥ µ, and let P := Coll(µ, λ).
Then FRESH(P) = [µ, λ]Reg.

5In fact, they show that such forcings have the ω1-approximation property.
6This was personal communication with David Chodounský.
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Proof. First note that h(P) = µ, since P is <µ-closed (and the generic surjection from µ to λ is a fresh
function on µ). By Lemma 3.2 (see also (2) above), we have FRESH(P) ⊇ [µ, λ]Reg. Using GCH and the
assumption that cf(λ) ≥ µ, it is straightforward to check that |P | = λ; so, by Corollary 2.3, no regular
cardinal strictly above λ belongs to FRESH(P), finishing the proof. □

Let Coll(µ, <λ) denote the Lévy collapse turning λ into µ+.

Proposition 3.4. Let µ be regular, let λ > µ be an inaccessible cardinal, and let P := Coll(µ, <λ). Then
FRESH(P) = [µ, λ)Reg.

Proof. Again, h(P) = µ, since P is <µ-closed. It follows by Lemma 3.2 that FRESH(P) ⊇ [µ, λ)Reg.
Recall that P can be represented as bd∏

i∈λ Pi with |Pi | < λ. Since bd∏
i∈λ Pi ×

bd∏
i∈λ Pi =

bd∏
i∈λ(Pi ×Pi),

it follows from [Jec03, Theorem 15.17(iii)] that P×P has the λ-c.c.; so, by Proposition 2.2, no regular
cardinal greater or equal λ belongs to FRESH(P), finishing the proof. □

4. Realizing fresh function spectra under GCH

If we consider the fresh function spectrum of arbitrary forcing notions, we can ask which sets of
regular cardinals are possible fresh function spectra. In this section, we explore the situation under GCH.
However, when using lottery sums, any set can be realized as long as the notion of fresh function spectrum
from Definition 1.2 is used (see Proposition 4.1). Therefore, to ask a proper question, we either have to
modify the definition by focusing on a single generic extension (see Definition 4.2), or restrict ourselves
to homogeneous forcings (see Proposition 4.3).

For each regular cardinal α, the fresh function spectrum of the α-Cohen forcing C(α) is {α} under GCH.
We will employ the forcings C(α) as building blocks, using products. In particular, we compute the fresh
function spectrum of arbitrary Easton products of such Cohen forcings, which allows us to realize fresh
function spectra for a quite large class of sets of regular cardinals (see Definition 4.8 and Theorem 4.24).
In particular, using a theorem from pcf theory, we show that successors of singular limits cannot be
avoided (see Section 4.4); we also show that regular limits cannot be avoided, unless they are Mahlo (see
Section 4.3).

We also argue that some more sets of regular cardinals are realizable as a fresh function spectrum of a
forcing, if we allow the forcing to collapse cardinals, and ask open questions (see Section 4.6). Finally,
we show that the fresh function spectrum with respect to a single generic extension might be not in the
ground model (see Section 4.7).

4.1. Lottery sums and homogeneity. As mentioned above, lottery sums yield arbitrary fresh function
spectra under GCH in a trivial way:

Proposition 4.1. Assume GCH, and let A be a set of regular cardinals. Let P be the lottery sum of the
forcings C(α) with α ∈ A, i.e., the disjoint union of the partial orders C(α) with α ∈ A together with an
additional weakest element. Then FRESH(P) = A.

Proof. Let α ∈ A, and p ∈ P which belongs to C(α). Then, for any generic filter G which contains p,
there exists a fresh function on α in V[G]. On the other hand, for β , α there is no fresh function on β in
V[G]. □
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Let’s now look at a refined version of the definition of fresh function spectrum:

Definition 4.2. Assume G is a P-generic filter over V . Let FRESH(P,G) be the set of regular cardinals λ
such that V[G] |= “there exists a fresh function on λ”.

Note that λ ∈ FRESH(P) if and only if λ ∈ FRESH(P,G) for some P-generic filter G.
We say that a forcing P is homogeneous, if for each p, q ∈ P, there is an automorphism φ : P→ P (i.e.,

a bijection preserving the order) such that φ(p) and q are compatible.

Proposition 4.3. If P is homogeneous, then FRESH(P) = FRESH(P,G) for any generic filter G.

Proof. Let λ ∈ FRESH(P) then there exists p ∈ P such that p⊩ “there exists a fresh function on λ”. We
will show that the set of conditions forcing this is actually dense. Let q ∈ P. Since P is homogeneous, we
can fix an automorphism φ : P→ P such that φ(p) is compatible with q. Then φ(p)⊩ “there exists a fresh
function on λ”. Take r ≤ φ(p), q. Then r forces “there exists a fresh function on λ”. Consequently, for
any generic filter G, there is a fresh function on λ in V[G], i.e., λ ∈ FRESH(P,G). □

Since the forcings we are going to provide are homogeneous anyway, we will always write FRESH(P)
(instead of FRESH(P,G)) in the following.

4.2. Basic definitions and facts about Easton products. Before investigating possible fresh function
spectra of products of Cohen forcings in more detail (see in particular Theorem 4.24), let us consider the
following special case as an example. It shows that the fresh function spectrum is not always an interval.

Example 4.4. Assume GCH. Then FRESH(C(ω) × C(ω2)) = {ω,ω2}.

To see that ω and ω2 are in the fresh function spectrum of the above product, note that a product
P×Q is equivalent to the two-step iterations P ∗Q̌ and Q ∗ P̌. Recall that FRESH(C(ω)) = {ω} and
FRESH(C(ω2)) = {ω2} (see Proposition 2.1). So both ω and ω2 are in the fresh function spectrum of the
product, since any function which is fresh over a model V stays fresh over V in any further extension:7

Lemma 4.5. FRESH(P) ⊆ FRESH(P ∗Q̇).

Proof. Assume λ ∈ FRESH(P), and let f be a witness, i.e., f is a fresh function on λ over V . Clearly,
f ∈ V[P ∗Q̇], and f is still fresh over V , since f < V , and f↾δ ∈ V for every δ < λ. □

On the other hand, no unexpected cardinals appear in the fresh function spectrum of the iteration. Since
C(ω) in the extension by C(ω2) is forced to be C(ω) of the ground model, the following lemma finishes
the computation of FRESH(C(ω) × C(ω2)) (letting P = C(ω2) and Q̇ = Č(ω)):

Lemma 4.6. Assume that β < FRESH(P) and P⊩ β < FRESH(Q̇). Then β < FRESH(P ∗Q̇).

Proof. Assume towards a contradiction that in V[P ∗Q̇], there is a fresh function f on β over V . Since
β < FRESH(P), f is not an element of V[P], so it must be added by Q over V[P]. It follows that f is fresh
over V[P]. But this is not possible, because P forces that β < FRESH(Q̇), a contradiction. □

7In the following lemma and in Lemma 4.6, the analogous statements involving fixed generic extensions as in Definition 4.2
hold true as well.
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Let us recall several kinds of products of forcing notions:

Definition 4.7. Let A be a set of regular cardinals, and for every α ∈ A, let Pα be a forcing.

(1) Let f ull∏
α∈A Pα denote the full support product of the Pα, and let bd∏

α∈A Pα denote the bounded
support product (i.e., the set of all p ∈ f ull∏

α∈A Pα with supp(p) bounded in sup(A)).
(2) Let E∏

α∈A Pα denote the Easton product of the Pα, i.e., the set of all conditions p ∈ f ull∏
α∈A Pα

with supp(p)∩λ bounded in λ for each inaccessible λ (i.e., bounded support at regular limits, and
full support everywhere else).

We will now introduce two notions which will turn out to be useful in the context of Easton products.
These notions are inspired by the notion of “Easton set” as defined in [Dor89, Definition 2.3].

Definition 4.8. A set A of regular cardinals is Easton closed if for every limit point λ of A,

• λ regular, not Mahlo⇒ λ ∈ A,
• λ singular⇒ λ+ ∈ A.

The Easton closure of a set A is the smallest Easton closed set which contains A as a subset.

We will show below (see Theorem 4.24) that, under GCH, for any set A of regular cardinals the fresh
function spectrum of E∏

α∈A C(α) is equal to the Easton closure of A. The following lemma is similar
to [Dor89, Lemma 2.4].

Lemma 4.9. Assume GCH. Let A be a set of regular cardinals, and for each α ∈ A, let Pα be a forcing
with |Pα | ≤ α. Let A∗ be the Easton closure of A. Then

∣∣∣E∏α∈A Pα∣∣∣ ≤ sup(A∗).

We will sometimes abuse notation by indexing an Easton product by cardinals not connected to the size
of the forcings; but it should always be clear how to rewrite it in a suitable way.

Proof of Lemma 4.9. In case sup(A) is a singular cardinal, we have∣∣∣∣∣E∏α∈A
Pα

∣∣∣∣∣ ≤∏
α∈A

|Pα | ≤
∏
α∈A

α ≤ sup(A)|A| ≤ sup(A)sup(A) = sup(A)+,

and sup(A)+ = sup(A∗). In case sup(A) is a regular limit cardinal (i.e., an inaccessible), the Easton product
has bounded support at sup(A), and we get∣∣∣∣∣E∏α∈A

Pα

∣∣∣∣∣ ≤ ∑
β<sup(A)

∏
α∈A∩β

|Pα | ≤
∑

β<sup(A)

|β||β| = sup(A) = sup(A∗).

Finally, if sup(A) is a successor cardinal (which is the maximal element of A), then
∣∣∣E∏α∈A Pα∣∣∣ ≤∏

α∈A α = sup(A) = sup(A∗). □

Using the above, the following is easy to see (see for example the proof of [Jec03, Theorem 15.18]):

Proposition 4.10. Assume GCH. Let P := E∏
α∈A C(α) be an Easton product of Cohen forcings. Then P

does not collapse cardinals (and does not change cofinalities).

