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Cardinal Characteristics

Bounding and Splitting Numbers

Definition

A family H C “w is unbounded, if there is no g € “w which
dominates all elements of H. The bounding number b is the
minimal cardinality of an unbounded family.

Definition

A family S C [w]“ is splitting, if for every A € [w]” thereis B € S
such that both AN B and AN B¢ are infinite. The splitting
number s is the minimal size of a splitting family.
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Matbhias forcing
Logarithmic Measures

Logarithmic Measures 3 3
g < Induced Logarithmic Measure

Sufficient Condition for High Values
Shelah’s partial order

b=w; <s5=uw>

In 1984 S. Shelah showed the consistency of b = w1 < § = w»
using a proper, almost “w bounding forcing notion of size
continuum, which adds a real not split by the ground model reals.

b=r<s=~kr"

Given an unbounded <*-directed family H of size kK we obtain a
o-centered suborder Py, of Shelah’s poset, which preserves H
unbounded and adds a real not split by V N [w]“.
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Mathias forcing

Logarithmic Measures

Induced Logarithmic Measure
Sufficient Condition for High Values
Shelah’s partial order

Logarithmic Measures

M adds a real not split by the ground model reals
If G is M-generic, then Ug = U{u : 3A(u, A) € G} is an infinite
set such that VA € V N [w]¥, Ug C* A or Ug C* A°.

M adds a dominating real

However, if Fg is the enumerating function of Ug, then F¢
dominates all ground model reals.
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Matbhias forcing
Logarithmic Measures

Logarithmic Measures 3 3
g < Induced Logarithmic Measure

Sufficient Condition for High Values
Shelah’s partial order

Definition

» Let s Cw. Then h: [s]<¥ — w is called a logarithmic measure
if VA € [s]<¥, VAo, A1 such that A= Ag U Ay,
h(A;) > h(A) — 1 for i =0, or i =1 unless h(A) = 0.

> If s is finite, the pair x = (s, h) is called a finite logarithmic
measure. The value h(s) = ||x|| is called the level of x and
int(x) denotes s.
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Matbhias forcing
Logarithmic Measures
Induced Logarithmic Measure

Logarithmic Measures

Sufficient Condition for High Values
Shelah’s partial order

Definition
Let P C [w]=“ be upwards closed family, which does not contain
singletons. Then P induces a logarithmic measure on [w]<¥
defined inductively as follows:

1. h(e) > 0 for every e € [w]<¥

2. h(e)>0iffeec P

3. for £ > 1, h(e) > £+ 1 iff whenever e, e; C e are such that

e = ey U ey, then h(eg) > £ or h(er) > .

Then h(e) = max{k : h(e) > k}. The elements of P are called
positive sets and h is said to be induced by P.
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Matbhias forcing
Logarithmic Measures
Induced Logarithmic Measure

Logarithmic Measures

Sufficient Condition for High Values
Shelah’s partial order

Example
Let P = {a € [w]<¥ :|a| > 2}. Then h(a) = min{j : |a| < 2/} is
the logarithmic measure induced by P, called standard measure.

Lemma

Let A C w does not contain a set of measure > £ + 1 for some

{ € w. Then there are Ay, A1 such that A= Ayp U Ay and none of
Ao, A1 contain a set of measure > (.
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Matbhias forcing
Logarithmic Measures

Logarithmic Measures 3 3
g < Induced Logarithmic Measure

Sufficient Condition for High Values
Shelah’s partial order

Lemma
Let P C [w]<¥ be upwards closed family, which does not contain

singletons and let h be induced by P. Then if for every n € w and
partition w = Ag U --- U A,_1 there is j € n such that A; contains
a positive set, then for every k € w, for every n € w and partition
w=AgU---UA,_1 there is j € n such that A; contains a set of

measure > k.
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Matbhias forcing
Logarithmic Measures

Logarithmic Measures 3 3
g < Induced Logarithmic Measure

Sufficient Condition for High Values
Shelah’s partial order

Definition
Let Q be the set of all pairs (u, T) where u is a finite subset of w
and T = ((sj, h;) : i € w) is a sequence of logarithmic measures
such that

1. maxu < min sy

2. maxs; < minsjq forall j € w

3. (hi(si) : i € w) is unbounded.
Also int(T) =U{s; : i € w}. If u=10, then (0, T) is a pure
condition and is denoted by T. Note that if (u, T) is Shelah’s
condition, then (u,int(T)) is Mathias.
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Matbhias forcing

. . Logarithmic Measures

Logarithmic Measures T . .
Induced Logarithmic Measure

Sufficient Condition for High Values

Shelah’s partial order

We say (u2, T2) < (u1, T1), where T, = {(sf, h?) : i € w) for
£ =1,2, if the following conditions hold:
1. up is an end-extension of vy and wp\uy Cint(Ty)
2. int(Tz) Cint(Ty) and furthermore there is an infinite
sequence (B; : i € w) of finite subsets of w such that
max uy < mins] for j = min By, max(B;) < min(Bj41) and
s? C U{S} :j € Bi}.
3. for every subset e of s? such that h?(e) > 0 there is j € B;
such that hi(ens!) > 0.
If u1 = up, then (w2, T2) is a pure extension of (ug, T1).
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Mathias forcing
. . Logarithmic Measures
Logarithmic Measures T . .
Induced Logarithmic Measure

Sufficient Condition for High Values
Shelah’s partial order
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Matbhias forcing
Logarithmic Measures

Logarithmic Measures 3 3
g < Induced Logarithmic Measure

Sufficient Condition for High Values
Shelah’s partial order
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Centered Families of Pure Conditions

Centered Families Generic Extensions of Centered Families

Definition
Let F be family of pure conditions. Then Q(F) is the suborder of
Qofall (u, T) € Qsuchthat IR € F(R< T).

