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Abstract. We develop a new forcing notion for adjoining self-coding
cofinitary permutations and use it to show that consistently, the minimal
cardinality ag of a maximal cofinitary group (MCG) is strictly between
ℵ1 and c, and there is a Π1

2-definable MCG of this cardinality. Here Π1
2

is optimal, making this result a natural counterpart to the Borel MCG
of Horowitz and Shelah. Our theorem has its analogue in the realm
of maximal almost disjoint (MAD) families, extending a line of results
regarding the definability properties of MAD families in models with
large continuum.

1. Introduction

We will be interested in subgroups of S∞, the group of all permutations
of the natural numbers, with the additional property that all of their non-
identity elements have only finitely many fixed points. Such groups are
referred to as cofinitary groups, while permutations which have only finitely
many fixed points are referred to as cofinitary permutations. A cofinitary
group which is not properly contained in another cofinitary group, is called
a maximal cofinitary group, abbreviated MCG. One way to see the existence
of MCGs is to use the Axiom of Choice (short, AC), which leaves many
questions open regarding their possible cardinalities and their descriptive
set-theoretic definability. That a (Borel) MCG can be constructed without
appealing to AC is a relatively recent result, obtained by Horowitz and Shelah
[21] in 2016.

The study of the the spectrum of maximal cofinitary groups, i.e. of the
set of different sizes of MCGs,

spec(MCG) := {|G| : G is a maximal cofinitary group}

has been of interest since the early development of the subject. It was
shown by Adeleke [1] that every maximal cofinitary groups is uncountable,
Neumann showed that there is always a maximal cofinitary group of size c,
and Zhang [28] showed whenever ω < κ ≤ c, consistently there is a maximal
cofinitary group of size κ. A systematic study of spec(MCG) is found in [5], a
study which was later generalized to analyze the higher analogue of maximal
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cofinitary groups in Sκ (see [8]; here κ is an arbitrary regular uncountable
cardinal and Sκ denotes the group of permutations of κ). In [16] it was
shown to be consistent that the minimum of spec(MCG), denoted ag, be of
countable cofinality.

For the following discussion, let us make two definitions:

Definition 1.1. We refer to maximal cofinitary groups of cardinality µ,
as witnesses to µ ∈ spec(MCG) and to values µ ∈ spec(MCG) such that
ℵ1 < µ < c as intermediate cardinalities (or values).

The only known ways of constructing MCGs are AC, forcing, and the
Horowitz-Shelah construction ([21]). It is therefore interesting to ask: Given
a cardinal µ, what are the possible definability properties of a witness to
µ ∈ spec(MCG)?

Definition 1.2. A good projective witness to µ ∈ spec(MCG) is a MCG G
of cardinality µ which is also of lowest projective complexity (i.e., there is no
witness to µ ∈ spec(MCG) whose definitional complexity lies strictly below
that of G in terms of the projective hierarchy).

It is easy to see that if a MCG is Σ1
n(r), it is ∆1

n(r). Gao and Zhang
(see [19]) showed that in L, there exists a MCG of size ω1 with a co-analytic
set of generators, a result which was later improved by Kastermans [23], who
showed that in L there is a co-analytic MCG. The first, third, and fourth
authors found a co-analytic MCG in L which remains maximal after adding
Cohen reals [15]. This showed that in a generic extension of L, there is a Π1

1

good projective witness to ω1 ∈ spec(MCG).1

For a long time existence of analytic (equivalently, Borel) MCGs was one
of the most interesting open questions in the area, a question which was
answered affirmatively by the beforementioned construction due to Horowitz
and Shelah in [21].2 By their result, there is a Borel witness to c ∈ spec(MCG).

So far the study of definable witnesses to µ ∈ spec(MCG) has concentrated
on either µ = ℵ1 or µ = c; nothing is known about the definability properties
of witnesses to intermediate cardinalities. The present paper is motivated by
the question: What can we say about the definability properties of maximal
cofinitary groups G such that ℵ1 < |G| < c?

Here is a first answer:

Theorem 1.3. It is relatively consistent with ZFC that c ≥ ℵ3 and there is
an MCG G of size ℵ2, G ∈ L(R).

In other words, consistently there exists a witness to an intermediate value
in L(R). While sketch a proof of a slight strengthening of Theorem 1.3 in
Section 2 for expository purposes, for an optimal answer we must find a

1In this model 2ℵ0 > ℵ1, ruling out a Borel witness to ℵ1 ∈ spec(MCG).
2The second author of the present paper later improved their result.
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model with a good projective witness. For this, first note that a Σ1
2 maximal

cofinitary group must be either of size ℵ1 or continuum (being the union
of ℵ1 many Borel sets). By this observation, the lowest possible projective
complexity of a witnesses to intermediate values in spec(MCG) is Π1

2.

Our main theorem is the following:

Theorem 1.4. It is relatively consistent with ZFC that c ≥ ℵ3 and there
exists a Π1

2 MCG of size ℵ2. Thus, it is consistent that there is a Π1
2 good

projective witness to an intermediate value in spec(MCG).

In fact, we show:

Theorem 1.5. Let 2 ≤M < N < ℵ0 be given. There is a cardinal preserving
generic extension of the constructible universe L in which

ag = b = d = ℵM < c = ℵN
and there is a Π1

2 definable maximal cofinitary group of size ℵM .

(The cardinal characteristics b and d referred to in the above theorem are
the bounding number and the dominating number ; for an introduction to
cardinal characteristics, see [2]).

Remark 1.6. Providing a model in which there is a maximal cofinitary group
of cardinality µ where ℵ1 < µ < c and ℵω < c, or even ℵω ≤ µ, is possible,
but our proof would be considerably more technical since it uses Jensen
coding. For the sake of clarity and brevity we have chosen to restrict our
work to values of the continuum below ℵω.

While much of the proof in this article also applies to the case M = 1

in Theorem 1.5, one shold not expect to produce a model with a good pro-
jective witness to ℵ1 ∈ spec(MCG) in this way. As has been mentioned,
the consistency of such a witness was already shown by the first, third, and
fourth authors in [15] by constructing a Cohen-indestructible Π1

1 MCG in L;
in this model ag = d = ℵ1 < c. The consistency of ae = d = ℵ1 < c with
a good projective witness to ae is proved in [13] (ae is the smallest size of a
maximal eventually different family).

Let us extend our terminology to MAD families by writing

spec(MAD) := {|A| : A is a MAD family}

and let us speak of witness and good projective witness to µ ∈ spec(MAD),
and intermediate cardinalities, with the obvious meaning analogous to Defi-
nitions 1.1 and 1.2.

Studies of the definability properties of maximal almost disjoint families
can be found in [3, 11, 18, 27]. With the exception of [27], in all of these
studies the maximal almost disjoint family of interest is of cardinality c.

Our techniques easily modify to the study of maximal almost disjoint
families and provide the following result:
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Theorem 1.7. Let 2 ≤M < N < ℵ0 be given. There is a cardinal preserving
generic extension of the constructible universe L in which

a = b = d = ℵM < c = ℵN
and the MAD family witnessing ℵM ∈ spec(MAD) is Π1

2, i.e., it is a good
projective witness to the intermediate cardinality ℵM ∈ spec(MAD).

A good witness to c ∈ spec(MAD) is constructed by Brendle and Khom-
skii in [3], while a Cohen indestructible co-analytic maximal almost disjoint
family in L is a good witness to ℵ1 ∈ spec(MAD). The study of projective
witnesses does not limit to MCGs and mad families. Let spec(IND) denote
the set of possible cardinalities of maximal independent families. One of the
main results of [4] shows that ℵ1 ∈ spec(IND) has a good projective witness,
while the existence of a good projective witness to c ∈ spec(IND) is still
open.

Let us say a word about the methods used in this paper. Two techniques
had to be devised:

(1) A mechanism to adjoin, or more generally, enlarge maximal cofinitary
groups in such a way that from each new group element “codes” a
pre-ordained subset of ω; this is the content of Section 2.

(2) A way to ensure that the definition of the resulting maximal cofini-
tary group is of minimal complexity in the projective hierarchy; for
this, both Section 2 as well as the entire remainder of the paper are
relevant.

A very special case of the first problem was solved in [15], namely the case
where the group to be enlarged is countable, or equivalently, the group to be
adjoined has size at most ℵ1 (this built on previous work in [28, 16], which
describe forcings to adjoin MCGs but without any coding requirement). In
this special case, what we call “coding paths” can always be taken to be
disjoint, which simplifies the forcing immensely. In this paper, we solve the
problem without this cardinality restriction. This requires a restriction on
the type of group which can be enlarged.

To solve the second problem, we use a technique, originally inspired by
[6], of adjoing reals to make a given set projective. The groundwork for this
approach was laid for [17] and it has previously been employed in different
contexts, e.g., in [9, 12]. Making use of this approach in the present context
is not straightforward: We must simultaneously guarantee maximality of our
group, and that the group’s elements code reals which make its definition
projective. This difficulty was eventually resolved by a very careful arrange-
ment of the entire forcing iteration, and by using generic eventually different
families (see the discussion at the beginning of Section 2 and the road-map
given at the beginning of Section 3).

These ideas lend a flexibility to our construction without which our fi-
nal goal could not be achieved. They also present promising and robust
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techniques to address existing open problems. Some of the many naturally
occurring remaining open questions are discussed in our final section.

Structure of the paper. Section 2 presents a new forcing notion which
can adjoin self-coding permutations to a given cofinitary group. Section 3
presents the entire forcing construction leading to our main result. Our main
result is established in Section 4. Some remaining open problems are listed
in Section 5.

Acknowledgments. The first author would like to thank the Austrian Sci-
ence Fund (FWF) for the generous support through START Grant Y1012-
N35. The second author would also like to thank the FWF for its generous
support through projects P25748 and I1921. The third author thanks the
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pendent Research for generous support through grant no. 7014-00145B, and
moreover gratefully acknowledges his association with the Centre for Symme-
try and Deformation, funded by the Danish National Research Foundation
(DNRF92).

2. Adding cofinitary groups of coding permutations

In this section, we introduce a forcing Q which enlarges a (certain type
of) cofinitary group from the ground model to a larger cofinitary group by
adding a single generic permutation σG as a new generator, while at the
same time ensuring that particular sequences of (ground model) sets are
constructible from each new group element.

First, why do we need this forcing? To simplify the discussion, assume we
aim to find a model with a MCG G of size µ = ω2 < 2ω and such that G is
definable in L(R) without parameters (instead of projectively definable).

Notation 2.1. For the rest of this paper, let us fix a computable bijection

(2.1) ψ : ω × ω → ω.