Fact 4.11. Let λ be a cardinal, A ⊆ λ unbounded and C ⊆ λ a club. Then there exists A′ ⊆ A unbounded
in λ such that all limit points of A′ are in C.
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Proof. For every β ∈ C let φ(β) ∈ A be minimal with φ(β) ≥ β. Let A′ := {φ(β) | β ∈ C}. Clearly every
limit point of A′ is a limit point of C, so since C is club, it is an element of C. □

Proposition 4.12. Let λ be a cardinal which is not Mahlo, and let A ⊆ λ be an unbounded subset of
regular cardinals. Then there exists an A′ ⊆ A unbounded in λ such that E∏

α∈A C(α) is equivalent to a
two-step iteration which starts

• with bd∏
α∈A′ C(α) in case λ is regular, and

• with f ull∏
α∈A′ C(α) in case λ is singular.

Proof. Let C ⊆ λ be a club8 which does not contain inaccessible cardinals (which exists since λ is not
Mahlo). By Fact 4.11, there exists an unbounded subset A′ ⊆ A such that all limit points of A′ are (in C
and hence) not inaccessible.

So if λ is regular, we have E∏
α∈A′ C(α) = bd∏

α∈A′ C(α), because the Easton product has bounded
support at λ in this case, and no limit points of A′ are inaccessible and hence for every β < λ the product
has full support below β.

If λ is singular, we have E∏
α∈A′ C(α) = f ull∏

α∈A′ C(α), because the Easton product has full support at
λ in this case, and again no limit points of A′ are inaccessible and hence also for every β < λ the product
has full support below β.

The product E∏
α∈A C(α) is equivalent to a two-step iteration which starts with E∏

α∈A′ C(α), and the
conclusion follows. □

4.3. Fresh functions at regular limits. Let us recall the following easy and well-known fact about
bounded support products:

Proposition 4.13. Let λ be a regular limit cardinal, A ⊆ λ an unbounded set of regular cardinals, and Pα
a non-atomic forcing for each α ∈ A. Then bd∏

α∈A Pα adds a λ-Cohen real.

Proof. For each α ∈ A, let pα ∈ Pα be such that there exists a condition in Pα which is incompatible
with pα. Let G be generic for bd∏

α∈A Pα. Fix an increasing enumeration φ : λ → A in the ground model.
Now let r ∈ 2λ be such that r(α) = 0 if and only if there is a condition q ∈ G with q(φ(α)) = pφ(α). It is
easy to see that r is a λ-Cohen real, since the product has bounded support. □

Since the Easton product below the least inaccessible is the bounded support product, we immediately
obtain:

Example 4.14. Let λ be the least inaccessible. Then E∏
α∈λ∩RegCard C(α) adds a λ-Cohen real (in partic-

ular, a fresh function on λ).

The following well-known fact can be found in Kanamori’s book [Kan09, Proposition 6.2]:

Proposition 4.15. Let λ be a Mahlo cardinal and P ⊆ Vλ be a unary predicate. Then there exists an
inaccessible cardinal α < λ such that (Vα, P ∩ Vα) is an elementary substructure of (Vλ, P).

8Note that, since each Mahlo is regular, C in particular exists in case λ is a singular cardinal. If cf(λ) = ω, we can pick any
unbounded set of order-type ω, and the rest of the proof clearly works.
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Lemma 4.16. Let λ be a Mahlo cardinal and let A ⊆ λ be a set of regular cardinals. Then λ <
FRESH(E∏

α∈A C(α)).

Proof. Let P := E∏
α∈A C(α). Assume towards a contradiction that in the extension by P there exists a

fresh function on λ. Since P has the λ+-c.c., we can assume without loss of generality that the range
of the fresh function is a subset of λ (by using a bijection between a cover of the range and λ). Let ḟ
be a nice name for such a fresh function from λ to λ. Note that P and ḟ are subsets of Vλ, so we can
consider the structure (Vλ,P, ḟ ) with P and ḟ being unary predicates on Vλ. By Proposition 4.15, there
exists an inaccessible cardinal α < λ such that (Vα,P∩Vα, ḟ ∩Vα) is elementary in (Vλ,P, ḟ ). In particular
(Vα,P∩Vα, ḟ ∩ Vα) |= P∩Vα ⊩ ḟ ∩ Vα is a fresh function on α.

Since α is inaccessible, E∏
β∈A∩α C(β) has bounded support in α. Moreover C(β) ⊆ Vα, therefore

P∩Vα = E∏
β∈A∩α C(β) =: P<α. Since P<α is a complete subforcing of P, we have ( ḟ ∩ Vα)G∩P<α = ḟ G↾α

for any generic filter G for P. By the above, ( ḟ∩Vα)G∩P<α is new, contradicting the fact that ḟ G is fresh. □

Example 4.17. Let λ be a Mahlo cardinal. Then E∏
α∈λ∩RegCard C(α) does not add a fresh function on λ

(in particular, no λ-Cohen real).

4.4. Pcf theory: fresh functions at successors of singular limits. We will use a theorem of Shelah to
show that the full support product of Cohen forcings at a singular cardinal λ adds a λ+-Cohen real. We
start with a few well-known facts of pcf theory (see, for example, [Jec03]):

Proposition 4.18. Let A be a set of regular cardinals. Then the following holds.

(1) pcf(A) ⊆ RegCard.
(2) For each µ ∈ pcf(A), we have µ ≤ |

∏
A|.

Recall that for a linear order (L, <), the true cofinality tcf(L) is the minimal size of a cofinal subset of L,
which is always a regular cardinal.

Proposition 4.19. Assume GCH. Let A ⊆ RegCard with sup(A) =: λ being a singular cardinal and letD
be an ultrafilter on A which does not contain any bounded subset of A. Then tcf(

∏
A/D) = λ+.

Proof. |
∏

A| ≤ λ+, so tcf(
∏

A/D) ≤ λ+.
Let δ < λ and ⟨ fα | α < δ⟩ be a sequence in

∏
A. Define g ∈

∏
A as follows: for β ∈ A let g(β) = 0

if β ≤ δ and g(β) = supα<δ( fα(β) + 1) if β > δ. Since δ < β and β regular, supα<δ( fα(β) + 1) < β, so g is
well-defined. Every co-bounded subset of A is inD, so g >D fα for every α < δ. Therefore ⟨ fα | α < δ⟩ is
not cofinal in

∏
A/D and hence tcf(

∏
A/D) ≥ λ. Since λ is singular, tcf(

∏
A/D) > λ and together with

tcf(
∏

A/D) ≤ λ+ it follows that tcf(
∏

A/D) = λ+. □

Theorem 4.20. Let A be a set of regular cardinals, λ = sup(A) < A, 2<ν = 2λ, ν > λ, ν ∈ pcf(A), and
moreover there is an ultrafilterD on A not containing any bounded subset of A such that ν = tcf(

∏
A/D).

Then the forcing f ull∏
α∈A C(α) adds a ν-Cohen real.

Proof. See [She00]. □

Corollary 4.21. Assume GCH. Let λ be a singular cardinal and let A ⊆ λ be an unbounded subset of
regular cardinals. Then f ull∏

α∈A C(α) adds a λ+-Cohen real.
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Proof. It follows by Proposition 4.19 and Theorem 4.20 (letting ν = λ+) that f ull∏
α∈A C(α) adds a λ+-

Cohen real. □

Example 4.22. Assume GCH. Then E∏
n∈ω C(ℵ2n) adds an ℵω+1-Cohen real (in particular, a fresh func-

tion on ℵω+1).

Remark 4.23. The bounded support product bd∏
α∈A C(α) has size sup(A) =: λ (under GCH), so nothing

above λ belongs to its fresh function spectrum (see Corollary 2.3), in particular, λ+ does not. However, for
singular λ, there are two problems with this “solution” to avoid λ+: first, the forcing collapses cardinals
(namely λ to cf(λ)), and second, more importantly, this results in [cf(λ), λ)Reg being contained in the fresh
function spectrum (see9 Lemma 3.2 and the discussion thereafter), so only co-bounded sets of regular
cardinals can be realized in such a way. For more on that and related open questions, see Section 4.6.

4.5. Realizing any Easton closed set. We now prove our main result about Easton products of Cohen
forcings.

Theorem 4.24. Assume GCH, and let A be a set of regular cardinals. Then FRESH(E∏
α∈A C(α)) is equal

to the Easton closure of A.

Proof. Let P denote E∏
α∈A C(α). By Proposition 2.1, FRESH(C(α)) = {α}. So, using Lemma 4.5, it is

easy to see that any α ∈ A is in FRESH(P), because P can be seen as an iteration starting with C(α).
Assume now that λ is a regular cardinal which is a limit point of A, yet not Mahlo. By Proposition 4.12,

there exists a set A′ ⊆ A ∩ λ unbounded in λ, such that E∏
α∈A∩λ C(α) is equivalent to a two-step iteration

which starts with bd∏
α∈A′ C(α). By Proposition 4.13, bd∏

α∈A′ C(α) adds a λ-Cohen real. Therefore, P
adds a λ-Cohen real, so in particular, λ ∈ FRESH(P).

Now assume that λ is a singular cardinal which is a limit point of A (in particular λ is not Mahlo).
Again, by Proposition 4.12, there exists a set A′ ⊆ A ∩ λ unbounded in λ, such that E∏

α∈A∩λ C(α) is
equivalent to a two-step iteration which starts with f ull∏

α∈A′ C(α). By Corollary 4.21, f ull∏
α∈A′ C(α)

adds a λ+-Cohen real. Therefore, P adds a λ+-Cohen real, so in particular, λ+ ∈ FRESH(P).
We finish the proof by showing that no regular cardinal outside of the Easton closure of A belongs to

FRESH(P). Let A∗ denote the Easton closure of A. By Lemma 4.9 |P | ≤ sup(A∗), so by Corollary 2.3, no
cardinal above sup(A∗) is in FRESH(P).

