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Bounding and Splitting Numbers

Definition
A family H ⊆ ωω is unbounded, if there is no g ∈ ωω which
dominates all elements of H. The bounding number b is the
minimal cardinality of an unbounded family.

Definition
A family S ⊆ [ω]ω is splitting, if for every A ∈ [ω]ω there is B ∈ S
such that both A ∩ B and A ∩ Bc are infinite. The splitting
number s is the minimal size of a splitting family.
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b = ω1 < s = ω2

In 1984 S. Shelah showed the consistency of b = ω1 < s = ω2

using a proper, almost ωω bounding forcing notion of size
continuum, which adds a real not split by the ground model reals.

b = κ < s = κ+

Given an unbounded <∗-directed family H of size κ we obtain a
σ-centered suborder PH of Shelah’s poset, which preserves H
unbounded and adds a real not split by V ∩ [ω]ω.
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M adds a real not split by the ground model reals

If G is M-generic, then UG = ∪{u : ∃A(u,A) ∈ G} is an infinite
set such that ∀A ∈ V ∩ [ω]ω, UG ⊆∗ A or UG ⊆∗ Ac .

M adds a dominating real

However, if FG is the enumerating function of UG , then FG

dominates all ground model reals.
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Definition

I Let s ⊆ ω. Then h : [s]<ω → ω is called a logarithmic measure
if ∀A ∈ [s]<ω, ∀A0,A1 such that A = A0 ∪ A1,
h(Ai ) ≥ h(A)− 1 for i = 0, or i = 1 unless h(A) = 0.

I If s is finite, the pair x = (s, h) is called a finite logarithmic
measure. The value h(s) = ‖x‖ is called the level of x and
int(x) denotes s.
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Definition
Let P ⊆ [ω]<ω be upwards closed family, which does not contain
singletons. Then P induces a logarithmic measure on [ω]<ω

defined inductively as follows:

1. h(e) ≥ 0 for every e ∈ [ω]<ω

2. h(e) > 0 iff e ∈ P

3. for ` ≥ 1, h(e) ≥ ` + 1 iff whenever e0, e1 ⊆ e are such that
e = e0 ∪ e1, then h(e0) ≥ ` or h(e1) ≥ `.

Then h(e) = max{k : h(e) ≥ k}. The elements of P are called
positive sets and h is said to be induced by P.
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Example

Let P = {a ∈ [ω]<ω : |a| ≥ 2}. Then h(a) = min{j : |a| ≤ 2j} is
the logarithmic measure induced by P, called standard measure.

Lemma
Let A ⊆ ω does not contain a set of measure ≥ ` + 1 for some
` ∈ ω. Then there are A0,A1 such that A = A0 ∪ A1 and none of
A0, A1 contain a set of measure ≥ `.
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Lemma
Let P ⊆ [ω]<ω be upwards closed family, which does not contain
singletons and let h be induced by P. Then if for every n ∈ ω and
partition ω = A0 ∪ · · · ∪ An−1 there is j ∈ n such that Aj contains
a positive set, then for every k ∈ ω, for every n ∈ ω and partition
ω = A0 ∪ · · · ∪ An−1 there is j ∈ n such that Aj contains a set of
measure ≥ k.

Vera Fischer The consistency of b = κ < s = κ+



Cardinal Characteristics
Logarithmic Measures

Centered Families
b = κ < s = κ+

Mathias forcing
Logarithmic Measures
Induced Logarithmic Measure
Sufficient Condition for High Values
Shelah’s partial order

Definition
Let Q be the set of all pairs (u,T ) where u is a finite subset of ω
and T = 〈(si , hi ) : i ∈ ω〉 is a sequence of logarithmic measures
such that

1. max u < min s0

2. max si < min si+1 for all i ∈ ω

3. 〈hi (si ) : i ∈ ω〉 is unbounded.

Also int(T ) = ∪{si : i ∈ ω}. If u = ∅, then (∅,T ) is a pure
condition and is denoted by T . Note that if (u,T ) is Shelah’s
condition, then (u, int(T )) is Mathias.
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We say (u2,T2) ≤ (u1,T1), where T` = 〈(s`
i , h

`
i ) : i ∈ ω〉 for

` = 1, 2, if the following conditions hold:

1. u2 is an end-extension of u1 and u2\u1 ⊆ int(T1)

2. int(T2) ⊆ int(T1) and furthermore there is an infinite
sequence 〈Bi : i ∈ ω〉 of finite subsets of ω such that
max u2 < min s j

1 for j = minB0, max(Bi ) < min(Bi+1) and
s2
i ⊆

⋃
{s1

j : j ∈ Bi}.
3. for every subset e of s2

i such that h2
i (e) > 0 there is j ∈ Bi

such that h1
j (e ∩ s1

j ) > 0.