Let us suppose until the end of this section that already 2ω > µ; and that
we have at our disposal a definable collection

〈Sξ,m : ξ < µ,m < ω〉 ∈ L

of subsets of ω1 which are stationary in L(R) but not in V . More precisely,
let us assume that for each (ξ,m) ∈ µ× ω there is Cξ,m ∈ V such that

L(R)[Cξ,m] � Sξ′,m′ ∈ NS ⇐⇒ (ξ′,m′) = (ξ,m)

(this is not hard to arrange; see Section 3).
Our aim is that G be definable as follows: g ∈ G if and only if

(2.2) (∃ξ < µ)(∀m ∈ ω) (m ∈ Ψ[g] ⇐⇒ L[g] � Sξ,m is not stationary) .
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To create this model, we face the following problem: Given a cofinitary group
G0, find a cardinality preserving forcing Q which adds a cofinitary σ ∈ S∞
such that

(A) the group G1 generated by G0 ∪ {σ} is cofinitary and maximal with
respect to the ground model, i.e., for no f ∈ S∞ ∩ V is G0 ∪ {σ, f}
cofinitary;

(B) For all g ∈ S∞, it holds that g ∈ G1 \ G0 ⇐⇒ (2.2).

To simplify the combinatorial properties of Q we choose to replace (B) by
the following (see 2.4 for details):

(B′) For all g ∈ S∞, it holds that g ∈ G′1 ⇐⇒ (2.2), where G′1 ( G1 \ G0

is a specifically chosen, “sufficiently large” subset.

We may then iterate Q (taking for G0 the group generated by generic per-
mutations added at previous steps of the iteration, starting with the trivial
group) to length µ and obtain the desired model.

A forcing that will achieve Item (A) was invented by Zhang [28]. For
Item (B′), in particular for ⇒ in (2.2), we want that for each g ∈ G′1 there
is ξ = ξ(g) < µ such that Cξ,m ∈ L[g], i.e., “Cξ,m is coded by g”, for each
m ∈ Ψ[g].

Remark 2.2. Our construction will ensure that Sξ,m remains stationary in
L(R) when m /∈ Ψ[g] (see Lemma 4.1). This is how we will show ⇐ in (2.2),
and thus, Item (B′) (in Lemma 4.3). For this it is essential that coding Cξ,m
by a real (in fact, by g) is conditional on Ψ−1(m) ∈ g and so it must be done
simultaneously with adding g.

As part of our solution, we define Q as a hybrid between Zhang’s forcing
and Solovay’s almost disjoint coding: Each g ∈ G′1 will code 〈Yξ,m : m ∈ Ψ[g]〉
using almost-disjoint coding with respect to an eventually different family F
of permutations. For the present discussion, the reader may assume Yξ,m =

Cξ,m (in the next section we discuss how to build Yξ,m to achieve µ > ℵ2

and a projective definition of G).
For the above strategy to succeed, we need a family F with particular

properties: Firstly, for the density argument below in Lemma 2.22 we need
that for any f ∈ F , G0 ∪ {f} is cofinitary. Secondly, to obtain maximality
relative to the ground model in Item (A) we must choose F ∩ V = ∅. The
second property means that g also has to “code” F in some way, since we
want that Yξ,m is constructible relative to only g. We can use Solovay’s
forcing to ensure F ∈ L[cF ] for some cF ∈ P(ω) and add the following to
the list of tasks for our forcing, where z = cF :

(C) For all g ∈ G′1, a pre-ordained real z is computable from g.3

3In fact, the problems which lead us to restrict to G′1 arise precisely from the coding
demand in (C); see 2.4.
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For this, we must make some kind of assumption on G0 (see Assumption 2.10).
But then, in fact, it is possible to specify a different real, z = zg, to be com-
putable in g, for each g ∈ G′1. While we could make do by taking z = cF

for every g ∈ G′1, allowing zg to vary with g comes at almost no additional
effort and it will prove to be convenient (see (3.3)).

2.1. Finite partial extensions of cofinitary groups. As indicated abve,
we wish to adjoin a new generator, σ ∈ S∞ to extend a cofinitary group G0 ≤
S∞. This will be done using a forcing Q whose conditions contain, among
other information, finite partial injective functions s : ω ⇀ ω approximating
σ = σG (G is the Q-generic set). An injective partial function s : N ⇀ N
will be referred to as a partial permutation.

The group G0 will naturally come with its own set of generators. Each par-
tial permutation s : ω ⇀ ω then defines a monoid (a set with an associative
binary operation and a two-sided identity) extending G0. Some terminology
will be useful.

Given a set A (the ‘index set’) write F(A) for the free group with generat-
ing set A. A convenient presentation of F(A) is as the reduced words WA in
the alphabet A∪A−1 := {ai : a ∈ A, i ∈ {−1, 1}} where the group operation
is “concatenate and reduce” and the unit is the empty word ∅ (see, e.g., [24,
Normal Form Theorem]).

For w0, w1 ∈ WA we say w1 is a proper conjugate subword of w0 if w0 =

w−1w1w for some word w ∈ WA \ {∅} and w1 6= ∅. We say w0 is a root of
w1 if w0 6= w1 and w1 = (w0)n for some n ∈ ω (so that n > 1, one might
add, without changing the definition).

Write w w w′ to mean that w′ is a right-initial segment (or initial segment
from the right) of w, i.e., w = an . . . a0 and w′ = ak . . . a0 with 0 ≤ k ≤ n,
or w′ = ∅.

Similarly, we say that w′ is an left-initial segment (or initial segment from
the left) of w to mean w = an . . . a0 and w′ = an . . . ak with 0 ≤ k ≤ n, or
w′ = ∅.

Another naturally appearing notion is that of a circular shift (with offset k)
of a word (see [15]) in WA. More precisely, given such a word w = wn · · ·w1,
where wi = ajii , ji ∈ {−1, 1} with ai ∈ A for each i, and a permutation
σ : {1, · · · , n} → {1, · · · , n} such that σ(i) = i + k mod n for some k ∈ N,
we will refer to wσ(n) · · ·wσ(1) as a circular shift (with offset k) of w. Thus,
in particular, for each n there are only finitely many circular shifts of a given
word.

For X ⊆ S∞, we write 〈X〉 for the subgroup of S∞ generated by X.
We call a mapping ρ : A → S∞ such that 〈im(ρ)〉 is a cofinitary group, a
cofinitary representation. Such a map obviously gives rise to a group homo-
morphism F(A)→ S∞, denoted also by ρ.
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Given some a such that {a, a−1} ∩ A = ∅, let us write WA,a for WA∪{a}.
Given a word w ∈WA,a and a (possibly partial) permutation s we denote by
w[s] the (possibly partial) permutation w[s] : ω ⇀ ω obtained by substituting
each occurrence of xj where x ∈ A and j ∈ {−1, 1} with ρ(x)j and aj where
j ∈ {−1, 1} with sj .

Let us make precise the notion of path: Given a word w ∈ WA,a and
writing w = ajnn · · · aj11 , where ji ∈ {−1, 1} and ai ∈ A ∪ {a} for 1 ≤ i ≤ n,
and given a (possibly partial) permutation s, the path of a given integer m
under (w, s) is the sequence 〈mk : k ∈ α〉, where m0 = m; and for each k

such that k = nl + i with i < n,

mk = (ajii · · · a
j1
1 w

nl)[s](m),

and where α is either ω, or denotes k + 1 where k is maximal so that mk as
above is defined. In the latter case we say the path has terminating value or
terminating point mα−1. We shall also say that aji is the letter applied at
step k − 1, when k > 0.

Sometimes it suffices to think of the path merely as a set, rather than as
a sequence; so let

use(w, s,m) = {mi : i < α}.

Finally, we shall frequently refer to the following subsets of WA,a:

Notation 2.3. Let us write
• Wa for the set of words from WA,a in which a or a−1 occurs at least
once,
• Wncs for the set of words from Wa without any proper conjugate
subwords,
• Wnr for the set of words w ∈ Wa without any roots, i.e., so that
there is no w′ ∈ Wa \ {w} and m ∈ ω with w = (w′)m.

Remark 2.4. From now on, when speaking of the computable coding (as in
(C), p. 6) of a real zg by g for each g ∈ G′1, let us write just zw instead of zg

with g = w[σG]. We are now also able to give a precise definition of G′1 (used
in (B′) and (C) above): We let G′1 = {w[σG] : w ∈ Wncs ∩Wnr}. While this
simplifies the computable coding of zw by w[σG], we nevertheless obtain a
Π1

2 defininition of G1 \G0, because each element of G1 \G0 will be projectively
equidefinable with a permutation from G′1 (see Lemma 4.6).

Given a word w ∈ Wa, define l(w) ∈ ω \ {0}, 〈gwi : i ≤ l(w)〉 with each
gwi ∈ WA (i.e., a or a−1 does not occur) and 〈jwi : i < l(w)〉 with each
jwi ∈ Z \ {0} such that

(2.3) w = gwl(w)a
jw
l(w)−1gwl(w)−1 . . . a

jw0 gw0

where each gwi is of maximal possible length, but not equal to the empty
word when 0 < i < l(w). In other words, gwl(w) and gw0 are the left-most and
right-most segments of w in which neither a or a−1 occurs (either can be
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equal to ∅) and gw1 , . . . , gwl−1 enumerate the maximal subwords, if any, of w
in which neither a nor a−1 occurs.

We will also write gwL for gwl(w) and gwR for gw0 (the subscripts stand for
“left-most” and “right-most”, of course).

Similarly, we write

iwR =

{
1 if jw0 > 0,
−1 if jw0 < 0;

iwL =

{
1 if jwl(w)−1 > 0,

−1 if jwl(w)−1 < 0.

Example 2.5. Supposing w = b1b0a
−1a−1 with b0, b1 ∈ A, we have gwL =

b1b0, gwR = ∅, l(w) = 1, jw0 = −2, and iwR = iwL = −1.

2.2. The Conjugated Subwords Lemma. The next lemma will play a
role in density arguments in Lemma 2.20 and Lemma 2.19. Also, based on
this lemma, restricting to words in Wncs allows a simpler definition of the
forcing (see Remark 2.17) in comparison, e.g., to its ancestor in [28]. As
before, the reader may think of s below as a finite approximation to the
generic permutation σG we wish to add.

Lemma 2.6. Suppose w ∈ Wncs, s is a partial injective map from ω to
ω, and n /∈ dom(s). Then for all but a finite set Ew,n of n′ ∈ ω, letting
s′ = s ∪ {(n, n′)} it holds that s′ is injective and fix(w[s]) = fix(w[s′]).

Note that the lemma can be read as a sufficient condition for having
a conjugated subword: Given w, s, and n as in the lemma, if there are
infinitely many n′ such that fix(w[s]) 6= fix(w[s′]) for s′ = s∪ {(n, n′)}, then
w must have a proper conjugated subword.

Proof. Let W ∗ be the set of subwords of circular shifts of w and let

Ew,n =
⋃{

fix(w′[s]) : w′ ∈W ∗ \ {∅}
}
∪{

w′[s]i(n) : i ∈ {−1, 1}, w′ ∈W ∗
}
∪

ran(s).

(2.4)

Let n′ /∈ Ew,n be aritrary. As n′ /∈ ran(s), s′ is injective and as n′ is not from
the set in the second line of (2.4), n′ 6= n (noting ∅ ∈W ∗ and ∅[s] = ρ(∅)).