» If C is centered, then Q(C) is o-centered.

> Let p,g € Q(C). Then p Lq qiff p Lo(c) g-
» If C C Q(C’) then C' is said to extend C.

> If T /J Candw=ApU---UA,_1, then 3j € n and
R < T(R L C) such that int(R) C A;.
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Centered Families of Pure Conditions

Centered Families Generic Extensions of Centered Families

Py = Q(Cr)
The forcing notion Py is of the form Q(Cy). Starting with an
arbitrary pure condition T and Cop = {T\v : v € [w]<“}, we will

obtain a sequence (C, : @ < k™) of centered families such that
Va < B(Cy € Q(Cp)) and Cr = Uner Ca-

COé g Q(Ca+1)

At successor stages, we will use three distinct countable forcing
notions each of which adds a single pure condition with desired
combinatorial properties.

+

Vera Fischer The consistency of b = Kk < s = K



Centered Families of Pure Conditions

Centered Families Generic Extensions of Centered Families

Definition

Let Qfin be the poset of all ¥ = (ry, ..., r,) of finite measure such
that Vi € n, maxint(r;) < minint(ri+1) and ||ri]| < ||ri+1]] with
extension relation end-extension.

Definition
Let 7 € Qg, and T a pure condition. Then 7 < T if there is a pure
condition R < T such that 7 C R.
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Centered Families of Pure Conditions

Centered Families Generic Extensions of Centered Families

Definition
Let T be a pure condition. Then P(T) is the suborder of Qs of
all finite sequences 7 extending T.

Lemma
Let T L X, n€w. Then

Dr(X,n)={r€P(T):3r; € r(r; < X and ||rj|| > n)}

is dense in P(T).
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Centered Families of Pure Conditions

Centered Families Generic Extensions of Centered Families

Corollary

Let C L T, let G be P(T)-generic filter. Then in V|[G]
» Re=UG=(ri:icw)<T.
» 3C’ such that CU{Rg} C Q(C"), |C| = |C’].

Proof.

Since GN D7(X,n) # 0 for all X € C, n € w, the set

Ix = (i: ri < X) is infinite and so R AX = (ri:i € Ix) is a
common extension of Rg and X. If X < Y then Ix C Iy and so
Rc AX <RgAY. Then C' ={Rs A X}xec is centered.
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Good Extensions
Mimicking the almost “ w-bounding property

Preservation of Unboundedness
b=r<s=kr"

Lemma _
Let coM) =k, C centered |C| < k, f a good Q(C)-name for a
real. Then there is T = (r; : i € w) of logarithmic measures of
strictly increasing levels, such that
> VX € C the set Jx = {i : r; < X} is infinite and
» ViYv C i¥'s C int(r;) which is ri-positive 3w C s3p € A;(f)
such that (vUw, T) < p.
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Good Extensions
Mimicking the almost “ w-bounding property

Preservation of Unboundedness
b=r<s=kr"

The proof uses two countable forcing notions, the first of which
produces a pure condition which is preprocessed for f.

Under cov(M) = k certain subfamilies of [w]<“ induce logarithmic
measures which take arbitrarily high values. The second forcing
notions amalgamates such measures into the pure condition T.
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Good Extensions
Mimicking the almost “’ w-bounding property

Preservation of Unboundedness
b=r<s=kr"

Theorem

Let cov( M) = k, H C “w unbounded, <*-directed, |H| = k, C
centered, |C| < K, f good Q(C)-name for a real. Then

AC'3h € H, such that C" extends C, |C'| = |C| and VC"
extending C', I-q(cn) “h£* F.

Proof

Let T = (r; : i € w) satisfy the preceding Lemma for C and f.
Then Vi € w let g(i) be the maximal k such that there are v C i,
w Cint(r;), p € Ai(f) with pIF k= f(i) and (vUw, T) < p.
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Good Extensions
M|m|ck|ng the almost “ w-bounding property

of Unboundedness

> VX € C Jx = {i: r < X} isinfinite. Then Vn € w let
Fx(n) = g(Ix(i+1)) iff n € (Ix(i), Ix(i + 1)] where Jx(n) is
the n-th element of Jx. Then VX € C3hx € H(hx £* Fx).
> Let h € H dominate all hx's. Then J = {i: g(i) < h(i)} and
Ix = Jx N J are infinite. Let R = (ri)icy, RAX = (r)iciy
and C' = {R A X}xec.
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Good Extensions

Mimicking the almost “’ w-bounding property
Preservation of Unboundedness
b=rk<s=k"

(jx=}_/i:"l/¢‘_xk ‘
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Good Extensions
Mimicking the almost “’ w-bounding property

n of Unboundedness

V(" extending C' IFg(cry h 4+ f

» Let C” be centered, C' C Q(C"), a € [w]=¥, ko € w and let
(b,R") € Q(C") be an extension of (a, R). Thereis i € J,
i > ko such that b C i and s = int(R") Nint(r;) is r;-positive.
Then 3w C s3p € A;(f) such that (bUw, T) < p.