Now let β ≤ sup(A∗) be a regular cardinal with β < A∗. Let P<β denote E∏
α∈A∩β C(α) and let P>β denote

E∏
α∈A\β C(α). Since β < A we have P = P>β ×P<β. Note that P>β is ≤β-closed, so β < FRESH(P>β), and

(P<β)V = (P<β)V[P>β]. The latter implies that P = P>β ∗P<β. To finish the proof that β < FRESH(P), by
Lemma 4.6 it suffices to show that β < FRESH(P<β) (in the extension by P>β). In case β is not Mahlo, it
is straightforward to check that sup(A∗ ∩ β) < β, so, since the Easton closure of A ∩ β is A∗ ∩ β, we can
apply Lemma 4.9 to obtain that |P<β | < β. By Corollary 2.3, β < FRESH(P<β). In case β is Mahlo, we
apply Lemma 4.16 to obtain that β < FRESH(P<β). □

By definition, an Easton closed set coincides with its Easton closure, so it follows that we can realize
every Easton closed set as a fresh function spectrum (see also Proposition 4.10):

9Since the lemma has to be applied to a forcing with distributivity cf(λ), one has to first split the product into a lower and an
upper part, if necessary.
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Corollary 4.25. Assume GCH. For every set A which is Easton closed, there is a homogeneous forcing P
(which does not collapse cardinals or change cofinalities) such that FRESH(P) = A.

In particular, this yields examples of forcings P with FRESH(P) being any given finite set of regular
cardinals (since finite sets are always Easton closed).

4.6. Questions. In view of Corollary 4.25, it is natural to ask whether any set which is not Easton closed
can ever be realized as the fresh function spectrum of a forcing (under GCH).

Recall that the Easton product of Cohen forcings as discussed above does not collapse cardinals (or
change cofinalities). It is not clear to us how to realize a set which is not Easton closed without collapsing
cardinals:

Conjecture 4.26. Assume GCH, and assume that P does not collapse cardinals. Then10 FRESH(P,G) is
Easton closed for any generic filter G.

However, when allowing to collapse cardinals, it is indeed possible to realize some more sets. If λ is
a singular cardinal and µ is a regular cardinal with µ ≤ cf(λ), then – under GCH – FRESH(Coll(µ, λ)) =
[µ, λ]Reg = [µ, λ)Reg (see Proposition 3.3). Note that FRESH(Coll(µ, λ)) is not Easton closed, because
it does not contain λ+. If λ is an inaccessible cardinal, and µ < λ is a regular cardinal, then the fresh
function spectrum of the Lévy collapse Coll(µ, <λ) equals [µ, λ)Reg (see Proposition 3.4). Since λ <
FRESH(Coll(µ, <λ)), this fresh function spectrum is not Easton closed, provided that λ is not Mahlo.
In particular, any initial segment of the class of regular cardinals can be realized as the fresh function
spectrum of a forcing (at least, when we allow to collapse cardinals).

It is possible to combine the above with the method from Theorem 4.24: by taking the product of a
collapse as above with an Easton product of Cohen focings on an Easton closed set below µ, it is possible
to extend the above fresh function spectra. In this way, certain co-bounded sets can be realized. We do
not know, however, if it is possible to have a set as the fresh function spectrum of a forcing which is
unbounded and co-unbounded in λ, where λ is a singular cardinal, or an inaccessible which is not Mahlo.

In particular, we do not know whether non-trivial fresh function spectra below ℵω are possible:

Question 4.27. Let A ⊊ {ℵn | n ∈ ω} be infinite. Is there a forcing P with FRESH(P,G) = A for some
generic filter G?

As discussed above, the forcing collapsing ℵω to ω has {ℵn | n ∈ ω} as its fresh function spectrum. We
do not know whether this set can be realized by a forcing which does not collapse cardinals.

Question 4.28. Let λ be the least inaccessible, and let A ⊆ λ be an unbounded and co-unbounded set of
regular cardinals. Is there a forcing P with FRESH(P,G) = A for some generic filter G?

4.7. Fresh function spectra which are not in the ground model. We now turn our attention to the
notion FRESH(P,G) for non-homogeneous forcings. We show that it is possible that FRESH(P,G) is not
in the ground model, by providing the following example. Note that the forcing P in the example is not
homogeneous, which is necessary by Proposition 4.3.

10Note that here we have to use FRESH(P,G) instead of FRESH(P) because of Proposition 4.1.
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Example 4.29. Assume GCH. Let λ be the least inaccessible. Let Pα (for α < λ) be the lottery sum of
C(ℵω·α+2) and C(ℵω·α+3), and let P := E∏

α<λ Pα. Then for each generic filter G, FRESH(P,G) < V.

Proof. Fix a generic filter G for P. In V[G], let f : λ→ 2 be the function which records which parts of the
lottery sums are chosen by the generic filter, i.e., f is defined by f (α) = i if and only if there exists p ∈ G
with p(α) ∈ C(ℵω·α+2+i). Clearly this function is well-defined, and it is a λ-Cohen real. We will finish
the proof by showing that for α < λ and i ∈ 2, we have ℵω·α+2+i ∈ FRESH(P,G) if and only if f (α) = i.
Indeed this shows that FRESH(P,G) is not in the ground model,11 because f can be derived from it.

By Proposition 2.1, FRESH(C(α)) = {α} for any regular cardinal α. Let α ∈ λ. Note that G(α) =
{p(α) | p ∈ G} is a generic filter for Pα, which yields an ℵω·α+2+ f (α)-Cohen real, i.e., a fresh function
on ℵω·α+2+ f (α). Therefore, since P can be seen as an iteration starting with Pα, it is easy to see that
ℵω·α+2+ f (α) ∈ FRESH(P,G).

Fix α ∈ λ and i , f (α). We show that ℵω·α+2+i < FRESH(P,G). Let P<α denote E∏
β<α Pβ, and P>α

denote E∏
β>α Pβ. Thus we have P = P>α ×Pα ×P<α. Note that P>α is <ℵω·(α+1)-closed, so ℵω·α+2+i <

FRESH(P>α), and (Pα)V = (Pα)V[P>α]. So P>α ×Pα = P>α ∗Pα. Moreover P>α ∗Pα is <ℵω·α-closed, so
(P<α)V = (P<α)V[P>α ∗Pα]. Consequently, P = P>α ∗Pα ∗P<α.

Assume towards a contradiction that there is a fresh function on ℵω·α+2+i in V[G]. Since P>α is
<ℵω·(α+1)-closed, it has not been added by P>α. Since G(α) is basically a generic filter for C(ℵω·α+2+ f (α))
and FRESH(C(ℵω·α+2+ f (α))) = {ℵω·α+2+ f (α)}, the fresh function on ℵω·α+2+i has not been added by Pα.
Finally |P<α | ≤ ℵω·α+1 (see Lemma 4.9 and the subsequent comment), so the fresh function has not been
added by P<α either (see Corollary 2.3). □

5. Fresh functions vs. fresh subsets

Let (P,≤) be any (non-atomic) forcing notion.12 Let δ be an ordinal. A set A ⊆ δ in the extension by P
over V is a fresh subset of δ if A < V and A∩ α ∈ V for each α < δ. If we identify A with its characteristic
function, a fresh subset of δ is a fresh function from δ to 2.

Proposition 5.1. If there is a new function f : δ → δ, then there is a new subset of δ. If δ is regular and
f : δ→ δ is fresh, then there is a fresh subset of δ.

Proof. The graph of f can be seen as a subset of δ × δ. By using a bijection φ (in V) between δ × δ and δ,
this gives a new subset A of δ. Now assume that δ is a regular cardinal. If δ = ω, then this subset is fresh.
If δ is uncountable, note that there exists a club C ⊆ δ such that φ−1[α] = α×α for each α ∈ C. Assume f
is fresh and γ < δ. Fix α ∈ C with γ ≤ α. Hence A∩ γ can be derived from f↾α, which is in V . Therefore
A is fresh. □

Before further discussing fresh subsets, let us give a proof of the fact that the existence of fresh func-
tions is only a matter of cofinality:

11In fact, FRESH(P,G) = {ℵω·α+2+ f (α) | α ∈ λ} ∪ {λ} ∪ {ℵω2 ·β+1 | 0 < β < λ}. Since P clearly has size λ, no regular cardinal
strictly above λ belongs to FRESH(P,G) (see Corollary 2.3). On the other hand, P is σ-closed, so ω < FRESH(P,G).

12Instead of speaking about forcing extensions, we could (as in Definition 1.1) formulate most of this section in terms of
arbitrary models V ⊆ W.
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Proposition 5.2. Let δ be an ordinal and λ = cf(δ). Let V[G] be a forcing extension of V. Then, in V[G],
there exists a fresh function on λ if and only if there exists a fresh function on δ.

Proof. In V , let {βi | i < λ} be an increasing cofinal sequence in δ. Let f : λ → Ord be a fresh function
over V . Let g : δ → Ord be defined by g(βi) = f (i) for each i < λ, and g(α) = 0 for α < {βi | i < λ}.
Clearly, g is a fresh function over V .

Conversely, let g : δ → Ord be a fresh function over V . Fix an ordinal γ such that g : δ → γ, and let
ι : γ<δ → |γ<δ| be a bijection in V . Define f : λ → Ord by f (i) = ι(g↾βi). It is straightforward to check
that f is a fresh function over V . □

For fresh subsets, the situation is different: their existence depends not only on the cofinality of the
ordinal. In fact, for the question whether P adds a fresh subset of an ordinal, we can restrict ourselves to
indecomposable ordinals, for the following reason. Assume η is a decomposable ordinal, i.e., there exists
α ∈ Ord and 0 < β < η which is indecomposable with η = α + β. If there is a fresh subset A of β, then
{α + γ | γ ∈ A} is a fresh subset of η. On the other hand, if A is a fresh subset of η, then {γ | α + γ ∈ A} is
a fresh subset of β.

Proposition 5.3.

(1) If P adds a fresh subset of δ, then in particular cf(δ) ∈ FRESH(P).
(2) If P adds a fresh subset of δ, and η > δ is indecomposable with cf(δ) = cf(η), then P adds a fresh

subset of η.
(3) If δ ∈ FRESH(P), then there is an (indecomposable) ordinal η ≥ δ with cf(η) = δ such that P

adds a fresh subset of η.