Assume towards a contradiction that m0 ∈ fix(w[s′]) \ fix(w[s]). We will
reach a contradiction by finding a proper conjugated subword (namely, w1

below) of w.
As the (w, s)-path of m0 differs from the (w, s′)-path, the latter must

contain an application of a to n or of a−1 to n′. Write this latter path
(omitting some steps) as

(2.5) m0
wl+1←− mk(l)+1

aj(l)←− mk(l)
wl←− . . . w1←− mk(0)+1

aj(0)

←− mk(0)
w0←− m0
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where for each i ≤ l, j(i) ∈ {−1, 1} and {k(i) : i ≤ l} is the increasing
enumeration of the set of k such that mk = n and a is applied or mk = n′

and a−1 is applied at step k. Thus by definition wi[s] = wi[s
′] for each

i ≤ l + 1.
The following hold by definition of the k(i) and by choice of n′:
(i) Unless i ∈ {0, l+ 1} (i.e., wi is the first or last word in (2.5)) it must

hold that wi 6= ∅:
Towards a contradiction, assume wi = ∅ and 0 < i < l + 1. Then

j(i − 1) 6= j(i) as n 6= n′. But if lh(w) - lh(aj(i−1) . . . w0) then
aj(i)aj(i−1) is a subword of w and j(i − 1) 6= j(i) is impossible as
adjacent a and a−1 are not allowed in the reduced word w. If on the
other hand lh(w) | lh(aj(i−1) . . . w0), then aj(i−1) is a left- and aj(i)

a right-initial segment of w, so as j(i − 1) 6= j(i), w has a proper
conjugate subword; contradiction.

(ii) For no i ≤ l is it the case that wi[s] sends n to n′ or vice versa. This
is by choice of n′.

(iii) For no i ≤ l is n′ a fixed point of wi[s] unless wi = ∅, again by choice
of n′.

From this it follows that unless i = 0 or i = l + 1, the values in the path
appearing adjacent to wi, i.e., mk(i−1)+1 and mk(i), are both n. There is at
least one such i, for the path cannot have the following form:

(2.6) m0
w1←− mk(0)+1

aj(0)

←− mk(0)
w0←− m0

for then w0w1—a subword of a cyclic shift of w— or its inverse sends n to n′

which is impossible by choice of n′. Thus w2 and j(1) are defined; by (ii) and
(iii) we have mk(1) = mk(1)+1 = n, j(0) = −1, j(1) = 1, and so n ∈ fix(w1).

Finally j(2) cannot be defined as otherwise by (i) w2 must be non-empty
and send n′ to one of {n, n′}, contradicting Items (ii) or (iii) above. So the
path in (2.5) has the following form:

(2.7) m0
w2←− n′ a

−1

←− n w1←− n a←− n′ w0←− m0

As w0w2 is a subword of a cyclic shift of w, w0w2 = ∅ since we made sure
n′ /∈ fix(w0w2[s]) otherwise. So w2 = w0

−1 and w1 is a proper conjugate
subword of w. Again, we reach a contradiction. �

2.3. Two Lemmas on free groups. In the next section, we discuss com-
putable coding, i.e., the mechanism by which each w[σG] should code its
assigned real, zw. For this (in particular for the proof of Lemma 2.13) we
need a combinatorial tool, Lemma 2.8 below, which is best phrased in the
language of free groups. For reasons of clarity, we start by proving a simple
special case.

Lemma 2.7. Let X be an arbitary set. Suppose we are given w0, w1 ∈ F(X),
both without proper conjugate subwords, and n0, n1 ∈ ω such that

(2.8) (w0)n0 = (w1)n1 .
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Then there exists v ∈ F(X) and m0,m1 ∈ ω such that w0 = vm0 and w1 =

vm1, i.e., w0 and w1 have a common root.

In fact, the assumption that w0, w1 ∈ Wncs can be dropped. The proof of
this latter fact is of no matter to us and we omit it.

Proof. We may assume n0, n1 > 1. For each i ∈ {0, 1}, write lh(wi) = c · li
where

c = gcd
(

lh(w0), lh(w1)
)

and define, for each k < li · ni,

yik : {0, . . . , c− 1} → X ∪X−1,

yik(j) = (k · c+ j)th letter of (wi)
ni (from the right)

for each j < c. In other words,

(w0)n0 = y0
n0·l0−1 . . . y

0
0 =

(
y0
l0−1 . . . y

0
0

)n0 =

(w1)n1 = y1
n1·l1−1 . . . y

1
0 =

(
y1
l1−1 . . . y

1
0

)n1

and so it holds for every i ∈ {0, 1} and every k < li that

y1−i
k = y1−i

k+l1
= yik+l1 = yi(k+l1) mod li

.

Since l0 and l1 are relatively prime, k 7→ (k+ l1−i) mod li defines a bijection
of li whose action (on li) has a single orbit. Note that in this calculation, no
k ≥ l0 + l1 occurs. Letting v = y0

0, it follows that for every i ∈ {0, 1} and
every k < li, yik = v, proving the lemma. �

We can see from the proof that the conclusion of Lemma 2.7 holds also
under weaker assumptions. It is enough, e.g., that the first lh(w0) + lh(w1)

letters of the two words in Equation (2.8) agree. In fact, we are interested in
a situation equivalent to the one just described. Let us therefore prove the
following stronger form of the previous, taylored precisely to the situation
we shall find ourselves in (see Claim 2.16 below):

Lemma 2.8. Let X be an arbitary set and suppose we are given w′0, w
′
1 ∈

F(X) and n0, n1 ∈ ω. For each i ∈ {0, 1}, write l′i = lh
(
(w′i)

ni
)
and let

(w′i)
ni = wi,l′i−1 . . . wi,0

in reduced form, with wi,j ∈ X ∪ X−1 for each j < l′i. Suppose further we
have two intervalls [ai, bi] ⊆ {0, . . . , li − 1} (for i ∈ {0, 1}) of equal length
such that letting f : [a0, b0]→ [a1, b1] be the unique order preserving bijection,
it holds that

(∀j ∈ [a0, b0]) w0,j = w1,f(j).

Then provided that

(2.9) b0 − a0 ≥ lh(w′0) + lh(w′1)

there exists v0, v1 ∈ F(X) and m0,m1 ∈ ω such that w′0 = (v0)m0 and
w′1 = (v1)m1 and v1 is a cyclic shift of v0 (with offset a1 − a0).
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The statement of the lemma is much more involved than its proof.

Proof. Let us first simplify by arranging that a0 = a1 = 0; this is possible
by replacing w′i, for each i ∈ {0, 1}, by its cyclic shift wi with offset ai. By
(2.9), f is just the identity on a superset of {0, . . . , lh(w0) + lh(w1)− 1} and
we find ourselve almost in the situation of the previous lemma, except that
we only have equality on the first lh(w0) + lh(w1) letters. By the proof of
the previous lemma, we conclude that w0 and w1 have a common root v.

Now observe that for each i ∈ {0, 1}, from the root v of the cyclic shift wi
of w′i, we obtain a root vi of w′i by taking a cyclic shift: Let vi be the cyclic
shift of v with offset −ai. �

2.4. Computable Coding. As the final prerequisite to defining the forcing
Q we need to fix the algorithm used in the computable coding of zw by the
permutation w[σG] (as discussed at the beginning of this section).

Definition 2.9 (Computable coding, Part 1).
(1) Fix a computable sequence 〈Pn : n ∈ ω〉 of infinite sets Pn ⊆ ω; for

concreteness, let us say Pn consists of the natural numbers which are
divisible 2n but not by 2n+1.

(2) Let us say that our cofinitary representation4 ρ is sufficiently generic
to mean that for any finite sequence n̄ ∈ ωl+1 and pairwise distinct
g1, . . . , gl ∈WA, the set of m such that

m ∈ Pn̄(0),

ρ(g1)(m) ∈ Pn̄(1),

...

ρ(gl)(m) ∈ Pn̄(l),

is infinite.

Assumption 2.10. Let us assume throughout this section that ρ : A→ S∞
is a sufficiently generic cofinitary representation.

It will simplify coding substantially to consider only words without proper
conjugated subwords or roots. This will the first step of the restriction de-
scribed in Remark 2.4, and as has been explained there, it will not endanger
our goal of adjoining a Π1

2 MCG. Compare also Remark 2.12 below.

Definition 2.11 (Computable coding, Part 2). Let a sequence n̄ ∈ ω≤ω be
given. Suppose σ is a partial function from ω to ω, and w ∈ Wncs ∩Wnr.

(1) We say (w, σ) precodes n̄ with parameter m if and only if

(2.10) (∀k < dom(n̄)) w3(k+1)[σ](m) ∈ Pn̄(k).

The factor 3 in the exponent helps to ensure we have sufficient op-
portunity to allow paths for different words to diverge, in the density

4For the definition of cofinitary representation, see p. 7.
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argument showing that it is forced that w[σĠ] codes zw (see Lem-
mas 2.13 and 2.19).

(2) We say that m′ is a coding point in the path of m under (w, σ) if
m′ = w3(k)[σ](m) for some k ∈ ω (even though at k = 0, nothing is
coded).

(3) Suppose now that dom(n̄) = k. We say that (w, σ) exactly precodes
n̄ with parameter m if k < ω, (w, σ) precodes n̄ and in addition

ai
w
RgwRw

3k[σ](m) is undefined,

recalling that iwR is the exponent of the right-most occurrence of a or
a−1 in w. In other words, (w, σ) exactly precodes n̄ if the path of
m under (w, σ) is of minimal possible length under the requirement
that it precodes n̄. Note that the precise form of the above definition
depends on our assumption that w ∈ Wncs. Like the factor 3 above,
this notion will help separate paths for different words in the density
argument showing that it is forced that w[σĠ] codes zw.

(4) We say that m′ is the critical point in the path of m under (w, σ) if
for some k ∈ ω,

m′ = (gwLa
iwL )−1w3(k+1)[σ](m)

recalling that iwL is the exponent of the left-most occurrence of a or
a−1 in w. We define this terminology because, when extending σ so
that the path of m increases in length with the purpose of achieving
exact precoding of a given n̄, it is precisely at critical points that
exact precoding imposes a non-trivial requirement for this extension.

(5) Fix a bijection S : ω → 2<ω. Suppose z ⊆ ω and l ∈ ω + 1. We say
(w, s) codes (resp., exactly codes) z up to l with parameter m if and
only if there is a sequence n̄ such that (w, s) precodes (resp., exactly
precodes) n̄ with parameter m and

χz � l =
⋃{

S
(
n̄(i)

)
: i < dom(n̄)

}
,

where χz denotes the characteristic function of z. We just say (w, s)

codes z (with parameter m) if (w, s) codes z up to ω (with m; if
we don’t mention m, the phrase is understood to mean “with some
parameter m”).