» Therefore (bU w, R') extends (b, R") and p. Let k € w be
such that p I (i) = k. Then by definition of g, k < g(i) and
since i € J, g(i) < h(i). Thus

. v v

(bUw, R) IFqeen " F(i) = k < g(i) < h(i)".
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Good Extensions
Mimicking the almost “’ w-bounding property

Preservation of Unboundedness
b=r<s=kr"

Lemma
Let cov(M) = k, H C “w be an unbounded, directed family of

cardinality x and let Y\ < k(2* < k). Then there is a centered
family C, |C| = k such that Q(C) preserves H unbounded and
adds a real not split by V N [w]®.

+

Vera Fischer The consistency of b = kK < s = K



Good Extensions
Mimicking the almost “’ w-bounding property

Preservation of Unboundedness
b=r<s=kr"

Let N = {fy }a<r enumerate all Q(C’) names for functions in “w
where |C'| < k. Let A = {An+1}a<r enumerate V N [w]“. By
induction of length x obtain a sequence (C, : a < k) such that

Va < BC, € Q(Cp), |Cul < k as follows:
» Begin with any T and Go = {T\v: v € [w]*¥}
> If ais a limit, let G, = Ug<n (3
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Good Extensions
Mimicking the almost “’ w-bounding property

Preservation of Unboundedness
b=r<s=kr"

If « = 3+1, let &, be the name with least index in N\{gy+1},<z
which is a Q(Cg)-name.
> If g, is good, let C, extend Cg, |Cy| = |Cg| such that

1. 3h, € HYC" extending C, IFq(cry “ha £* &a"
2. 3T, € Q(C)(int(T,) C Ay orint(T,) C AS).

> If g, is not good, let C, extend Cg, |C,| = |Cg| such that

1. g4 is not a Q(C,)-name,
2. 3T, € Q(C,)(int(T,) C Ay orint(T,) C AS).

Then let C = Up<k Co.
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Good Extensions
Mimicking the almost “’ w-bounding property

Preser of Unboundedness

‘H is unbounded

If f is a @(C)-name, then 33 € & such that f is a good
Q(Cg)-name and is the name with least index in N\{gy+1}y<5
which is a Q(Cg)-name. Then (H is unbounded)VQ(C).

3 a real not split by the ground model reals

Let G be Q(C)-generic. Then for every A € V N [w]¥ there is
(u, T) in G such that int(T) C Aorint(T) C A°. Note also that
if U =U{u:3T(u, T) € G}, then Ug C* int(T) for all T such
that Ju(u, T) € G.

Vera Fischer The consistency of b = kK < 5 = wt



Good Extensions
Mimicking the almost “ w-bounding property

Preservation of Unboundedness
b=r<s=~r"

Theorem

Let H C “w be unbounded family such that every countable
subfamily of H is dominated by an element of H and let

(Py : v < o) be a finite support iteration of ccc forcing notions of
length o, cf (o) = w such that Vy < o (H is unbounded)V"” .
Then (H is unbounded)"™ .

Theorem
Let H C “w be unbounded, directed family, |H| = . Then for
every partial order PP of size less than k, (H is unbounded) vE

+
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Good Extensions
Mimicking the almost “ w-bounding property

Preservation of Unboundedness
b=r<s=kr

Theorem (GCH)

Let k be a regular uncountable cardinal. Then there is a ccc
generic extension in whichb =rx < s = k™.
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Good Extensions
Mimicking the almost “ w-bounding property

Preservation of Unboundedness
b=rk<s=k

Add r Hechler reals to obtain a model V of b =c¢ = . Let
H = V N“w. Define a finite support iteration (P, Q, : @ < k™)
such that Vo < kT

ke, “Qa is ccc and |Qq| < ¢

as follows. If a is a limit, let P, be the finite support iteration of
(P3,Qp: B < a). If =3+ 1is a successor, then
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Good Extensions
Mimicking the almost “ w-bounding property

Preservation of Unboundedness
b=r<s=kr

> Let Qg be Pg-name for C(x) and P, = Ps x Qg. 3C such
that Q(C) preserves H unbounded and destroys VFe N [w]¥
as a splitting family.

> Let Q, be a P, name for Q(C) and Pyq1 =P, * Qq.

» Let A C VFart 0@y be unbounded of size less than k. Then
let Qa1 be Py i1-name for H(A); Payo = Poiq * Qaqt1.

Then in VP++ H is unbounded and there are no splitting families
of size less than k™. Using a suitable bookkeeping device one can
guarantee that there are no unbounded families of size less than x.
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