Proof. (1) The characteristic function of the fresh subset of δ is a fresh function on δ, hence, by
Proposition 5.2, cf(δ) ∈ FRESH(P).

(2) In V , let ⟨ξi | i < cf(δ)⟩ be increasing, cofinal in δ. Since η > δ is indecomposable, ordertype(η \
α) = η for each α < η. Therefore we can fix ⟨ζi | i < cf(δ)⟩ increasing, cofinal in η such
that ordertype(ζi+1 \ ζi) ≥ ordertype(ξi+1 \ ξi) for all i < cf(δ). Let A ⊆ δ be fresh, and let
Ai := A ∩ (ξi+1 \ ξi). Then we can copy each Ai into ζi+1 \ ζi, yielding a fresh subset of η.

(3) Let f : δ → µ be a fresh function, and let η := µ · δ. Note that η is an indecomposable ordinal of
cofinality δ. Now {(µ · α) + f (α) | α ∈ δ} is a fresh subset of η. □

Corollary 5.4. There exists a sequence ⟨ξλ | λ ∈ FRESH(P)⟩ such that for every indecomposable ordinal η
the following holds: P adds a fresh subset of η if and only if cf(η) ∈ FRESH(P) and η ≥ ξcf(η).

For many forcings the following holds: for each ordinal δ, there exists a fresh subset of δ if and only
if there exists a fresh function on δ. On the other hand, Prikry forcing and Namba forcing are examples
of forcings for which this is not the case (see Theorem 7.21 and Theorem 7.23). For Prikry forcing, the
ξλ’s in the above corollary can be chosen to be ξω = ξκ = κ. For Namba forcing they can be chosen to be
ξω = ξω1 = ξω2 = ω1. However, it is not always possible to choose all the ξλ’s to be the same as we show
in Example 7.22.

For the next result, we need the following well-known theorem:
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Theorem 5.5 (Jensen’s Covering Theorem). If 0# does not exist, then for every uncountable set Y of
ordinals there exists a constructible set X ⊇ Y such that |X| = |Y |.

Using this theorem, we can turn new functions with arbitrary range into new subsets:

Proposition 5.6. Assume that 0# does not exist, and let λ be a regular uncountable cardinal. Then the
following holds. If P adds a new function from λ to the ordinals, then P adds a new subset of λ. In
particular, if λ is the distributivity of P, then P adds a fresh subset of λ.

Proof. Let f : λ → Ord be a new function. Since 0# does not exist, we can apply Jensen’s Covering
Theorem, so we can cover ran( f ) (which is a set of size at most λ in the extension) by a set X ∈ V such
that |X| = λ in the extension. Let δ be such that V satisfies |X| = δ. If δ > λ, then P collapses δ to λ, hence
it adds a new subset of λ (see Proposition 3.1). If δ = λ, we can take a bijection ι : X → λ which is in V ,
to obtain ι ◦ f : λ→ λ which is new; therefore, by Proposition 5.1, there is a new subset of λ. □

Question 5.7. Assume that 0# does not exist, and let λ be a regular uncountable cardinal. If P adds a fresh
function from λ to the ordinals, does P necessarily add a fresh subset of λ?

The above proposition does not hold without assumptions about the non-existence of large cardinals.
For example, Magidor forcing adds a fresh function on ω1 and no new subset of ω1, provided that a
measurable cardinal of Mitchell order ω1 exists. Note that Jensen’s Covering Theorem does not hold for
countable sets, so the above proof does not work for λ = ω. In fact, the proposition fails for λ = ω (even
if 0# does not exist): Assuming CH, Namba forcing adds a new function from ω to ω2, but does not add
a new subset of ω (see Theorem 7.23). If there exists a measurable cardinal µ (so 0# exists), also Prikry
forcing is an example: it adds a new cofinal function from ω to µ, without adding any new bounded subset
of µ (see Theorem 7.21). However, for proper forcings the following holds.

Proposition 5.8. If P is proper and ω ∈ FRESH(P), then P adds a new real.

Proof. It is easy to transform the witnessing new function from ω to the ordinals added by P into a new
real, by covering its range by a countable set of the ground model (which is possible by properness) and
using Proposition 5.1. □

6. Omitting fresh function spectra

In this section, we want to discuss the question whether it is consistent that for some regular cardinal λ
there exists no forcing P with FRESH(P) = {λ}.

In Proposition 2.1, we have seen that in some cases Cohen forcing is such a forcing. In general, Cohen
forcing is not good for having a single specific value in the fresh function spectrum:

Proposition 6.1. Let α be a regular cardinal. Then FRESH(C(α)) = [α, 2<α]Reg.

Proof. Since h(C(α)) = α and |C(α)| = 2<α, it follows from Corollary 2.3 that FRESH(C(α)) ⊆ [α, 2<α]Reg.
Now note that C(α) collapses 2µ to α for each µ < α. If 2µ = 2<α for some µ < α, the statement follows
directly from Lemma 3.2 (and (2) afterwards). The statement is also clear if α = 2<α. If α < 2<α and
2µ < 2<α for every µ < α, then 2<α has cofinality α, so it is singular. Then in [α, 2<α)Reg, there is a cofinal
sequence of cardinals which get collapsed to α. So FRESH(C(α)) = [α, 2<α)Reg = [α, 2<α]Reg, again by
Lemma 3.2 (and (2) afterwards). □
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In particular, for strongly inaccessible λ (or λ = ω), we have FRESH(C(λ)) = {λ}. For successor
cardinals, this is the case if GCH at the predecessor holds. Another possibility to get fresh function
spectrum {λ} is a Suslin tree of height λ (as discussed in Section 2).

Let us now concentrate on the case λ = ω1. We will show that it is consistent that there is no forcing P
with FRESH(P) = {ω1} (in such a model, CH necessarily fails, and there is no Suslin tree). For that, we
will make use of the following principle which is known to be consistent:

Definition 6.2. Todorčević’s maximality principle is the following assertion: If P is a forcing which adds
a fresh subset of ω1, then P collapses ω1 or ω2.

For a tree (T,≤) of height ω1, we say that T is special if there exists a function f : T → ω such that if
x ≤ y, z and f (x) = f (y) = f (z), then y ≤ z or z ≤ y. If T has no uncountable branch, then this definition
of special is equivalent to the usual one (i.e., to the existence of a function f : T → ω such that if x ≤ y,
then f (x) , f (y)). Consider the assertions

(3) 2ℵ0 = ℵ2, and every tree of height and size ω1 is special,

(4) Todorčević’s maximality principle,

(5) there exists no forcing P with FRESH(P) = {ω1}.

Todorčević showed in [Tod82] that (3) implies (4). In Theorem 6.3 below, we show that if 0# does
not exist then (4) implies (5). We do not know whether the assumption that 0# does not exist can be
omitted. Moreover, we do not know whether (5) implies (4) or (3). Recall that both 2ℵ0 ≥ ℵ2 as well
as “there are no Suslin trees” are necessary for (5), and the same applies to (3) and (4). According
to [Tod82, Introduction], the consistency strength of (3) is exactly the existence of an inaccessible. We do
not know, however, whether the consistency of (4) or (5) needs an inaccessible.

Theorem 6.3. Assume that Todorčević’s maximality principle holds and 0# does not exist. If P is a
forcing such that ω1 ∈ FRESH(P), then ω ∈ FRESH(P) or ω2 ∈ FRESH(P). In particular, there exists no
forcing P with FRESH(P) = {ω1}.

Proof. Let P be a forcing such that ω1 ∈ FRESH(P). In case ω ∈ FRESH(P), we are finished, so assume
from now on that ω < FRESH(P) (i.e., ω1 is the distributivity of P). By Proposition 5.6 (using that 0#

does not exist), P adds a fresh subset of ω1. So, by Todorčević’s maximality principle, P collapses ω1

or ω2. If P collapses ω1, a new subset of ω is added (see Proposition 3.1), which contradicts our case
assumption that ω < FRESH(P). If P collapses ω2 (to ω1), then (since ω1 is the distributivity of P) we
can apply Lemma 3.2 to conclude that ω2 ∈ FRESH(P). □

Corollary 6.4. It is consistent, relative to the existence of an inaccessible, that there exists no forcing P
with FRESH(P) = {ω1}.

Proof. Assume the existence of an inaccessible. By passing to L, we can assume that 0# does not exist (and
there is still an inaccessible). Now there is a forcing extension in which Todorčević’s maximality principle
holds (and 0# does still not exist). By Theorem 6.3, there exists no forcing P with FRESH(P) = {ω1} in
this model. □
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As mentioned above, we do not know whether the inaccessible is really necessary:

Question 6.5. Does it follow from the consistency of ZFC that consistently there is no forcing P with
FRESH(P) = {ω1}?

We do not know whether Theorem 6.3 can be generalized13 to higher cardinals:

Question 6.6. Is it consistent that there exists a successor cardinal λ > ω1 such that there exists no
forcing P with FRESH(P) = {λ}?

7. Fresh function spectra of several forcing notions

In this section, we are going to determine the fresh function spectra of several forcing notions. In
Section 7.1 and Section 7.2, we compute the fresh function spectra of P(ω)/fin and P(κ)/<κ, respectively.
Using that, we analyze the fresh function spectra of Mathias forcing and Silver forcing in Section 7.3. In
Section 7.4, we prove a general theorem about Miller-like tree forcings, which we then use to determine
the fresh function spectra of Sacks forcing, Miller forcing, and full Miller forcing in Section 7.5, where
we also consider Laver forcing and its Y-properness. The rest of Section 7.5 is devoted to a discussion of
minimality of forcing notions, and its relation to minimality for reals. Finally, in Section 7.6, we consider
Namba forcing and Prikry forcing, which are our main examples of forcings for which there are fresh
functions on ordinals which do not have fresh subsets.