Remark 2.12. We restrict attention to words without proper conjugate sub-
words (see Notation 2.3) to simplify the form of (3) and (4) in the above
definition, as well as the argument of Lemma 2.13 below. We moreover re-
strict to words without roots (again, see Notation 2.3). This avoids conflicting
coding requirements arising from the demands that w[σG] code zw and at the
same time, wm[σG] code zwm for some m > 1; such conflicts are avoided by
never demanding the latter. This is crucial in the proof Lemma 2.13 below.
As has been mentioned, neither restriction thwarts our goal of constructing
a Π1

2 MCG (see Lemma 4.6 and Remark 2.4).
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Next, we prove the crucial lemma for the computable coding of zw by
w[σG]. This lemma is connected to the fact that given any finite (or even
countable) partial assignment w 7→ zw from Wnr ∩ Wncs to P(ω), the
set of permutations σ ∈ S∞ such that w[σ] codes zw whenever zw is de-
fined, is comeager. The lemma will be the basis of the density argument in
Lemma 2.19 below.

Lemma 2.13. Suppose we have a finite set of words W ⊆ Wnr ∩Wncs, and
assignments w 7→ zw ∈ P(ω) and w 7→ mw ∈ ω for w ∈W . Suppose further
we have a finite, partial, and injective map s : ω ⇀ ω so that for each w ∈W ,
(w, s) exactly codes zw up to some finite length with parameter mw.

Then given any l′ ∈ ω, we may find a finite, partial, and injective map
s′ : ω ⇀ ω such that s ⊆ s′ and for each w ∈ W , (w, s′) exactly codes zw up
to some (finite) length l with l ≥ l′.

Proof. Let s, W , w 7→ zw ∈ P(ω) and w 7→ mw ∈ ω for w ∈ W , and l′ ∈ ω
be given as in the lemma. For w ∈W , call the path of mw under (w, s) the
coding path for (w, s).

Write mw
tm for the terminal value in the coding path for (w, s) and let

M = {mw
tm : w ∈W}. Fix some m∗0 ∈M . It suffices to find s′ such that for

each w ∈ W , (w, s′) exactly codes zw � l′ if mw
tm = m∗0, and the coding path

of (w, s′) equals the coding path of (w, s) (and thus (w, s) still exactly codes
an initial segment of zl) if mw

tm 6= m∗0. The argument may then be repeated
for all elements of M .

For each w ∈W with mw
tm = m∗0, define

w∗(w) = (ai
w
LgwL )−1w3(gwR)−1,

that is, w∗(w) is the word whose intepretation under s′, once defined, will
take m∗0 to the next critical point in the coding path of (w, s′).

Consider the set

T =
{
w ∈WA,a : (∃w′ ∈W ) mw

tm = m∗0 ∧ w∗(w′) w w},

which forms a tree (with root ∅) under w (defined on p. 7). We will define
s0, s1, . . . , sk by finite induction, with s0 = s, and so that si ⊆ si+1 for each
i < k; s′ will be sk. In the course of our finite induction, we will deal with
all words from T , shorter words first. So let 〈wi : i < k〉 enumerate T so
that i < j ⇒ lh(wi) ≤ lh(wj).

We shall take care to ensure the following properties in our induction:

Properties of the Induction 2.14.
(P1) If w′, w′′ ∈ T are distinct and m∗0 ∈ dom(w′[si]) ∩ dom(w′′[si]), then

w′[si](m
∗
0) 6= w′′[si](m

∗
0);

(P2) For any w ∈W such that mw
tm 6= m∗0 and any w′ ∈ T \ {∅} such that

m∗0 ∈ dom(w′[si])

w′[si](m
∗
0) /∈ use(w, si,m

w).
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(P3) For any w ∈ W such that mw
tm 6= m∗0, the coding path for (w, si)

remains identical to the coding path for (w, s0).

For i = 0, (P1)–(P3) already hold because then, s0 = s and the only
w ∈ T such that m∗0 ∈ dom(w[si]) is the empty words, w = ∅.

For the inductive step, suppose we already have constructed si and that
(P1)–(P3) hold. If m∗0 ∈ dom(wi[si]), we can let si+1 = si, so assume
otherwise. We can assume by induction that wi ∈ {aw, a−1w} with m∗0 ∈
dom(w[si]). We shall assume for simplicity that

wi = aw,

and leave the case wi = a−1w to the reader. Let

m = w[si]
(
m∗0).

We will define si+1 = si{(m,m′)}, where m′ is an arbitrary element of ω
satisfying the following requirements.

(R1) For each g ∈ F(A) (including g = ∅) such that gaw ∈ T , and for each
w′ ∈W ,

ρ(g)(m′) /∈ use(mw′ , w′, si) ∪ dom(s) ∪ ran(s).

(R2) For any g0, g1 ∈ F(A) such that g0aw ∈ T , g1aw ∈ T , and g0 6= g1 it
holds that g0(m′) 6= g1(m′).

(R3) For any w′ ∈ W such that m is a critical point in the coding path
for (w′, si) and aiwL = a it holds that

ρ
(
gw
′

L

)
(m′) ∈ PS(χ�l′)

where χ is the characteristic function of zw (see Definition 2.9(1),
p. 12 for Pn and Definition 2.11(5), p. 13 for S).

Claim 2.15. There are infinitely many m′ ∈ ω sarisfying (R1)–(R3) above.

Let us postpone the proof of the claim and first show how the lemma follows,
asuming the claim. Then since we may findm′ satisfying (R1)–(R3), we have
succeded in defining si+1.

Note that the coding path of (wi, si+1) is longer by at most one application
of a or a−1 (but not both) than the coding path of (wi, si). Moreover the
coding path of any (wj , si+1) is either the same as that of (wi, si+1), this
being the case when wj w wi; or otherwise it is identical to the coding
path of (wj , si), i.e., extending si to si+1 leaves this path unchanged. The
properties (P1)–(P3) listed in 2.14 are preserved due to (R1) and (R2).

This finishes the inductive step in our construction of s0, . . . , sk, and thus,
of s′ = sk. By (R3) and by construction, (w, s′) exactly codes zw up to l′ for
each w ∈ W with mw

tm = m∗0. By (P3) the coding path of (w, s′) equals the
coding path of (w, s) for each w ∈W with mw

tm 6= m∗0.

To finish the proof of Lemma 2.13, it remains to prove Claim 2.15.
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Proof of Claim 2.15. It is clear that (R1) and (R2) only exclude finitely
many m′ (in the case of (R2) we use that ρ is a cofinitary representation).
It remains to show that there are infinitely many m′ satisfying (R3). The
problem is to show that when m is critical in the path for several words from
W , none the requirements are in conflict.

To see this we need another claim:

Claim 2.16. If w′, w′′ ∈ W are distinct and m is a critical point in the
coding paths both for (w′, si) and (w′′, si), then gw

′
L 6= gw

′′
L .

Proof of Claim 2.16. Fix w′ and w′′ as in the claim. Since by assump-
tion both (w′, s) and (w′′, s) also exactly precode some finite sequence, the
last coding point in the coding path of (w′, s) (resp., of (w′′, s)) must be
(gw

′
R )−1(mw′

tm) (resp., (gw
′′

R )−1(mw′′
tm )). By definition of exact coding and of

critical points, for some k′, k′′ ∈ ω \ {0} we have

(gw
′

L a
iw
′

L )−1(w′)3k′(gw
′

R )−1[si](m
w′
tm) =m,

(gw
′′

L ai
w′′
L )−1(w′′)3k′′(gw

′′
R )−1[si](m

w′′
tm ) =m.

By (P1)–(P3), this is only possible if mw′
tm = mw′

tm = m∗0 and both words on
the left of the above equations are equal to wi and therefore

(2.11) (gw
′

L a
iw
′

L )−1(w′)3k′(gw
′

R )−1 = (gw
′′

L ai
w′′
L )−1(w′′)3k′′(gw

′′
R )−1.

By (2.11), (w′)3k′ and (w′′)3k′′ agree as in the hypothesis of Lemma 2.8
on an interval [a0, b0] of length at least 2 · max

(
lh(w′), lh(w′′)

)
. It follows

by Lemma 2.8 that there are v′, v′′ and k̃′, k̃′′ such that w′ = (v′)k̃
′ and

w′′ = (v′′)k̃
′′ and v′′ is a cyclic shift of v′ with an offset of lh(gw

′
R )− lh(gw

′′
R ).

It also follows that (w′)k
′ is a cyclic shift of (w′′)k

′′ by the same offset, i.e.,
iw
′

L = iw
′′

L and
gw
′

R g
w′
L = gw

′′
R gw

′′
L .

If lh(w′) 6= lh(w′′), it follows from lh(v′) = gcd
(

lh(w′), lh(w′′)
)
that then v′

is a proper subword of w′ or v′′ is a proper subword of w′′, in contradiction to
our assumption that w′, w′′ /∈ Wnr. Thus, lh(w′) = lh(w′′) and w′ is a cyclic
shift of w′′ with an offset of lh(gw

′
R ) − lh(gw

′′
R ). As w′ 6= w′′ by assumption,

we conclude gw′L 6= gw
′′

L . Claim 2.16. �

Using this second claim, we are able to finish the proof of Claim 2.15:
Writing Wm for the set of w ∈ W such that mw

tm = m∗0 and m is a critical
point in the coding path for (w′, si), by Claim 2.16 the map

Wm →WA,

w′ 7→ gw
′

L

is injective. Since by Assumption 2.10, ρ is sufficiently generic, there are
infinitely many m′ satisfying

ρ
(
gw
′

L (m′)
)
∈ PS(zw′∩l′).
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for each w′ ∈ Wm. Hence there are infinitely many m′ satisfying (R3).
Claim 2.15. �

As we have argued above just after the statement of Claim 2.15, this
proves the lemma. Lemma 2.13. �

2.5. The forcing. It is high time we define the forcing Q, as promised at
the beginning of this section. To this end let us suppose that we are given

• A sufficiently generic cofinitary representation ρ : A → S∞ (see the
beginning of Section 2.1 and Definition 2.9(2)) and a “new” index a,
i.e., {a, a−1} ∩A = ∅,
• F = {fm,ξ : m ∈ ω, ξ ∈ ω1}, an almost disjoint family of per-
mutations (i.e., the graphs are pairwise almost disjoint subsets of
ω× ω) so that fm,ξ /∈ 〈im(ρ)〉 and 〈im(ρ), fm,ξ〉 is cofinitary for each
m ∈ ω, ξ ∈ ω1.
• For each w ∈ Wncs, a family Yw = {Y w

m : m ∈ ω} of subsets of ω1,
• For each w ∈ Wncs, a subset zw of ω.

Write Y for 〈Yw : w ∈ Wncs〉, and z̄ for 〈zw : w ∈ Wncs〉. (We will not
give concrete values to ρ, F , Y, and z̄ until Section 3; see in particular the
roadmap at the beginning of said section, and Section 3.3).

We will define a forcing, denoted QF ,Y,z̄ρ,{a} , which adjoins a generic permu-
tation σG such that the mapping from A ∪ {a} to S∞ which extends ρ and
sends a to σG is a cofinitary representation; moreover,

• for each w ∈ Wncs ∩Wnr the permutation w[σG] codes (in the sense
of Definition 2.11) the real zw,
• for each w ∈ Wncs and m ∈ ψ[σG], w[σG] almost disjointly via the
family Fm = {fm,ξ : ξ ∈ ω1} codes Y w

m .