If u1 = u2, then (u2,T2) is a pure extension of (u1,T1).
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Definition
Let F be family of pure conditions. Then Q(F) is the suborder of
Q of all (u,T ) ∈ Q such that ∃R ∈ F(R ≤ T ).

I If C is centered, then Q(C ) is σ-centered.

I Let p, q ∈ Q(C ). Then p 6⊥Q q iff p 6⊥Q(C) q.

I If C ⊆ Q(C ′) then C ′ is said to extend C .

I If T 6⊥ C and ω = A0 ∪ · · · ∪ An−1, then ∃j ∈ n and
R ≤ T (R 6⊥ C ) such that int(R) ⊆ Aj .
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PH = Q(CH)

The forcing notion PH is of the form Q(CH). Starting with an
arbitrary pure condition T and C0 = {T\v : v ∈ [ω]<ω}, we will
obtain a sequence 〈Cα : α < κ+〉 of centered families such that
∀α < β(Cα ⊆ Q(Cβ)) and CH = ∪α∈κCα.

Cα ⊆ Q(Cα+1)

At successor stages, we will use three distinct countable forcing
notions each of which adds a single pure condition with desired
combinatorial properties.
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Definition
Let Qfin be the poset of all r̄ = 〈r0, . . . , rn〉 of finite measure such
that ∀i ∈ n, max int(ri ) < min int(ri+1) and ‖ri‖ < ‖ri+1‖ with
extension relation end-extension.

Definition
Let r̄ ∈ Qfin and T a pure condition. Then r̄ ≤ T if there is a pure
condition R ≤ T such that r̄ ⊆ R.
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Definition
Let T be a pure condition. Then P(T ) is the suborder of Qfin of
all finite sequences r̄ extending T .

Lemma
Let T 6⊥ X, n ∈ ω. Then

DT (X , n) = {r̄ ∈ P(T ) : ∃rj ∈ r̄(rj ≤ X and ‖rj‖ ≥ n)}

is dense in P(T ).
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Corollary

Let C 6⊥ T, let G be P(T )-generic filter. Then in V [G ]

I RG = ∪G = 〈ri : i ∈ ω〉 ≤ T.

I ∃C ′ such that C ∪ {RG} ⊆ Q(C ′), |C | = |C ′|.

Proof.
Since G ∩ DT (X , n) 6= ∅ for all X ∈ C , n ∈ ω, the set
IX = 〈i : ri ≤ X 〉 is infinite and so RG ∧ X = 〈ri : i ∈ IX 〉 is a
common extension of RG and X . If X ≤ Y then IX ⊆ IY and so
RG ∧ X ≤ RG ∧ Y . Then C ′ = {RG ∧ X}X∈C is centered.
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Lemma
Let cov(M) = κ, C centered |C | < κ, ḟ a good Q(C )-name for a
real. Then there is T = 〈ri : i ∈ ω〉 of logarithmic measures of
strictly increasing levels, such that

I ∀X ∈ C the set JX = {i : ri ≤ X} is infinite and

I ∀i∀v ⊆ i∀s ⊆ int(ri ) which is ri -positive ∃w ⊆ s∃p ∈ Ai (ḟ )
such that (v ∪ w ,T ) ≤ p.
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The proof uses two countable forcing notions, the first of which
produces a pure condition which is preprocessed for ḟ .

Under cov(M) = κ certain subfamilies of [ω]<ω induce logarithmic
measures which take arbitrarily high values. The second forcing
notions amalgamates such measures into the pure condition T .
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Theorem
Let cov(M) = κ, H ⊆ ωω unbounded, <∗-directed, |H| = κ, C
centered, |C | < κ, ḟ good Q(C )-name for a real. Then
∃C ′∃h ∈ H, such that C ′ extends C, |C ′| = |C | and ∀C ′′

extending C ′, 
Q(C ′′) “ȟ 6<∗ ḟ ”.

Proof
Let T = 〈ri : i ∈ ω〉 satisfy the preceding Lemma for C and ḟ .
Then ∀i ∈ ω let g(i) be the maximal k such that there are v ⊆ i ,
w ⊆ int(ri ), p ∈ Ai (ḟ ) with p 
 ǩ = ḟ (i) and (v ∪ w ,T ) ≤ p.
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I ∀X ∈ C JX = {i : ri ≤ X} is infinite. Then ∀n ∈ ω let
FX (n) = g(JX (i + 1)) iff n ∈ (JX (i), JX (i + 1)] where JX (n) is
the n-th element of JX . Then ∀X ∈ C∃hX ∈ H(hX 6≤∗ FX ).