7.1. P(ω)/fin. To compute the fresh function spectrum of P(ω)/ f in, we are going to use Lemma 3.2,
together with the fact that P(ω)/fin collapses c to h; this follows from the base matrix theorem.

We say that a forcing P has a base matrix if there exists a (refining) system {Aξ | ξ < h(P)} of maximal
antichains of P such that

⋃
ξ<h(P) Aξ is dense in P (see also Definition 8.1). Recall the base matrix theorem

which guarantees the existence of base matrices for certain forcings. Most importantly, it holds true
for P(ω)/fin, which has been proved in [BPS80]; let us state the more general version from [BDH15,
Theorem 2.1]:

Theorem 7.1. Assume that P is homogeneous with respect to distributivity, i.e., h({q ∈ P | q ≤ p}) = h(P)
for each p ∈ P. Moreover, assume that there exists a dense subset D ⊆ P such that |D| = c and D is
σ-closed. Then P has a base matrix (of height h(P)).

P(ω)/fin satisfies the assumptions of the following proposition14 for λ = c. Its proof goes back
to [BPS80].

Proposition 7.2. If P has a base matrix (of height h(P)), and for each p ∈ P, there is an antichain of size λ
below p, then P collapses λ to h(P).

13Todorčević’s maximality principle has been generalized to larger cardinals in [GS21]. For the consistency proof, they use
a supercompact cardinal. It is unclear to us whether the generalized principle is consistent together with something like “0# does
not exist”.

14Note that also a Suslin tree has a base matrix (namely the levels of the tree itself), but clearly does not satisfy the assumption
because of its chain condition.
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Proof. Let A = {Aξ | ξ < h(P)} be a base matrix15 of height h(P). For each ξ < h(P) and each p ∈ Aξ, let
{qi

p | i < λ} be (an injective enumeration of) an antichain of size λ below p (such an antichain exists by
assumption).

Let ḟ := {((ξ, i), qi
p) | ξ < h(P) ∧ p ∈ Aξ ∧ i < λ}; note that ḟ is a name for a partial function from

h(P) to λ (due to the fact that – given ξ < h(P) – the set of qi
p with i < λ and p ∈ Aξ form an antichain).

For each i < λ, the set {qi
p | p ∈

⋃
ξ<h(P) Aξ} is dense: indeed, given p ∈ P, there is – due to the fact thatA

is a base matrix – ξ < h(P) and p′ ∈ Aξ such that p′ ≤ p, and hence qi
p′ ≤ p; by definition of ḟ , we have

that qi
p′ ⊩ ḟ (ξ) = i. It follows that every i < λ is forced to be in the range of ḟ , as desired. □

From the above proposition, Lemma 3.2 (see also (2) afterwards), and Corollary 2.3 we immediately
get the following:

Corollary 7.3. Assume that P has a base matrix (of height h(P)), and for each p ∈ P, there is an antichain
of size |P | below p. Then FRESH(P) = [h(P), |P |]Reg.

As discussed above, P(ω)/fin fulfills the assumptions of the above corollary, so we finally obtain the
fresh function spectrum of P(ω)/fin:

Corollary 7.4. FRESH(P(ω)/fin) = [h, c]Reg.

7.2. P(κ)/<κ. As for P(ω)/fin, the fresh function spectrum of P(κ)/<κ is an interval. Under the assump-
tion that there are antichains of size θ in P(κ)/<κ, Shelah [She07] has shown that the forcing P(κ)/<κ
collapses θ to ω (based on work of Balcar-Simon [BS88] which shows that it collapses the generalized
bounding number bκ to ω). We will use Lemma 3.2 and Proposition 2.2 to compute the fresh function
spectrum of P(κ)/<κ. As a preparation, we prove the following:

Lemma 7.5. If P(κ)/<κ has the χ-c.c., then (P(κ)/<κ) × (P(κ)/<κ) has the χ-c.c..

Proof. Let A be an antichain in (P(κ)/<κ)× (P(κ)/<κ). We will show that there is an antichain in P(κ)/<κ
of the same size. Fix a bijection ι: κ × κ → κ. Define a mapping φ: [κ]κ × [κ]κ → [κ]κ as follows. For
(a, b) ∈ [κ]κ × [κ]κ, let a =: {αi | i < κ}, and b =: {βi | i < κ} be the increasing enumerations of a
and b. Let φ(a, b) := {ι(αi, βi) | i < κ}. It is straightforward to check that φ preserves incompatibility,
i.e., if (a0, b0) and (a1, b1) are incompatible, then φ(a0, b0) and φ(a1, b1) are incompatible. Therefore,
{φ(a, b) | (a, b) ∈ A} is an antichain in P(κ)/<κ of the same size as A. □

We can now compute the fresh function spectrum of P(κ)/<κ. It turns out that it only depends on the
size of the antichains:

Proposition 7.6. If χ is minimal such that P(κ)/<κ has the χ-c.c., then FRESH(P(κ)/<κ) = [ω, χ)Reg.

Proof. By Shelah [She07], P(κ)/<κ collapses θ to ω, if there exists an antichain of size θ. Hence, every
cardinal smaller than χ is collapsed to ω. Since h(P(κ)/<κ) = ω, it follows by Lemma 3.2 that every
regular cardinal smaller than χ belongs to FRESH(P(κ)/<κ).

On the other hand, by Lemma 7.5, (P(κ)/<κ) × (P(κ)/<κ) has the χ-c.c., hence by Proposition 2.2 no
regular cardinal ≥ χ belongs to FRESH(P(κ)/<κ). □

15The base matrix is not required to be refining in this proof.
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Note that there are always antichains of size κ+ (actually even of size16 bκ) in P(κ)/<κ, hence

[ω, κ+]Reg ⊆ FRESH(P(κ)/<κ).

If 2<κ = κ, then there are antichains of size 2κ (by the same argument as for ω, i.e., by identifying 2<κ with
κ and taking the set of branches through the tree 2<κ), so

FRESH(P(κ)/<κ) = [ω, 2κ]Reg whenever 2<κ = κ.

To get a model of 2<κ = κ where 2κ is large, start with a model of GCH and add many κ-Cohen reals.
On the other hand, it is also consistent that 2κ is large and there are no large antichains in P(κ)/<κ. In

fact, the following was shown in [Bau76]. We present a proof for the convenience of the reader.

Proposition 7.7. Let V be a model of 2κ = θ and µ > θ with cf(µ) > κ. Then there exists a cofinality
preserving extension of V such that in P(κ)/<κ, there are no antichains of size θ+, and 2κ = µ.

Note that each antichain in V remains an antichain of the same size in the extension (since cardinalities
are preserved). Also note that, starting with a model of GCH, the proposition easily yields a model
satisfying κ+ < 2κ and FRESH(P(κ)/<κ) = [ω, κ+]Reg.

Proof of Proposition 7.7. We add µ many ω-Cohen reals,17 i.e., force with Cµ. Then in the extension,
clearly 2κ = µ holds true, and there are no antichains of size θ+ in P(κ)/<κ, which can be seen as follows.

Assume towards a contradiction that A = {ai | i < θ+} is an antichain of size θ+ in V[Cµ]. Now work
in V and fix names ȧi for the sets ai. For i, j < θ+, let ζ̇i, j be such that it is forced that ȧi ∩ ȧ j ⊆ ζ̇i, j < κ.
Since Cµ has the c.c.c., there exist countable sets Zi, j ⊆ κ in the ground model such that it is forced that
ζ̇i, j ∈ Zi, j. Now let γi, j := sup(Zi, j) < κ. This defines a mapping from θ+ × θ+ to κ. Since θ+ = (2κ)+ in V ,
we can apply the Erdős-Rado Theorem to get a set Y ⊆ θ+ of size κ+ and γ < κ such that γi, j = γ for all
i, j ∈ Y . Therefore, {ai \ γ | i ∈ Y} is a family of κ+ many (non-empty) disjoint subsets of κ in V[Cµ], a
contradiction. □

It also follows from the above that the largest size of antichains in P(κ)/<κ can be strictly between κ+

and 2κ. We can proceed as follows. Start with a ground model V satisfying GCH, and let κ+ < θ < µ
with cf(θ) > κ and cf(µ) > κ. First add θ many κ-Cohen reals and then add µ many ω-Cohen reals. In the
resulting model 2κ = µ, and P(κ)/<κ has the θ+-c.c. and there exists an antichain of size θ, hence

FRESH(P(κ)/<κ) = [ω, θ]Reg

holds in this model.

16It is easy to construct a <∗-increasing family of functions in κκ of size bκ; the graphs of these functions form an antichain
on κ × κ.

17In fact, the proof shows that we only have to demand that the forcing to blow up 2κ has the κ-c.c. and preserves cofinalities
(for example, adding many ν-Cohen reals with ν < κ would work).
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7.3. Mathias forcing and Silver forcing. Recall that Mathias forcing Ma is the poset of pairs (s, A) with
s ∈ 2<ω and A ∈ [ω]ω, where the extension relation is defined as follows: (t, B) ≤ (s, A) if t ⊵ s, B ⊆ A,
and for each n ≥ |s|, if t(n) = 1, then n ∈ A.

Proposition 7.8. FRESH(Ma) = {ω} ∪ [h, c]Reg.

In particular, FRESH(Ma) is an interval (namely [ω, c]Reg) if and only if h = ω1.

Proof of Proposition 7.8. Since Mathias forcing adds new reals, it is clear that ω ∈ FRESH(Ma). It is
well-known and easy to see that Mathias forcing can be written as a two-step iteration as follows:

Ma � P(ω)/fin ∗Ma(G),

where Ma(G) is the Mathias forcing with respect to the generic ultrafilter G added by P(ω)/fin, i.e.,
the subposet of Mathias forcing consisting of those pairs (s, A) ∈ Ma for which A ∈ G. Since
FRESH(P(ω)/fin) = [h, c]Reg (see Corollary 7.4), it follows by Lemma 4.5 that [h, c]Reg ⊆ FRESH(Ma).