A condition in Q = QF ,Y,z̄ρ,{a} is a tuple p = 〈sp, F p, m̄p, sp,∗〉 such that:

(A) sp is an injective finite partial function from ω to ω;
(B) F p is a finite subset of Wncs;
(C) m̄p = 〈mp

w : w ∈ dom(m̄p)〉 where dom(m̄p) is a finite subset of
Wncs ∩Wnr and mp

w ∈ ω for each w ∈ dom(m̄p);
(D) sp,∗ = 〈sp,∗w : w ∈ dom(sp,∗)〉 where dom(sp,∗) is a finite subset of
Wncs ∩Wnr and for each w

sp,∗w ∈ [{fm,ξ : m ∈ ψ[w[s]], ξ ∈ Y w
m }]<ω;

(E) For each w ∈ dom(m̄p) there exists a (unique) l which we denote by
lpw such that (w, s) exactly codes zw up to l with parameter mp

w.
The extension relation for Q is defined as follows: For q = 〈sq, F q, m̄q, sq,∗〉
and p = 〈sp, F p, m̄p, sp,∗〉, we let q ≤ p if and only if all of the following hold:

(a) sq end-extends sp, F q ⊇ F p,
(b) For every w ∈ F p, fix(w[sq]) = fix(w′[sp]),
(c) sq,∗ ⊇ sp,∗, and for all w ∈ dom(sp,∗) and f ∈ sp,∗w we have(

w[sq]\w[sp]
)
∩ f = ∅,
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(d) m̄q ⊇ m̄p.

Remark 2.17. Note that the definition of ≤ is simpler than, e.g., in [28]. This
is made possible by Lemma 2.6.

Proposition 2.18. Let G be a Q-generic filter and let

σG =
⋃
{s : ∃F, m̄, s∗ s.t. 〈s, F, m̄, s∗〉 ∈ G}.

The permutation σG has the following properties:

(I) The group 〈im(ρ) ∪ {σG}〉 is cofinitary.
(II) If f is a ground model permutation, f /∈ 〈im(ρ)〉, 〈{f} ∪ im(ρ)〉 is

cofinitary and f is not covered by finitely many permutations in F ,
then there are infinitely many n such that f(n) = σG(n) and so
〈im(ρ) ∪ {σG} ∪ {f}〉 is not cofinitary;

(III) For each w ∈ Wncs ∩Wnr, w[σG] codes zw;
(IV) For each w ∈ Wncs, for all m ∈ ψ[w[σG]], and for all ξ ∈ ω1

|w[σG] ∩ fm,ξ| < ω iff ξ ∈ Y w
m ,

that is, w[σG] codes Y w
m using the almost disjoint family Fm = {fm,ξ :

ξ ∈ ω1}.
(V) The cofinitary representation ρG : A ∪ {a} → S∞ given by ρG =

ρ ∪ {(a, σG)} is sufficiently generic.

Moreover the forcing Q has the Knaster property.

We shall now show these properties to hold, in a series of lemmas. The
first lemma serves to show Property (III).

Lemma 2.19 (Generic Coding). For any w ∈ Wa and any l ∈ N, let Dcode
w,l

denote the set of q ∈ Q such that w ∈ dom(m̄q) and for some l′ ≥ l, q exactly
codes zw up to l′ with parameter m̄q

w. Then Dcode
w,l is dense in Q.

Proof. Suppose p ∈ Q and w ∈ Wncs ∩Wnr are given. If w /∈ dom(m̄p) it is
clear that we can choose m large enough so that letting

q = 〈sp, F p, m̄p ∪ {(w,m)}, sp,∗〉

we obtain a condition q ∈ Q with lqw = 0 (namely, chose m large enough so
that (w, sp) exactly precodes the trivial sequence n̄ = ∅ with parameter m).

So suppose w ∈ dom(m̄p). We find s′ ⊇ sp such that letting

q = 〈s′, F p, m̄p, sp,∗〉

we obtain a condition q ∈ Q with lqw = l′. To this end, construct s′ as in
the proof of Lemma 2.13 with W = dom(m̄p) and the assignment given by
m̄p, making the following adaptation: Each time we extend si to si+1 =

si ∪ {(m,m′)}, choose m′ satisfying (R1)–(R3) and in addition, require

m′ /∈
⋃
w∈F p

Ew,m,
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where Ew,m is defined as in (2.4). (Such m′ exists since the set of m′ sat-
isfying (R1)–(R3) is infinite and each Ew,m is finite.) Then by the proof of
Lemma 2.13, w[s′] will exaclty code zw up to l′ for each w ∈ dom(m̄p); and
by Lemma 2.6, fix(w[s′]) = fix(w[s]) for each w ∈ F p and so q ≤ p. �

The next lemma shows that σG is a permutation of ω.

Lemma 2.20. For each n ∈ ω the sets Dn = {q ∈ Q : n ∈ dom(sq)} and
Dn = {q ∈ Q : n ∈ ran(sq)} are dense in Q.

Proof. To see Dn is dense, let p ∈ Q be given and find q ∈ Dn, q ≤ p.
If n occurs as the terminal value in a coding path, the previous lemma

applies. Otherwise assume that n /∈ dom(sp). Find

n′ /∈
⋃
w∈F p

Ew,m,

where where Ew,m is defined as in (2.4). Let s′ = s ∪ {(n, n′)} and q =

〈s′, F p, m̄p, sp,∗〉. Then q ∈ Q and q ≤ p by Lemma 2.6. The case Dn is
symmetrical and is left to the reader. �

Property (I) above is established by the following lemma.

Lemma 2.21. For each w ∈W ∗F(A),a, the set

Dw = {q ∈ Q : q 

∣∣fix(w[σG])

∣∣ <∞}
is dense in Q.

Proof. First note that q 
 |fix(w[σG])| < ∞ if w ∈ F q: This is because by
the definition of the ordering on Q, q 
 fix(w[σG]) = fix(w[sq]).

Therefore clearly Dw is dense, since we may always add the shortest con-
jugated subword w of any word w′ ∈ Wa to F q to form a new condition, and
of course fix(w′[σG]) = fix(w[σG]). �

The next lemma shows Property (II) above. Moreover, Property (IV) is
a direct corollary to this lemma and the almost disjoint requirement in the
extension relation of our forcing.

Lemma 2.22. Suppose we are given m ∈ ω, w ∈ Wncs and τ ∈ S∞.
(1) If τ /∈ 〈im(ρ)〉, 〈im(ρ), τ〉 is cofinitary, and τ is not covered by finitely

many elements of F , the set Dhit
τ,m = {q ∈ Q : (∃n ≥ m) w[sq](n) =

τ(n)} is dense.
(2) If τ ∈ F , τ = fwn,ξ, and ξ /∈ Y w

m then too is the set Dhit
τ,m dense.

(3) If τ ∈ F , τ = fwn,ξ, and ξ ∈ Y w
m the set Dhit

τ,m∪{p ∈ Q : n ∈ ψ[w[sp]]}
is dense in Q.

Proof. Let τ and m as in the lemma be given. Note that in all three cases
τ /∈ 〈im(ρ)〉 and 〈im(ρ), τ〉 is cofinitary and we can assume τ /∈ s∗,p (for in
the third case, otherwise n ∈ ψ[w[sp]]) and therefore that

(2.12) |τ \
⋃
sp,∗| = ω.
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Let W ∗ be the set of subwords of circular shifts of words in F p, and find
n ∈ ω \m such that

n /∈ τ−1
[⋃{

fix(w[s]) : w ∈W ∗ \ {∅}
}]
,(2.13)

n /∈
⋃{

fix(τ−1wi[s]) : i ∈ {−1, 1}, w ∈W ∗
}
,(2.14)

n /∈ U ∪ τ−1[U ], where(2.15)

U =
⋃{

use(w, s, m̄p
w) : w ∈ dom(m̄p)

}]
, and

n /∈
⋃{

fix(τ−1f) : f ∈ sp,∗
}

(2.16)

Requirements (2.13)–(2.15) exclude only finitely many n (noting τ /∈ 〈im(ρ)〉
and 〈im(ρ), τ〉 is cofinitary). Since (2.16) holds for infinitely many n by
(2.12), we can pick n satisfying (2.16)–(2.15). Now (2.13) and (2.14) implies

(2.17) (∀w ∈ F p) τ(n) /∈ Ew,n
and by (2.15) and (2.16),

(∀w ∈ dom(m̄p)) {n, τ(n)} ∩ use(w, s, m̄p
w) = ∅.(2.18)

(∀f ∈ sp,∗) τ(n) 6= f(n),(2.19)

By (2.19), (2.18), and the proof of Lemma 2.13, letting s = sp ∪ {(n, τ(n))}
and q = 〈s, F p, m̄p, sp,∗〉 we obtain q ∈ Q. By (2.17) and Lemma 2.6, q ≤ p.
Clearly, q ∈ Dhit

τ,m. �

Next, we show Property (V).

Lemma 2.23. It is forced by Q that the cofinitary representation given by
ρ ∪ {(a, σG)} is sufficiently generic.

Proof. The proof is similar to that of Lemma 2.19. We leave the details to
the reader. �

Finally we show the following.

Lemma 2.24. The forcing Q is Knaster.

Proof. It is straightforward to check that if p, q ∈ Q are such that sp = sq

and m̄p agrees with m̄q on dom(m̄p) ∩ dom(m̄q) then

r = 〈sp, F p ∪ F q, m̄p ∪ m̄q, sp,∗ ∪ sq,∗〉

is a condition in Q and r ≤ p, q. Therefore Q is Knaster by a standard
∆-systems argument. �

3. The forcing iteration

Fix M,N arbitrary such that 2 ≤ M < N < ω. Our goal is to force that
ag = ωM < c = ωN with a Π1

2 definable witness G to ag.
Our strategy will be to adjoin (using the forcing from the previous section)

a definable set of permutations G′ ⊆ S∞ such that the following hold:
• G = 〈G′〉 is a maximal cofinitary group.
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• For a fixed sequence 〈Sδ : δ < ωM 〉 of stationary costationary sets
which is definable in L, G′ is definable as follows: For each g ∈ S∞,

(3.1) g ∈ G′ ⇐⇒
(
∃γ ∈ lim(ωM )

)
ψ[g] = {m ∈ ω : L[g] � Sγ+m ∈ NS}.

In fact, the definability of G′ will be local to a large class of countable models,
namely, the following class.

Definition 3.1. A suitable model is a transitive model M such that M �
ZF−, (ωM )M exists and (ωM )M = (ωM )L∩M (by ZF− we mean an appro-
priate axiomatization of set theory without the Power Set Axiom).

We will construct G′ so that it is definable as follows: For each g ∈ S∞,
g ∈ G′ ⇐⇒ for all countable suitable modelsM containing g as an element,
M � “

(
∃γ ∈ lim(ωM )

)
ψ[g] = {m ∈ ω : Sγ+m ∈ NS}”.