I Let h ∈ H dominate all hX ’s. Then J = {i : g(i) < h(i)} and
IX = JX ∩ J are infinite. Let R = 〈ri 〉i∈J , R ∧ X = 〈ri 〉i∈IX

and C ′ = {R ∧ X}X∈C .
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∀C ′′ extending C ′ 
Q(C ′′) ȟ 6<∗ ḟ

I Let C ′′ be centered, C ′ ⊆ Q(C ′′), a ∈ [ω]<ω, k0 ∈ ω and let
(b,R ′) ∈ Q(C ′′) be an extension of (a,R). There is i ∈ J,
i > k0 such that b ⊆ i and s = int(R ′) ∩ int(ri ) is ri -positive.
Then ∃w ⊆ s∃p ∈ Ai (ḟ ) such that (b ∪ w ,T ) ≤ p.

I Therefore (b ∪ w ,R ′) extends (b,R ′) and p. Let k ∈ ω be
such that p 
 ḟ (i) = ǩ. Then by definition of g , k ≤ g(i) and
since i ∈ J, g(i) < h(i). Thus
(b ∪ w ,R ′) 
Q(C ′′) ”ḟ (i) = ǩ ≤ ǧ(i) < ȟ(i)”.
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Lemma
Let cov(M) = κ, H ⊆ ωω be an unbounded, directed family of
cardinality κ and let ∀λ < κ(2λ ≤ κ). Then there is a centered
family C , |C | = κ such that Q(C ) preserves H unbounded and
adds a real not split by V ∩ [ω]ω.
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Let N = {ḟα}α<κ enumerate all Q(C ′) names for functions in ωω
where |C ′| < κ. Let A = {Aα+1}α<κ enumerate V ∩ [ω]ω. By
induction of length κ obtain a sequence 〈Cα : α < κ〉 such that
∀α < βCα ⊆ Q(Cβ), |Cα| < κ as follows:

I Begin with any T and C0 = {T\v : v ∈ [ω]<ω}
I If α is a limit, let Cα = ∪β<αCβ
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If α = β + 1, let ġα be the name with least index in N\{ġγ+1}γ<β

which is a Q(Cβ)-name.
I If ġα is good, let Cα extend Cβ, |Cα| = |Cβ| such that

1. ∃hα ∈ H∀C ′′ extending Cα 
Q(C ′′) “ȟα 6<∗ ġα”
2. ∃Tα ∈ Q(Cα)(int(Tα) ⊆ Aα or int(Tα) ⊆ Ac

α).

I If ġα is not good, let Cα extend Cβ , |Cα| = |Cβ | such that

1. ġα is not a Q(Cα)-name,
2. ∃Tα ∈ Q(Cα)(int(Tα) ⊆ Aα or int(Tα) ⊆ Ac

α).

Then let C = ∪α<κCα.
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H is unbounded
If ḟ is a Q(C )-name, then ∃β ∈ κ such that ḟ is a good
Q(Cβ)-name and is the name with least index in N\{ġγ+1}γ<β

which is a Q(Cβ)-name. Then (H is unbounded)V
Q(C)

.

∃ a real not split by the ground model reals

Let G be Q(C )-generic. Then for every A ∈ V ∩ [ω]ω there is
(u,T ) in G such that int(T ) ⊆ A or int(T ) ⊆ Ac . Note also that
if UG = ∪{u : ∃T (u,T ) ∈ G}, then UG ⊆∗ int(T ) for all T such
that ∃u(u,T ) ∈ G .
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Theorem
Let H ⊆ ωω be unbounded family such that every countable
subfamily of H is dominated by an element of H and let
〈Pγ : γ ≤ α〉 be a finite support iteration of ccc forcing notions of

length α, cf (α) = ω such that ∀γ < α (H is unbounded)V
Pγ

.

Then (H is unbounded)V
Pα

.

Theorem
Let H ⊆ ωω be unbounded, directed family, |H| = κ. Then for

every partial order P of size less than κ, (H is unbounded)V
P
.
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Theorem (GCH)

Let κ be a regular uncountable cardinal. Then there is a ccc
generic extension in which b = κ < s = κ+.
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Add κ Hechler reals to obtain a model V of b = c = κ. Let
H = V ∩ ωω. Define a finite support iteration 〈Pα, Q̇α : α < κ+〉
such that ∀α < κ+


Pα “Q̇α is ccc and |Q̇α| ≤ c”

as follows. If α is a limit, let Pα be the finite support iteration of
〈Pβ , Q̇β : β < α〉. If α = β + 1 is a successor, then
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I Let Q̇β be Pβ-name for C(κ) and Pα = Pβ ∗ Q̇β . ∃C such
that Q(C ) preserves H unbounded and destroys V Pα ∩ [ω]ω

as a splitting family.

I Let Q̇α be a Pα name for Q(C ) and Pα+1 = Pα ∗ Q̇α.

I Let A ⊆ V Pα+1 ∩ ωω be unbounded of size less than κ. Then
let Q̇α+1 be Pα+1-name for H(A); Pα+2 = Pα+1 ∗ Q̇α+1.

Then in V Pκ+ H is unbounded and there are no splitting families
of size less than κ+. Using a suitable bookkeeping device one can
guarantee that there are no unbounded families of size less than κ.
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