Fix β < {ω} ∪ [h, c]Reg. On the one hand, β < FRESH(P(ω)/fin). On the other hand, P(ω)/fin forces
that Ma(G) is σ-centered and hence Ma(G)×Ma(G) has the c.c.c., so Proposition 2.2 yields that P(ω)/fin
forces that β < FRESH(Ma(G)). Now we can apply Lemma 4.6 to conclude that β < FRESH(Ma). □

Recall that Silver forcing Si is the poset of partial functions f from ω to 2 with co-infinite domain, and
a condition g is stronger than f if g extends f .

Proposition 7.9. FRESH(Si) ⊇ {ω} ∪ [h, c]Reg.

Proof. Since Silver forcing adds new reals, it is clear that ω ∈ FRESH(Si). It is well-known and easy to
see that Silver forcing can be written as a two-step iteration as follows:

Si � P(ω)/fin ∗C(G),

where C(G) is Gregorieff forcing with respect to the generic ultrafilter G added by P(ω)/fin, i.e.,
the subposet of Silver forcing consisting of those functions f for which ω \ dom ( f ) ∈ G. Since
FRESH(P(ω)/fin) = [h, c]Reg (see Corollary 7.4), it follows by Lemma 4.5 that [h, c]Reg ⊆ FRESH(Si).

□

Since C(G) has no small chain condition, and is not Y-proper,18 it is not clear to us how to prove that
regular cardinals strictly between ω and h do not belong to FRESH(Si).

7.4. A general fact about tree forcings. Now we want to discuss forcings whose conditions are trees of
height ω of sequences of ordinals, i.e., forcings P such that P ⊆ P(λ<ω) for some cardinal λ. We will use
the following notation: Let p ∈ P be a condition. For a node s ∈ p, let succp(s) := {α ∈ Ord | s⌢α ∈ p}.
A node s is a splitting node if |succp(s)| > 1, i.e., if it has more than one immediate successor in p. Let
split(p) denote the set of splitting nodes of p. The nth split level of a condition p, denoted by splitn(p),
is the set of splitting nodes of p which have exactly n proper initial segments which are splitting. In
particular, split0(p) = {stem(p)}. For s ∈ p, let p[s] := {t ∈ p | s ⊴ t or t ⊴ s}.

18This is due to the fact that Si and hence C(G) does not add unbounded reals (compare with [CZ15, Theorem 4.1(4)] which
says that all Y-proper forcings do).
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Definition 7.10. We say that a forcing P is Miller-like if it consists of trees of height ω of sequences of
ordinals and has the following properties:

(1) For every p ∈ P the following hold:
(a) For all t ∈ p there exists s ∈ p with t ⊴ s and s is a splitting node.
(b) p[t] ∈ P for all t ∈ p.

(2) For every p ∈ P with stem s and pα ≤ p[s⌢α] for every α ∈ succp(s), the union
⋃
α∈succp(s) pα ∈ P.

(3) P has fusion, i.e., for any sequence p0 ≥ p1 ≥ . . . such that splitn(pn) = splitn(pn+1) for each n,⋂
n∈ω pn ∈ P.

We will now provide a general theorem which we will use to compute the fresh function spectra of tree
forcings on ω and of Namba forcing (see Section 7.5 and Section 7.6).

Theorem 7.11. If λ is a cardinal, P ⊆ P(λ<ω) is a Miller-like forcing and δ > λ is regular uncountable,
then δ < FRESH(P).

Proof. Assume towards a contradiction that p ∈ P and ḟ are such that p⊩ ḟ : δ→ Ord is fresh.

Claim 7.12. There exists q ≤ p and {βs | s ∈ split(q)} ⊆ δ such that for every s ∈ split(q), letting
succq(s) =: {αi | i ∈ χ} (with χ = |succq(s)|), there exist functions gi (i ∈ χ) with q[s⌢αi] ⊩ ḟ↾βs = gi for
each i, and gi , g j for i , j.

We will prove this claim below. Let us first finish the proof of the theorem, using the claim. Let
γ := sup{βs | s ∈ split(q)} which is < δ since δ > λ is regular uncountable and |{βs | s ∈ split(q)}| ≤
|λ<ω| = max(ω, λ), and let q′ ≤ q and g ∈ V such that q′ ⊩ ḟ↾γ = g. Note that if s⌢αi ∈ q′ for s ∈ split(q)
then q′ ⊮ ḟ↾βs , gi, thus, since q′ decides ḟ↾βs, it follows that q′ ⊩ ḟ↾βs = gi. Hence for every s ∈ split(q)
for every i , j either s⌢αi < q′ or s⌢α j < q′. So q′ is not a condition, a contradiction. □

To prove Claim 7.12, let us first prove the following claim.

Claim 7.13. For p̃ ≤ p and s = stem(p̃) there exists β < δ and q̃ ≤ p̃ with stem(q̃) = s and succq̃(s) =
succp̃(s) =: {αi | i ∈ χ} (with χ = |succp̃(s)|) such that there exist pairwise distinct functions gi (i ∈ χ) with
q̃[s⌢αi] ⊩ ḟ↾β = gi for each i.

Proof. For every αi, using Lemma 2.8, let βi < δ be such that |{g | ∃q ≤ p̃[s⌢αi] with q⊩ ḟ↾βi = g}| ≥ χ;
this is possible since χ ≤ λ < δ. Let β := supi∈χ βi < δ. By induction on i < χ, we are going to construct q̃.
First, let q0 ≤ p̃[s⌢α0] and g0 be such that q0 ⊩ ḟ↾β = g0. Inductively proceed as follows. Assume that
for every j < i, we have defined q j ≤ p̃[s⌢α j] and g j such that q j ⊩ ḟ↾β = g j, and g j , gk for j , k. Let
qi ≤ p̃[s⌢αi] and gi be such that qi ⊩ ḟ↾β = gi and gi , g j for every j < i; this is possible since i < χ,
and β is such that there are at least χ many possibilities to decide ḟ↾β by extensions of p̃[s⌢αi]. Now
q̃ :=
⋃

i<χ qi ≤ p̃, which is a condition by Definition 7.10(2), and is as desired. □

Proof of Claim 7.12. Proceed by induction, using Claim 7.13, as follows. First apply Claim 7.13 to p
yielding p0 ≤ p and βstem(p). Recall that splitn(p) denotes the nth split level of p. Now assume that pn ≤ p
and {βs | s ∈ splitm(p) for some m ≤ n} is defined and satisfies the conclusion of the claim for all such s.
For every s ∈ splitn+1(pn), apply Claim 7.13 to p[s]

n , yielding qs ≤ p[s]
n and βs; let pn+1 :=

⋃
s∈splitn+1(pn) qs.
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By repeatedly using Definition 7.10(2), one can show that pn+1 ∈ P. Finally, let q :=
⋂

n∈ω pn. It is
straightforward to check (using Definition 7.10(3), i.e., that P has fusion) that q is a condition, and that it
has the desired property. □

7.5. Tree forcings on ω and minimality. We now discuss tree forcings on ω; their fresh function spectra
always contain ω since new reals are added. Mathias forcing and Silver forcing, which have been con-
sidered in Section 7.3, can also be viewed as tree forcings on ω even though the standard representation
given there does not consist of trees. The tree forcings we are going to consider here have fresh func-
tion spectrum {ω}, whereas the fresh function spectra of Mathias forcing and Silver forcing also contain
uncountable cardinals. Note that also the classical c.c.c. forcings Cohen forcing, random forcing, and
Hechler forcing can be viewed as tree forcings on ω. Since they are Knaster, they all have fresh function
spectrum {ω} (see Corollary 2.4). Let us now turn to classical non-c.c.c. tree forcings on ω. Recall that
Sacks forcing Sa is the collection of perfect trees in 2<ω (as usual for tree forcings, ordered by inclusion).
Miller forcing Mi is the collection of superperfect trees in ω<ω (where a tree is superperfect if each node
can be extended to a node with infinitely many immediate successors). Full Miller forcing FuMi is the
collection of full Miller trees, where a Miller tree T is full if each node can be extended to a node t such
that t⌢n ∈ T for each n ∈ ω.

It is well-known and easy to check that the above mentioned tree forcings Sa, Mi, and FuMi are Miller-
like tree forcings (see Definition 7.10) in ω<ω (or even in 2<ω in case of Sacks forcing). Therefore
Theorem 7.11 immediately yields the following:

Corollary 7.14.
(1) FRESH(Sa) = {ω}.
(2) FRESH(Mi) = {ω}.
(3) FRESH(FuMi) = {ω}.

For an ideal19 I on ω, let La(I) be the poset of all trees T ⊆ ω<ω such that for every node s ∈ T
extending the stem, the set {n ∈ ω : s⌢n ∈ T } does not belong to I. Let Mi(I) be the poset of all trees T
such that for every node there exists a node t extending it with the property that {n ∈ ω : t⌢n ∈ T } does
not belong to I. In particular, if I is the ideal of finite sets, La(I) is Laver forcing La and Mi(I) is Miller
forcing Mi.

Note that Mi(I) is Miller-like for any ideal I on ω, hence Theorem 7.11 implies that

FRESH(Mi(I)) = {ω}

for any ideal I. On the other hand, La(I) (and hence La) is never Miller-like (in fact, Definition 7.10(2)
fails). So we cannot apply Theorem 7.11 to compute their fresh function spectra. Instead, we make use of
another property of these forcings (discussed in Section 2):

Theorem 7.15. Let I be an ideal on ω which is the intersection of Fσ ideals. Then

(1) La(I) is Y-proper,
(2) Mi(I) is Y-proper.

19We always assume our ideals to contain all finite sets.
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Proof. The statement about La(I) is shown in [CZ15, Theorem 4.8]. Even though it is not explicitly
mentioned in [CZ15], it is easy to adapt their proof to obtain the analogous result for Mi(I). □

Note that Sacks forcing Sa is not Y-proper since it does not add an unbounded real, but all Y-proper
forcings do (see [CZ15, Theorem 4.1(4)]). We do not know, however, the status of full Miller forcing:

Question 7.16. Is FuMi Y-proper?