The MCG G generated by G′ will be isomorphic to F(A) for a set A ⊆ ωM .
The set G′ will consist precisely of those elements of G whose presentation
in WA has no conjugated proper subwords and no roots (see Notation 2.3).
While we can achieve the definability property described above only for G′,
we shall see that this entails that the entire group G is Π1

2-definable (see
Lemma 4.6 and compare Remarks 2.4 and 2.12).

To achieve all of the above we proceed in several steps. Since the proof is
long and involved, we present a short roadmap which may also be used as a
reference for notation.

(1) We start with the constructible universe L as the ground model.
First, we do a preparatory forcing not adding subsets of ω. To this
end, choose a sequence 〈Sδ : δ < ωM 〉 of stationary costationary
subsets of ωM−1. We force to add a sequence 〈Cδ : δ < ωM 〉 such
that Cδ is a club in ωM−1 which is disjoint from Sδ, “killing” the
stationarity of Sδ. Moreover, we force to add a sequence

〈Y 1
δ : δ < ωM 〉

such that Y 1
δ ⊆ ω1 and Y 1

δ “locally codes” Cδ. By “locally coding” we
mean the property (∗∗)1

γ,m below, where δ = γ + m for m ∈ N and
γ ∈ lim(ωM ). To be able to associate each Cγ+m to the same γ for
each m ∈ N in a robust, local manner, we also add a “code” W 1

γ ⊆ ω1

for each γ ∈ lim(ωM ).
The forcing that adds 〈Cδ : δ < ωM 〉, 〈W 1

γ : γ ∈ lim(ωM )〉, as well
as 〈Y 1

δ : δ < ωM 〉 is denoted by P∗0, and the (P∗0, L)-generic extension
is denoted by V1 or by L[G∗0].

(2) We force over V1 to add a sequence 〈cWγ : γ ∈ lim(ωM )〉 of reals such
that cWγ codes W 1

γ (and thus, γ). We denote the forcing that adds
this sequence by PW and the (V1,PW )-generic extension by V2.

(3) We add ωN -many Cohen reals using Add(ω, ωN ). Write V3 for the
(V2,Add(ω, ωN ))-generic extension.
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(4) We now force to add the definable MCG G. This is done in an
iteration PG := 〈Pα, Q̇α : α ∈ ωM 〉 of length ωM over V3, letting
Qα = QFα ∗ Qcd

F∗(Fα) ∗ QGα ∗ D be defined in V3[Gα], the (V3,Pα)-
generic extension, as follows:
(a) The first forcing QFα adds a family Fα of size ω1 consisting of

cofinitary permutations of ω. We do this in such a manner
that in the final model L[G] the graphs of any two elements of⋃
α<ωM

Fα will be almost disjoint.
(b) The next forcing Qcd

F∗(Fα) adds a real cFα which almost disjointly
codes Fα via a definable almost disjoint family F∗ ∈ L which
remains fixed throughout the iteration.

(c) The forcing QGα from the previous section adds a single generator
σα of our MCG G, using all the machinery added in the previous
steps to ensure definability of the resulting group.

(d) Finally, D is Hechler’s forcing to add a dominating real.
The final (V3,PG)-generic extension is denoted by L[G].

Step (1) is described in Section 3.1 below. Steps (2) and (3) are described
in Section 3.2. Finally Step (4a)–(4d) are described in Section 3.3.

3.1. Preparing the Universe. Work in the constructible universe L. The
preparatory forcing P∗0 from Item (1) is an iteration of length M − 1,

(3.2) P∗0 = PM−1
0 ∗ . . . ∗ P1

0.

We must describe Pn0 for n ∈ {M − 1, . . . , 1}.

Fix, for the remainder of this article, a sequence

S̄ = 〈Sδ : δ < ωM 〉

of stationary costationary subsets of ωM−1 consisting of ordinals of cofinality
ωM−2 and such that for δ 6= δ′, Sδ ∩ Sδ′ is non-stationary. We also ask that
S̄ be definable (without parameter) in LωM .

Let Pcl
δ denote the forcing which adjoins a closed unbounded subset Cδ of

ωM−1 such that Cδ ∩ Sδ = ∅ using bounded approximations. Note that Pcl
δ

preserves stationarity of Sη for each η ∈ ωM \ {δ}. We define

PM−1
0 =

∏
δ<ωM

Pcl
δ

where the product uses supports of size at most ωM−2. Note that PM−1
0 adds

no sequences of length at most ωM−2 and preserves cardinals and cofinalities.

Work in L again momentarily. We shall need to code each Cδ, as well as
each γ ∈ lim(ωM ) by a subset of ω1. To this end, fix for each n such that
M − 1 < n ≤ 1 a sequence S̄n = 〈Snξ : ξ < ωn+1〉 of subsets of ωn with
pairwise intersections of size at most ωn−1. We ask that S̄n is Σ1-definable
in LωM (without parameters) and that, moreover:
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(†): For each ξ < ωn+1, Sn+1
ξ ∈ Lµ where µ is least such that Lµ � |ξ| = ωn.

For the coding of each γ ∈ lim(ωM ), we make the following definition.
Definition 3.2.

• Let G : On2 → On be Gödel’s Σ1 definable pairing function. Let us
call a set W ⊆ ωM−1 an M − 1-code of γ < ωM if

〈γ,<〉 ∼= 〈ωM−1, G
−1[W ]〉.

• For each γ ∈ lim(ωM ), let WM−1
γ denote its ≤L-least M − 1-code.

• Let γ ∈ lim(ωM ) and W ⊆ ωn for M − 1 > n ≥ 1. By induction,
define W to be an n-code of γ if {ξ < ωn+1 : |W ∩ Snξ | < ωn} is an
n+ 1-code of γ.

Until further notice, let us fix γ ∈ lim(ωM ) andm ∈ N and write δ = γ+m.
Work in L[Cδ]. We first find YM−1

δ ⊆ ωM−1 such that YM−1
δ localizes the

non-stationarity of Sγ+m to suitable models of height at least ωM−2, in the
following sense:

(∗)γ,m: SupposeM is a suitable model with ωM−2 ⊆ M and such that for
β = (ωM−1)M we have {YM−1

δ ∩ β,WM−1
δ ∩ β} ⊆ M. Then it must hold

that M �“WM−1
γ ∩ β is an M − 1-code of some γ̄ ∈ lim(ωM ) such that

Sγ̄+m ∈ NS”.

To see such YM−1
δ can be found, momentarily write

D = {β ∈ ωM−1 : (∃M∗)M∗ ≺ LωM [Cδ], {Cδ, γ} ∈ M∗, β = ωM−1 ∩M∗}.

For Y ⊆ On, let Even(Y ) = {ξ : 2ξ ∈ Y } and Odd(Y ) = {ξ : 2ξ + 1 ∈ Y }.
Choose YM−1

δ to be any subset of ωM−1 such that Even(YM−1
δ ) = Cδ and

for each ξ ∈ D, the preimage under G of Odd(YM−1
δ ) ∩ [ξ, ξ + ωM−2) is a

well-founded binary relation of rank at least min(D \ (ξ + 1)).
To see that YM−1

δ indeed satisfies (∗)γ,m, letM as in (∗)γ,m be given. By
choice of YM−1

δ , β = (ωM−1)M ∈ D. Thus there is a transitive model M∗

and an elementary embedding j :M∗ → LωM [Cδ] with critical point β and
such that γ ∈ ran(j). Since also Cδ and WM−1

γ ∈ ran(j), by elementarity
M∗ �“WM−1

γ ∩ β is an M − 1-code of a limit ordinal γ̄ such that Cδ ∩ β ∩
Sγ̄+m = ∅”. But the rank of G−1[WM−1 ∩ β] is absolute between transitive
models, soM must satisfy the same sentence.

Suppose now thatM−2 ≥ 1 and let n ∈ {M−2, . . . , 1}. We will define Pn0 .
By induction, suppose we are in an (L,PM−1

0 ∗ . . . ∗ Pn+1
0 )-generic extension

and we have for each γ ∈ lim(ωM ) an n+1-codeWn+1
γ and for each m ∈ N a

set Y n+1
γ+m which localizes the non-stationarity of Sγ+m in the following sense:

(∗∗)n+1
γ,m : SupposeM is a suitable model with ωn ⊆M and for β = (ωn+1)M,

we have {Wn+1
γ ∩ β, Y n+1

δ ∩ β} ⊆ M. Then M � ϕ(n + 1,Wn+1
γ ∩ β,m),

where ϕ(n+1,W,m) is the formula: “W is a n+1-code of some γ̄ ∈ lim(ωM )

such that Sγ̄+m is not stationary”.
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For the induction start, note that for n+1 = M−1 this is indeed satisfied
since (∗∗)M−1

γ,m is just (∗)γ,m.
Write Pcd

n (X) to denote Solovay’s almost disjoint coding to add a subset
of ωn which codes X via S̄n. Forcing with Pcd

n (Wn+1
γ ) adds generic n-code

for γ which we denote byWn
γ . For each m ∈ N, forcing with Pcd

n (Y n+1
γ+m) adds

a set a Znγ+m ⊆ ωn which via S̄n codes Y n+1
γ+m.

Crucially, ifM is a suitable model such that {Wn
γ , Z

n
γ+m} ⊆ M (and hence

ωn ⊆M) then {Wn+1
γ ∩β, Y n+1

δ ∩β} ⊆ M for β = (ωn+1)M as a consequence
of (†) and hence by (∗∗)n+1

γ,m ,M �“Wn
γ is a n-code of a limit ordinal γ̄ < ωM

such that Sγ̄+m is not stationary”. In other words,M � ϕ(n,Wn
γ ,m).

The next step is to localize the coding to suitable models of height at least
ωn−1.

Definition 3.3. Fix m ∈ N and W,Z ⊆ ωn such that ϕ(n,W,m) holds
in any suitable model M containing both W and Z as elements. Denote
by Ln(Z,W,m) the forcing whose conditions are functions r : |r| → 2 with
domain |r| ∈ ωn such that

(1) if ξ < |r| then ξ ∈ Z iff r(2 · ξ) = 1,
(2) if β ≤ |r| and M is a suitable model containing r�β as an element

and with β = ωn ∩M, thenM � ϕ(n,W ∩ β,m).
The order on Ln(Z,W,m) is end-extension.

As is easy to verify, the forcing Ln(Znδ ,W
n
γ ,m) adds the characteristic

function of a set Y n
δ ⊆ ωn such that (∗∗)nγ,m is true.

Define the next iterand in (3.2) to be

Pn0 =
∏

γ∈lim(ωM )

(
Pcd
n (Wn+1

γ ) ∗
∏
m∈N

Pcd
n (Y n+1

γ+m) ∗ Ln(Znγ+m,W
n
γ ,m)

)
with supports of size at most ωn−1. It is well-known that Pn0 adds no se-
quences of length at most ωn−1, and preserves cofinalities and cardinals when
forcing over the (L,PM−1

0 ∗ . . . ∗ Pn0 )-generic extension (see [17, 12]).

Denote by V0 the (L,P∗0)-generic extension. In V0 we haveW 1
γ coding γ via

S̄1, . . . , S̄M−1 for each γ ∈ lim(ωM ), and 〈Y 1
δ : δ < ωM 〉 such that for each

γ ∈ lim(ωM ) and m ∈ N, (∗∗)1
γ,m holds true. Note that V0 ∩ ωω = L ∩ ωω.

3.2. Preparing the continuum. Fix (for the rest of the proof) a con-
structible almost disjoint family

F∗ := {aξ : ξ < ω1}

which is Σ1 (without parameters) in Lω2 and with the following property
(which will be important in the proof of Lemma 4.4):

(‡): For each ξ < ω1, aξ ∈ Lµ where µ is least such that Lµ � |ξ| = ω.

Next force with the finite support iteration

PW := 〈PWγ , Q̇W
γ : γ ∈ lim(ωM )}
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where for each γ, Q̇W
γ adds the real cWγ which almost disjointly via the family

F∗ codes W 1
γ . Let V2 be the (ṖW , V0)-generic extension .

Using the standard forcing Add(ω, ωN ) (finite partial functions from ωN×
ω into 2) adjoin ωN -many reals to V2 to increase the size of the continuum
to ωN and denote the resulting model to obtain a model V3.

3.3. Adding the MCG. We shall now define a finitely supported iteration
PG := 〈Pα, Q̇α : α ∈ ωM 〉 which adds a self-coding MCG to the model V3.

Along the iteration, for each α ∈ ωM we will define a Pα-name İα ⊆
[βα, βα+1) for a set of ordinals, such that at stage α of the construction we
adjoin reals encoding a stationary kill of Sδ (that is, a real locally coding Cδ)
for δ ∈ Iα. We then show that there is “no accidental coding of a stationary
kill” in Lemma 4.1.

In order to define PG := 〈Pα, Q̇α : α ∈ ωM 〉, recall from (2.1) that we have
fixed a computable bijection

ψ : ω × ω → ω

and in addition, fix a bijection

ψ′ : ω1 × ω × ω → ω1

which is ∆1 (without parameters) provably in ZF−. The function ψ′ will be
used to identify the family Fα which we add at stage α with a subset of ω1.

Suppose now by induction we are in V3[Gα], the (V3,Pα)-generic extension.
We presently define Qα = QFα ∗Qcd

F∗(Fα) ∗QGα ∗ D.
For the definition of QFα assume by induction that at previous stages we

have added families Fβ for β < α consisting of cofinitary permutations. We
now adjoin a family

Fα = 〈fαm,ξ : m ∈ N, ξ ∈ ω1〉

of permutations such that |fαm,ξ ∩ fα
′

m′,ξ′ | < ω for each (m, ξ) ∈ N × ω1 and
(α′,m′, ξ′) ∈ (α + 1) × N × ω1 with (α,m, ξ) 6= (α′,m′, ξ′). For this we
can use a σ-centered forcing, namely a variant of Solovay’s forcing to add
almost disjoint sets with finite conditions which is defined in [16]. Denote
this forcing by QFα and by Vα,1 the resulting model.

Next let Qcd
F∗(Fα) be the forcing to add a real cFα which almost disjointly

via the family F∗ (see Section 3.2) codes

ψ′

 ⋃
ξ<ω1

{ω · ξ +m} × fαm,ξ

 ,
a subset of ω1 which via ψ′ codes Fα. Let Vα,2 be the extension of Vα,1 which
contains cFα and note that Fα is definable in L[cFα ].

Working in Vα,2 we define QGα, the forcing which adds a new group gener-
ator.
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Suppose by induction that Pα has added a cofinitary representation ρα. Its
image generates a cofinitary group Gα. Suppose by induction that dom(ρα) =

{βξ : ξ < α} ⊆ lim(ωM ) and write Aα for {βξ : ξ < α}. Moreover write
ρα(βξ) = σξ for each ξ < α. Our next forcing will add the generic permuta-
tion σα as a new generator, and we extend our group to Gα+1 = 〈Gα∪{σα}〉.

If α is a limit, let
βα = sup{βξ : ξ < α}

and otherwise, let
βα = βα−1 + max(|α− 1|, ω)

(we mean ordinal addition). This is the ordinal to which we associate the
new generator σα so that

ρα+1 = ρα ∪ {(βα, σα)}

is a cofinitary representation.
Writing a = βα, every element of F(Aα ∪ {a}) corresponds to a reduced

word in WAα,a. Let Wa
α be the set of such words in which a or a−1 occurs

at least once. Note that the set Wa
α corresponds to the new permutations

in the group Gα+1. In other words, permutations in Gα+1 \ Gα are precisely
those of the form ρα+1(w) with w ∈ Wa

α. Also note that previously, we
would have written w[σα] for ρα+1(w), with the tacit understanding that w
is interpreted using ρα.

As before write Wncs
α for the set of words in Wa

α without a proper conju-
gated subword. Write Wnr

α for the set of words in Wa
α which are not of the

form w̄n for w̄ ∈ Wa
α \ {w}. (Compare Notation 2.3.)

Let iα : Wncs
α ∩ Wnr

α → lim(|α|) be a bijection sending a to 0; we shall
use iα to associate the ordinal βα + iα(w) to each w ∈ Wncs

α . We note that
those elements of Gα+1 \Gα which correspond via ρ−1

α+1 to words inWncs
α will

be associated to ordinals in [βα, βα+1), and in fact σα is associated to βα.
Elements of Gα+1 which are not of the form ρα+1(w) for w ∈ Wncs

α ∩ Wnr

can be ignored for the purpose of coding (see Lemma 4.6 and Remarks 2.4
and 2.12).

For each w ∈ Wncs
α ∩Wnr

α it is the pattern of stationarity on the block of
S̄ consisting of the next ω ordinals after βα + iα(w) that will code w (i.e.,
we set γ in (3.1) equal to βα + iα(w)). Let, for w ∈ Wncs

α ∩Wnr
α ,

(3.3) zw = {2m : m ∈ cFα } ∪ {3m : m ∈ cWβα+iα(w)}

(recalling that the reals cWγ were constructed in Section 3.2) and define

z̄ = 〈zw : w ∈ Wncs
α ∩Wnr

α 〉.

Further, define
Y w
m = Y 1

βα+iα(w)+m

for each w ∈ Wncs
α ∩Wnr

α (the sets Y 1
δ where constructed in Section 3.1) and

let
Y = 〈Y w

m : w ∈ Wncs
α ∩Wnr

α ,m ∈ ω〉.
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With the notation from Section 2 we now define

QGα = QFα,Y,z̄ρα,{βα}.

In Proposition 2.18 we have seen that QGα is Knaster and adjoins a new
generator σα such that the following properties hold:

(Iα) The group 〈im(ρα) ∪ {σα}〉 is cofinitary.
(IIα) If f ∈ V Pα\Gα is a permutation which is not covered by finitely many

members of Fα and 〈Gα ∪ {f}〉 is cofinitary, then for infinitely many
k, f(k) = σα(k). This property will eventually ensure maximality of⋃
α<ωM

Gα.
(IIIα) For each w ∈ Wncs

α ∩Wnr
α there is mw ∈ ω such that for all k ∈ ω,

w3k[σα](mw) ∈ PS(χ�k), where χ is the characteristic function of z.
That is, w[σα] encodes Fα via the real cFα as well as W 1

βα+iα(w) via
the real cWβα+iα(w).

(IVα) For each w ∈ Wa
α, for all m ∈ ψ

[
w[σα]

]
, for all ξ ∈ ω1

|w[σα] ∩ fαm,ξ| < ω iff ξ ∈ Y w
m .

That is, w[σα] codes Y w
m for each m ∈ ψ

[
w[σα]

]
via almost disjoint

coding.
(Vα) The cofinitary representation ρα+1 = ρα ∪ {(βα, σα)} is sufficiently

generic.

As we are going to see in the next section, property (IVα) implies that
the new permutation w[σα] encodes itself via stationary kills on the segment
〈Sδ : βα + iα(w) ≤ δ < βα + iα(w) + ω〉. Furthermore, these stationary kills
are witnessed by countable suitable models containing w[σα].

Let İα be a P̄Gα+1-name for

Iα =
{
βα + iα(w) +m : w ∈ Wncs

α ∩Wnr
α ,m ∈ ψ

[
w[σα]

]}
.

Thus Iα denotes the set of indices of the stationary sets for which we explicitly
adjoin reals encoding a stationary kill at stage α of the iteration. Note that
βα = sup Iα.

The final forcing of the αth step of the iteration, D, is simply Hechler’s
σ-centered forcing to add a dominating real. With this the definition of
Qα = QFα ∗Qcd

F∗(Fα)∗QGα∗D, and thus the description of the forcing iteration
to add a co-analytic MCG of intermediate size, is complete.

4. Definability and maximality of the group

Forcing with PG over V3 we obtain a generic G over L for the forcing

P := P∗0 ∗ PW ∗Add(ω, ωN ) ∗ PG

recalling that P∗0 added the sets W 1
γ and Y 1

γ+m, and PW added reals cWγ
“locally coding” the ordinal γ for each γ ∈ lim(ωM ); Add(ω, ωN ) made 2ω =

ωN ; and finally PG added a generic self-coding subgroup of S∞ and a sequence
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of dominating reals. Also recall that all the forcings after P∗0 are Knaster,
and P∗0 did not add any countable sequences.

Work in L[G] from now on. First we must show that no real codes an
“accidental” stationary kill.

Lemma 4.1. For each δ̄ which is not in I =
⋃
{Iα : α < ωM} there is no

real in L[G] coding a stationary kill of Sδ̄, i.e., there is no r ∈ P(ω) ∩ L[G]

such that L[r] � Sδ̄ ∈ NS.

Proof. The argument has precursors in [17, Lemma 8.22] and [12, Lemma 3].
Let İ be a name for I and suppose that p 
 ˇ̄δ /∈ İ. Write δ̄ = γ̄ + m̄ with γ̄
a limit ordinal and m̄ ∈ N. Working in L, let

P 6=δ̄0 = PM−1
6=δ̄ ∗ . . . ∗ P1

6=δ̄.

where
PM−1
6=δ̄ =

∏
δ∈ωM\{δ̄}

Pcl
δ

with supports of size at most ωM−2, and by finite reverse induction on n ∈
{M − 2, . . . , 1} we define, in the (L,PM−1

6=δ̄ ∗ . . .Pn−1
6=δ̄ )-generic extension,

Pn6=δ̄ =

(
Pcd
n (Wn+1

γ̄ ) ∗
∏

m∈N\{m̄}

Pcd
n (Y n+1

γ̄+m) ∗ Ln(Znγ̄+m,W
n
γ̄ ,m)

)
×

∏
γ∈lim(ωM )\{γ̄}

(
Pcd
n (Wn+1

γ ) ∗
∏
m∈N

Pcd
n (Y n+1

γ+m) ∗ Ln(Znγ+m,W
n
γ ,m)

)
with supports of size at most ωn−1.