Using Proposition 2.12, we can determine the fresh function spectra of Laver forcings:

Corollary 7.17. FRESH(La) = {ω}. More generally, FRESH(La(I)) = {ω} whenever I is an ideal on ω
which is the intersection of Fσ ideals.

If I is not of the form needed in the above theorem it is not clear in general whether La(I) is Y-
proper. However, if I is an analytic P-ideal, then La(I) is Y-proper if and only if it is of the above form
(see [CZ15, Theorem 4.9]). The asymptotic density zero ideal Z =

{
a ⊆ ω : limn→∞

|a∩n|
n = 0

}
is an

example of an analytic P-ideal which is not of the above form. So it is natural to ask the following:

Question 7.18. Is FRESH(La(Z)) = {ω}?

In the rest of the section we comment on the relation between minimality of a forcing and its fresh
function spectrum. Recall that Sa, Mi, and La are minimal (i.e., they cannot be written as the iteration
of two non-atomic forcings) and their fresh function spectra are singletons in ZFC. The minimality of
tree forcings has been studied extensively in [Gro87]. Minimality, however, is not sufficient for the fresh
function spectrum being a singleton:

Example 7.19. There is a minimal Prikry-type forcing P, which singularizes a measurable cardinal κ,
with FRESH(P) = {ω, κ}.

Proof. The forcing defined in [KRS13] is a Prikry-type forcing which is minimal. As in Theorem 7.21, it
follows that the fresh function spectrum is {ω, κ}. □

A forcing P is minimal for reals if whenever P is written as a two-step iteration P0 ∗Ṗ1 and a real x
belongs to the extension by P0 but not to the ground model, then the second iterand Ṗ1 has to be the trivial
forcing.

Proposition 7.20. Assume P is a proper forcing such that FRESH(P) = {ω}. Then the following are
equivalent:

(1) P is minimal for reals.
(2) P is minimal.

Proof. The implication from (2) to (1) is clear. For the other direction, assume P is not minimal. There-
fore, P can be written as P0 ∗Ṗ1, where both P0 and Ṗ1 are (forced to be) non-atomic. So, by Lemma 4.5,
ω ∈ FRESH(P0). Since P0 (as a complete subforcing of P) is proper, P0 adds a new real by Proposition 5.8.
Therefore, P is not minimal for reals. □

In particular, for forcings such as Sacks, Miller, Laver, etc., it is enough to prove minimality for reals
in order to prove minimality.
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7.6. Prikry forcing and Namba forcing. In this section, we want to discuss Prikry and Namba forcing,
and compute their fresh function and fresh subset spectra. These two forcings are examples of forcings
which add a new function on ω, but no real20 (i.e., no new subset of ω). A good reference for properties
of these forcings is [Jec03].

For a normal measure U on a measurable cardinal κ, let PU denote Prikry forcing with respect to U,
i.e., the poset of pairs (s, A) with s ∈ [κ]<ω and A ∈ U with max(s) < min(A), where the extension relation
is defined as follows: (t, B) ≤ (s, A) if t ⊇ s, B ⊆ A, and t \ s ⊆ A.

Theorem 7.21. LetU be a normal measure on a measurable cardinal κ. Then the following holds:

(1) FRESH(PU) = {ω, κ}.
(2) Let δ be an indecomposable ordinal. Then PU adds a fresh subset of δ if and only if δ ≥ κ and

cf(δ) ∈ {ω, κ}.

Proof. Clearly, ω ∈ FRESH(PU), since the generic Prikry function is a new function from ω to κ. More-
over, the range of the generic Prikry function (i.e., the Prikry sequence viewed as a subset of κ) is clearly
a fresh subset of κ, since all its proper initial segments are finite; in particular, κ ∈ FRESH(PU). Further
recall the well-known fact that Prikry forcing does not add new bounded subsets of κ. It is easy to check
that PU is κ-centered (i.e., a union of κ-many centered sets). Consequently, PU ×PU is κ+-c.c., so, by
Proposition 2.2, λ < FRESH(PU) for any regular λ > κ.

To show (1), it remains to prove that no regular cardinal strictly between ω and κ belongs to the fresh
function spectrum. Fix λ regular with ω < λ < κ and assume towards a contradiction that PU adds a fresh
function f from λ to the ordinals. Since PU has the κ+-c.c., we can cover the range of f by a set of size κ
in the ground model, and therefore, by taking a ground model bijection between this cover and κ, we can
assume without loss of generality that f is in fact a fresh function from λ to κ. Note that the range of
this function has to be unbounded in κ: if not, then there would exist a new bounded subset of κ, which
is not the case. Further note that for each α < λ, the range of f↾α is bounded in κ, because otherwise κ
would be singular in the ground model, witnessed by the ground model function f↾α. Therefore, in the
extension, we can construct a cofinal subset X of λ such that f↾X is a strictly increasing function whose
range is cofinal in κ. Note that X is in the ground model (because no new bounded subsets of κ are added)
and hence it has order-type λ. Consequently, cf(κ) = λ holds true in the extension, contradicting the fact
that cf(κ) = ω holds true in the extension (as witnessed by the generic Prikry function).

Let us now show (2). Recall Proposition 5.3 and the fact that no new bounded subsets of κ are added. As
mentioned above, Prikry forcing adds a fresh subset of κ, so, using Proposition 5.3, the characterization
is established for ordinals of cofinality κ. It remains to show that Prikry forcing adds fresh subsets of
indecomposable ordinals δ ≥ κ with cf(δ) = ω. The minimal such ordinal is κ · ω. By Proposition 5.3 it
is enough to show that Prikry forcing adds a fresh subset of κ · ω. Let g : ω → κ be the Prikry function.
Then {(κ · n) + g(n) | n ∈ ω} is a fresh subset of κ · ω. □

Using the above theorem, we give an example of a forcing for which the ξλ’s from Corollary 5.4 cannot
be chosen to be all the same; in fact, it is necessary to choose them in such a way that ξω1 ≤ ω1 and
ξω ≥ κ. For simplicity of the argument, we use CH, although the same forcing is always such an example.

20For Namba forcing, this is only true under CH (see the discussion before Theorem 7.23).
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Example 7.22. Assume CH.

(1) FRESH(PU ×C(ω1)) = {ω,ω1, κ}.
(2) Let δ be an indecomposable ordinal. Then PU ×C(ω1) adds a fresh subset of δ if and only if

cf(δ) = ω1, or δ ≥ κ and cf(δ) ∈ {ω, κ}.

Proof. First note that PU ×C(ω1) = C(ω1) ∗ P̌U , therefore by Lemma 4.5, ω1 ∈ FRESH(PU ×C(ω1)).
Since PU does not add new bounded subsets of κ, CH holds in the extension by PU , and PU ×C(ω1) =
PU ∗Č(ω1) = PU ∗C(ω1). So FRESH(C(ω1)) = {ω1} in the extension by PU . Therefore, using Lemma 4.5
and Lemma 4.6, we know that FRESH(PU ×C(ω1)) = {ω,ω1, κ}.

To prove (2), first recall Proposition 5.3 and note that (under CH) C(ω1) adds a fresh subset of an
indecomposable ordinal δ if and only if cf(δ) = ω1. Using Theorem 7.21(2) and the above representations
of PU ×C(ω1), one can easily finish the proof by applying the straightforward analogues of Lemma 4.5
and Lemma 4.6 for fresh subsets instead of fresh functions. □

Namba forcing Nb is the collection of trees in ω<ω2 (ordered by inclusion) which have the property that
each node can be extended to a node with ω2 many immediate successors.

It is well-known that Namba forcing does not add reals if CH holds (see for example the proof of [Jec03,
Theorem 28.10]). However, it does add reals if CH does not hold, which can be seen as follows. Fix an
injection φ : ω2 → 2ω in the ground model, and let f : ω → ω2 be the Namba generic function. Then
φ ◦ f : ω→ 2ω is new, and this can easily be translated into a new real.

Theorem 7.23. Assume CH. Then the following holds:

(1) FRESH(Nb) = {ω,ω1, ω2}.
(2) Let δ be an indecomposable ordinal. Then Nb adds a fresh subset of δ if and only if δ ≥ ω1 and

cf(δ) ∈ {ω,ω1, ω2}.

In case GCH (at ω2) holds, the size of Nb is ω3, hence it is easy to argue that no cardinal larger than ω3

belongs to FRESH(Nb) (see Corollary 2.3). However, even under GCH, the more difficult argument given
here is necessary to show that ω3 does not belong to FRESH(Nb).

Proof of Theorem 7.23. First recall that (similarly as in the case of Prikry forcing above) Namba forc-
ing Nb adds a new cofinal sequence of length ω to ω2, hence ω,ω2 ∈ FRESH(Nb) and there is a fresh
subset of ω2. Furthermore, as discussed above, Namba forcing does not add new subset of ω (or any
countable ordinal) under CH. Note that ω2 is collapsed to ω1, so, by Proposition 3.1, Nb adds a new
subset of ω1, which is fresh by the above; in particular, ω1 ∈ FRESH(Nb).

It is easy to check that Namba forcing is a Miller-like tree forcing (see Definition 7.10) in ω<ω2 . There-
fore, by Theorem 7.11, no regular cardinal above ω2 belongs to FRESH(Nb), finishing the proof of (1).

For (2), using Proposition 5.3 and the fact that Nb adds fresh subsets of ω1 and ω2, we only have to
deal with ordinals of countable cofinality. Namba forcing does not add fresh subsets of countable ordinals,
so we consider indecomposable uncountable ordinals of countable cofinality. The smallest such ordinal
is ω1 · ω. Let f : ω → ω2 be the Namba generic function (which is fresh). Let φ : ω2 → P(ω1) be an
injection in the ground model. Then φ ◦ f : ω → P(ω1) is again fresh and therefore {(ω1 · n) + β | n ∈
ω ∧ β ∈ φ( f (n))} is a fresh subset of ω1 · ω. □
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Let us remark that the above theorem in particular shows that Namba forcing is another example of a
forcing (compare with the remark after Lemma 3.2 involving Proposition 2.9) which collapses a cardinal λ
without adding a fresh function on λ. Indeed, since Nb turns ω2 into an ordinal of size ω1 and cofinality ω,
it follows from [Jec03, Corollary 23.20] that Nb collapses ω3, but ω3 < FRESH(Nb) by the theorem.