Moreover, working in the (L,P 6=δ̄0 )-generic extension, let

Pδ̄0 = PM−1
δ̄

∗ . . . ∗ P1
δ̄

where PM−1
δ̄

= (Pcl
δ̄

)L, and by induction on n ∈ {M − 2, . . . , 1},

Pnδ̄ = Pcd
n (Y n+1

δ̄
)L[Wn

γ̄ ,Y
n+1
δ̄

] ∗ Ln(Znδ̄ ,W
n
δ̄ ,m)L[Wn

γ̄ ,Z
n
δ̄

].

Since Pn6=δ̄ does not add any subsets to ωn, it is routine to verify that

P∗0 = P 6=δ̄0 ∗ P
δ̄
0

up to equivalence of forcing notions. Decompose the P∗0-generic G∗0 as G∗0 =

G 6=δ̄0 ∗Gδ̄0 whereG
6=δ̄
0 is (L,P6=δ̄0 )-generic andGδ̄0 is (L[G 6=δ̄0 ],Pδ̄0)-generic. Work-

ing in L[G∗0] = L[G 6=δ̄0 ][Gδ̄0] and writing

P′ =
(
PW ∗Add(ω, ωN ) ∗ PG

)
� p

for the quotient P/P∗0 below p, it is easy to verify that P′ ∈ L[G 6=δ̄0 ] since the
iteration never uses Y 1

δ̄
. Thus letting G′ be shorthand for the P′-generic, we

may decompose G as G = G 6=δ̄ ∗ (G′ ×Gδ̄0).
Let r be any real in L[G] = L[G 6=δ̄0 ][G′][Gδ̄0] and write

V∗ = L[G 6=δ̄0 ]
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We show that r ∈ V∗[G′] = L[G 6=δ̄0 ][G′]. For this, note that Pδ̄0 adds no count-
able sequences over V∗ (as even P∗0 adds no such sequences to L). Moreover,
by the argument from Lemma 2.24, P′ remains ccc in V∗[Gδ̄0]. It follows (see
[12, Claim, p. 9]) that Pδ̄0 also adds no countable sequences over V∗[G′]. So
indeed r ∈ V∗[G′]. But since P 6=δ̄ ∗ P′ preserves stationarity of Sδ̄, the latter
is still stationary in V∗[G′] = L[G 6=δ̄0 ][G′] and hence in L[r]. �

Let G be the group generated by {σα : α ∈ ωM}. Given w ∈ Wa
α, we

write wG for ρα(w), i.e., the interpretation of w that replaces every gener-
ator index βγ for γ ≤ α by the corresponding generic permutation σγ . We
shall occasionally use the notation w[σα] for wG; this is consistent with our
previous use of this notation.

Lemma 4.2. The group G is a maximal cofinitary group.

Proof. By property (Iα) of the iterands Q̇α the group G is cofinitary. It re-
mains to show maximality. Suppose by contradiction that G is not maximal.
Then there is a cofinitary permutation h /∈ G such that the group generated
by G∪{h} is cofinitary. WriteGα for the (L,P∗0∗PW ∗Add(ω, ωN )∗Pα)-generic
induced by G. Find β such that h ∈ L[Gβ]. Then there is β′ ∈ {β, β + 1}
such that h is not a subset of the union of finitely many members of Fβ′ :
For otherwise by the pigeonhole principle we find f ∈ Fβ and f ′ ∈ Fβ+1

such that |f ∩ f ′| = ω, contradicting the choice of Fβ and Fβ+1. Letting
α = β′+ 1, by property (IIα) of the forcing QGα in L[Gα], the generic permu-
tation σα infinitely often takes the same value as h, and so σα ◦ h−1 is not
cofinitary, which is a contradiction. �

It remains to show that G is Π1
2.

Lemma 4.3. Let g ∈ S∞∩L[G]. Then g = wG for some w ∈
⋃
α<ωM

Wncs
α ∩

Wnr
α if and only if there is γ ∈ lim(ωM ) such that

ψ[g] = {m ∈ ω : L[g] � Sγ+m ∈ NS},

or equivalently, such that ψ[g] = {m ∈ ω : (∃r ∈ P(ω)) L[r] � Sγ+m ∈ NS}.

Proof. Suppose g = wG and α is minimal such that w ∈ Wncs
α ∩ Wnr

α . We
prove the lemma for γ = βα + iα(w). By property (IIIα) of the forcing QGα
the permutation g codes zw and therefore

Fβα+iα(w) ∈ L[g].

By property (IVα) of the forcing QGα the real g almost disjointly codes via
the family Fα the set Y 1

βα+iα(w)+m for each m ∈ ψ[g]. However Y 1
βα+iα(w)+m

codes Cβα+iα(w)+m, the club set disjoint from Sβα+iα(w)+m.
If m /∈ ψ[g], then βα + iα(w) +m /∈ Iα and so by Lemma 4.1, there is no

real r in L[G] such that L[r] � Sβα+iα(w)+m ∈ NS.
For the other direction, suppose γ ∈ lim(ωM ) is such that for all m ∈ ω,

L[r] � Sγ+m ∈ NS for some r ∈ P(ω) if and only if m ∈ ψ[g]. Then by
Lemma 4.1, ψ[g] ⊆ {m ∈ ω : γ + m ∈ Iα}. By the previous, the latter set
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equals ψ[wG] where w is such that βα + iα(w) = γ for some α < ωM . So
g = w[σα] = wG. �

Lemma 4.4. Let g = wG for some w ∈ Wncs
α ∩Wnr

α with α < ωM . Then for
every countable suitable model M such that g ∈ M there is a limit ordinal
γ̄ < (ωM )M such that

M � ψ[g] = {m ∈ ω : Sγ̄+m ∈ NS}.

Proof. Suppose M is a countable suitable model such that g ∈ M. Let α
be minimal so that w ∈ Wncs

α ∩Wnr
α and let γ = iα(w). Since wG = w[σα]

encodes zw (by property (IIIα) of QGα and minimality of α) and by (‡), we
have that

{fαm,ξ : m ∈ ω, ξ < β} ∈ M

where β = (ω1)M. By property (IVα), g = wG almost disjointly codes
Y 1
γ+m∩β for eachm ∈ ψ[g] and hence Y 1

γ+m∩β ∈M. Similarly,W 1
γ ∩β ∈M.

Then for each m ∈ ψ[g], by (∗∗)1
γ,m the sentence ϕ(1,W 1

γ ∩ β,m) holds in
the suitable model L[W 1

γ ∩ β, Y 1
γ+m ∩ β]M where β = (ω1)M. Hence inM,

the following holds:
The set W 1

γ ∩ β almost disjointly codes via the sequences S̄1, . . . , S̄M−1

a code for an ordinal γ̄ < (ωM )M such that Sγ̄+m is not stationary. As m ∈
ψ−1[g] was arbitrary and γ̄ depends only onM and γ—which in turn depends
only on w—and not on m, indeed γ̄ witnesses that the lemma holds. �

Lemma 4.5. Let g be a real such that for every countable suitable modelM
containing g as an element there is γ̄ < (ωM )M such that

M � ψ[g] = {m ∈ ω : Sγ̄+m ∈ NS}.

Then for some α < ωM , g = wG = w[σα] where w ∈ Wncs
α ∩Wnr

α .

Proof. By Löwenheim-Skolem take a countable elementary submodel M0

of LωM+1 [g] such that g ∈ M0 and let M be the unique transitive model
isomorphic toM0. Then by assumption

M �
(
∃γ̄ ∈ lim(ωM )

)
ψ[g] = {m ∈ ω : Sγ̄+m is non-stationary}

so by elementarity the same holds withM replaced by LωM+1 [g], and hence
for some γ ∈ lim(ωM )

L[g] � ψ[g] = {m ∈ ω : Sγ+m ∈ NS}.

By Lemma 4.3 it follows that g is of the desired form. �

Lemma 4.6. The MCG G is Π1
2 in L[G].

Proof. Recall that we denote by σ0 the first generator added by QG0 over
V3. Note first that g ∈ G if and only if there is k ∈ ω, α < ωM , and
w ∈ Wncs

α ∩Wnr
α such that (σ0)kg = wG.
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By the previous lemmas, g ∈ G if and only if g ∈ S∞ and the following
statement Φ(g) holds: For every suitable countable modelM if g ∈M and
for some σ∗ ∈M∩ S∞

M � ψ[σ∗] = {m ∈ ω : S0+m is non-stationary},

that is, if g∗ is the first generator σ0, then for some k ∈ ω

M �
(
∃γ ∈ lim(ωM )

)
ψ
[
(σ∗)

kg
]

=
{
m ∈ ω : Sγ+m ∈ NS

}
.

It is standard to see Φ(g) can be expressed by a Π1
2 formula. �

Thus we obtain our main result:

Theorem 4.7. Let 2 ≤M < N < ℵ0 be given. There is a cardinal preserving
generic extension of the constructible universe L in which

ag = b = d = ℵM < c = ℵN
and in which there is a Π1

2 definable maximal cofinitary group of size ag.

Proof. It remains to see that in the final model L[G] there are no maximal
cofinitary groups of cardinality strictly smaller than ℵM . Recall from the
beginning of Section 3, Item (4d) that each for α < ωM , Qα adds a dominat-
ing real over V3[Gα]. Thus in the final model L[G] there is a scale of length
ωM and so b = d = ℵM . Since b ≤ ag we obtain ag = ℵM . �

5. Questions

In this section, we state some of the remaining open questions.
(1) Can one construct in ZFC (or just ZF) a countable cofinitary group

which can not be enlarged to a Borel MCG? Recall here that in con-
trast to, e.g., MAD families, there are Borel MCGs—yet the known
ones are of a very special form, and it is completely unknown whether
one can extend a given countable cofinitary group to a maximal
Borel one. Note that in L, every countable group can be enlarged to
a Π1

1 MCG.
(2) It is not even known whether a countable group which cannot be

enlarged to a Π1
1 MCG exists in a forcing extension. Even the fol-

lowing is not known: Is it consistent with ZFC (or ZF) that there
exists a countable cofinitary group which cannot be enlarged to a
Borel MCG?

(3) Is there a model where 2ω > ω1 and every uncountable cofinitary
group G0 of size < 2ω is a subgroup of a MCG of the same size
as G0? The analogue question for MAD families is also open; the
latter question was originally posed by Fuchino, Geschke, Guzman
and Soukup (see [20]).

(4) Suppose there is a Σ1
2 MCG of size < c. Is there a Π1

1 MCG of size
< c? Without the requirement on the cardinalities of the groups the
question becomes trivial, since there exists a Borel MCG of size c.
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For MAD families the answer is positive, as follows from a result of
the fourth author (see [27]).

(5) Is there a model where there is a MCG of size α with ω1 < α < 2ω

but there is no MED family of size α?

For many of the above questions, it is also interesting to restrict the question
to projective MCG, MED families, etc.
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