8. Refining matrices and the combinatorial distributivity spectrum

In this last section, we focus on a more combinatorial version of a spectrum related to distributivity. We
define refining matrices and the connected notion of combinatorial distributivity spectrum. These notions
have been introduced by the authors of this paper in [FKWb], where the existence of refining matrices
forP(ω)/fin of height larger than h has been shown to be consistent. A special sort of refining matrices are
base matrices (see also Section 7.1). Base matrices for P(ω)/fin (of height h) have been introduced in the
seminal paper [BPS80], and recently base matrices of various heights have been constructed by Brendle
in [Bre]. A structural analysis of such matrices has been done in [FKWa]. In Section 8.1, we compare the
combinatorial distributivity spectrum of arbitrary forcing notions with their fresh function spectrum, and
in Section 8.2, we consider Easton products of Cohen forcings once again.

Recall from the introduction that h(P) denotes the distributivity of a forcing P. For (maximal) an-
tichains A and B in P, we say that B refines A if for each q ∈ B there is a p ∈ A such that q ≤ p. It
is well-known and easy to see that h(P) is the least λ such that there is a system of λ many maximal
antichains without common refinement. To get a sensible definition of spectrum, we consider systems
which are in addition required to be refining:

Definition 8.1. Let (P,≤) be any (non-atomic) separative21 forcing notion. We say thatA = {Aξ | ξ < λ}
is a refining matrix of height λ for P if

(1) Aξ is a maximal antichain in P, for each ξ < λ,
(2) Aη refines Aξ whenever η ≥ ξ, and
(3) there is no common refinement, i.e., there is no maximal antichain B which refines every Aξ.

The combinatorial distributivity spectrum of P (denoted by COM(P)) is the set of regular cardinals λ such
that there exists a refining matrix of height λ for P.

We say that q intersects a refining matrix A = {Aξ | ξ < λ} if for each ξ < λ there is an a ∈ Aξ with
q ≤ a. Note that Definition 8.1(3) is equivalent to

(3′) {q ∈ P | q intersectsA} is not dense in P.

It is easy to see that the existence of refining matrices of some height is only a matter of its cofinality:
if δ is singular with cf(δ) = λ, then there exists a refining matrix of height δ for P if and only if there
exists one of height λ (i.e., λ ∈ COM(P)). Therefore, as in case of the fresh function spectrum FRESH(P)
(see Proposition 5.2), the restriction in the definition of COM(P) to regular cardinals makes sense.

It is straightforward to check that the least element of COM(P) is just the distributivity of P; in particu-
lar, the minima of the combinatorial distributivity spectrum and the fresh function spectrum coincide:

h(P) = min(COM(P)) = min(FRESH(P)).
21We assume our forcings to be separative, because otherwise the given definition does not properly reflect its intention. To

solve this problem, ≤ can be replaced by ≤∗, where q ≤∗ p if there is no r ≤ q which is incompatible to p.
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8.1. COM(P) vs. FRESH(P). We now establish a relation between the combinatorial distributivity spec-
trum and the fresh function spectrum by showing how to transform refining matrices into fresh functions:

Proposition 8.2. COM(P) ⊆ FRESH(P).

Proof. Assume that δ ∈ COM(P), and fix a witnessing refining matrix A = {Aα | α < δ} of height δ. For
each α < δ, fix a bijection φα : Aα → |Aα|. Now let ḟ be a name for the function f from δ to the ordinals
which is defined as follows: for each α < δ, let a ∈ Aα be the (unique) condition which belongs to the
generic filter, and let f (α) = φα(a).

We claim that, in some generic extension, ḟ is evaluated to a fresh function on δ, witnessing that
δ ∈ FRESH(P). In fact, we will prove that there exists p ∈ P such that p forces

(1) ḟ : δ→ Ord,
(2) ḟ↾α ∈ V for each α < δ, and
(3) ḟ < V .

Clearly, (1) is forced (by 1P), because each Aα is a maximal antichain. To show that (2) is forced
(by 1P), we show that, for any α < δ, the set of conditions which decide ḟ↾α (and therefore force
ḟ↾α ∈ V) is dense. Let α < δ and q ∈ P. There exists aα ∈ Aα such that q and aα are compatible. Let
r ≤ q, aα. SinceA is refining, for every β ≤ α there exists aβ ∈ Aβ with r ≤ aβ, thus r ⊩ ḟ (β) = φβ(aβ) for
every β ≤ α. Consequently, r decides ḟ↾α, as desired.

Finally, by definition of a refining matrix (see property (3′)), the set of conditions intersecting the
matrix is not dense in P, i.e., we can fix p ∈ P such that there exists no condition stronger than p which
intersects A. We show that p forces (3). Assume towards a contradiction that p ⊮ ḟ < V . So we can
fix q ≤ p and g ∈ V such that q⊩ ḟ = g. This implies that for every α < δ there exists exactly one
aα ∈ Aα which is compatible with q. It easily follows that22 q ≤ aα for each α, so q intersects A, a
contradiction. □

In case P is a complete Boolean algebra, it is easy to show that the combinatorial distributivity spectrum
and the fresh function spectrum coincide:

Proposition 8.3. Let P be a complete Boolean algebra. Then FRESH(P) = COM(P).

Proof. By Proposition 8.2, COM(P) ⊆ FRESH(P). For the other direction, let δ ∈ FRESH(P). We will
construct a refining matrix witnessing δ ∈ COM(P). Fix a name ḟ and p ∈ P such that p forces the
following: ḟ : δ→ Ord with ḟ < V , but ḟ↾γ ∈ V for any γ < δ.

For each α < δ, let

Aα := {⟦ ḟ↾α = g⟧ | g ∈ Ordα ∧ ⟦ ḟ↾α = g⟧ , 0},

i.e., Aα is the maximal antichain in the complete Boolean algebra P according to what ḟ↾α is forced to be.
The set of conditions which are intersecting the matrix {Aα | α < δ} is not dense: if it were, there has to
be a q ≤ p such that for each α < δ, there is an a ∈ Aα satisfying q ≤ a; but then q⊩ ḟ ∈ V , contradicting
p⊩ ḟ < V .

22If P is not separative, one has to replace ≤ by ≤∗ (see footnote 21).
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To finish the proof, we have to show that the matrix {Aα | α < δ} is refining. Fix β < γ < δ, and fix
b ∈ Aγ. We can fix g ∈ Ordγ satisfying b = ⟦ ḟ↾γ = g⟧ , 0. Let c := ⟦ ḟ↾β = g↾β⟧. Clearly, b ≤ c, and
c ∈ Aβ (since 0 , b ≤ c). □

The above proof makes essential use of the assumption that P is a complete Boolean algebra. Therefore,
we strongly conjecture that equality does not always hold for arbitrary forcing notions P.

Question 8.4. Is COM(P) = FRESH(P) for every forcing notion P?

We can also ask whether the combinatorial distributivity spectrum is invariant under equivalence of
forcing notions. In fact, this question is equivalent to the above question, which can be seen as follows.
Let r.o.(P) denote the canonical complete Boolean algebra associated to P, which is forcing equivalent
to P. Clearly, the fresh function spectrum is invariant under equivalence of forcing notions, so

FRESH(r.o.(P)) = FRESH(P),

and by Proposition 8.3,
FRESH(r.o.(P)) = COM(r.o.(P)).

Therefore, if COM(r.o.(P)) = COM(P), then COM(P) = FRESH(P), and vice versa.

8.2. Combinatorial distributivity spectrum of Easton products. In Section 4, we discussed which sets
of regular cardinals can be realized as the fresh function spectrum of a homogeneous forcing. Here, we
show that each Easton closed set (see Definition 4.8) is the combinatorial distributivity spectrum of a
homogeneous forcing, namely an Easton product of Cohen forcings.

Proposition 8.5. Assume GCH. If X is Easton closed, then COM(E∏
β∈X C(β)) = X.

Proof. First note that COM(E∏
β∈X C(β)) ⊆ FRESH(E∏

β∈X C(β)) = X, using Proposition 8.2 and Theo-
rem 4.24.

To show that X ⊆ COM(E∏
β∈X C(β)), fix α ∈ X. We construct a refining matrix of height α for

E∏
β∈X C(β). Since min(COM(C(α))) = min(FRESH(C(α))) = α, it follows that α ∈ COM(C(α)). Let

A = {Aξ | ξ < α} be a refining matrix of height α for C(α).
For ξ < α, let A′ξ := {p ∈ E∏

β∈X C(β) | ∃a ∈ Aξ with p(α) = a ∧ p(β) = 1C(β) for all β , α}. Now
we will show that A′ := {A′ξ | ξ < α} is a refining matrix of height α for E∏

β∈X C(β): If p , p′ ∈ A′ξ, it
follows that a := p(α) , p′(α) =: a′, so a and a′ are two distinct elements of Aξ, which is an antichain, so
a is incompatible with a′ and therefore p is incompatible with p′, so A′ξ is an antichain. Similarly, it can
be shown that A′ξ is maximal. It is easy to see thatA′ is refining, sinceA is refining.

To finish the proof we show that property (3′) holds forA′. Assume towards a contradiction that the set
of conditions intersectingA′ is dense in E∏

β∈X C(β). We show that this implies that the set of conditions
intersecting A is dense in C(α), which contradicts the fact that A is a refining matrix. Fix a ∈ C(α). Let
pa ∈

E∏
β∈X C(β) be such that pa(α) = a and pa(β) = 1C(β) for all β , α. By assumption, there exists

q ∈ E∏
β∈X C(β) intersectingA′ with q ≤ pa. It is easy to see that q(α) ≤ a and q(α) intersectsA. □
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