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Abstract. Assuming that every set is constructible, we find a Π1
1 max-

imal cofinitary group of permutations of N which is indestructible by
Cohen forcing. Thus we show that the existence of such groups is con-
sistent with arbitrarily large continuum. Our method also gives a new
proof, inspired by the forcing method, of Kastermans’ result that there
exists a Π1

1 maximal cofinitary group in L.

1. Introduction

(A) We denote the group of bijections (permutations) of N by S∞, and
its unit element by idN. An element of S∞ is cofinitary if and only if it has
only finitely many fixed points, and G is called a cofinitary group precisely
if (up to isomorphism) G ≤ S∞ and all elements of G \ {idN} are cofinitary.

A cofinitary group is said to be maximal if and only if it is maximal under
inclusion among cofinitary groups.

Maximal cofinitary groups (or short, mcgs) have long been studied under
various aspects; see e.g. [3, 4, 1, 20, 21, 15]. A fair number of studies have
been devoted to the possible sizes of mcgs; their relation to maximal almost
disjoint (or mad) families, of which they are examples; as well as to inequal-
ities relating ag, i.e. the least size of a mcg, to other cardinal invariants of
the continuum; see e.g. [22, 23, 8, 2, 14, 6]. Analogous questions about per-
mutation groups on κ, where κ is an uncountable cardinal, have also been
studied; see e.g. [5]. The isomorphism types of mcgs have been investigated
in [12].

Finally, the line of research to which this paper belongs concerns the
definability of mcgs.

(B) While the existence of mcgs follows from the axiom of choice, the
question of whether a mcg can be definable has drawn considerable interest.
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It was shown by Truss [20] and Adeleke [1] that no mcg can be countable;
this was improved by Kastermans’ result [11, Theorem 10] that no mcg can
be Kσ. On the other hand, Gao and Zhang [7] showed that assuming V = L,
there is a mcg with a co-analytic generating set. This, too, was improved by
Kastermans with the following theorem.

Theorem 1.1 ([11]). If V = L there is a Π1
1 (i.e. effectively co-analytic)

mcg.

The previous theorem immediately raises the question of whether the ex-
istence if a Π1

1 mcg is consistent with V 6= L, or even with the negation of
the continuum hypothesis.

In this paper we answer these questions in the positive:

Theorem 1.2. The existence of a Π1
1 mcg is consistent with arbitrarily large

continuum (assuming the consistency of ZFC).

At the same time, we give a new proof of Kastermans’ Theorem 1.1.
This is worthwhile for several reasons: Firstly, our method shows that in
L, any countable cofinitary group is contained in a Π1

1 mcg. Secondly, the
‘coding technique’ which ensures that the group is co-analytic, described in
Definition 3.6, is much more straightforward than the one in [11]. Thirdly,
this method seems open to a wider range of variation, allowing to construct
mcgs with additional properties. An example of such a property is Cohen-
indestructibility, which we now define.

For this, first observe that if G is a cofinitary group, then clearly it remains
so in any extension of the universe.

Definition 1.3. Let G be a mcg and let C denote Cohen forcing. We say G
is Cohen-indestructible if and only if C Ǧ is maximal.

A Cohen-indestructible mcg was first obtained by Zhang [23]. The follow-
ing is our main result; Theorem 1.2 is clearly a corollary.

Theorem 1.4. If V = L, there is a Π1
1 Cohen-indestructible mcg.

To prove the theorem, we first find a forcing which, given a cofinitary
group G and z ∈ 2N, adds a generic cofinitary group G′ such that G ≤ G′
and with the property that each element of G′ \ G lies above z in the Turing
hierarchy. To find this forcing, we refine Zhang’s forcing from [22] (also see
[6] and [5] for variations).

We then use this to give a new proof of Kastermans’ result Theorem
1.1, building our group from permutations which are generic over certain
countable initial segments of L. We use ideas from [5] to see that the group
produced in this manner is Cohen-indestructible.
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(C) The paper is structured as follows. In §2, we establish basic termi-
nology. In particular, we establish a convenient shorthand notation for the
path of a natural number under the action of an element of S∞ on N. In
§3.1 we give a streamlined presentation of Zhang’s forcing QG , in order to
simplify the definition and discussion of our forcing Qz

G , which follows in
3.2; the most important properties of Qz

G are collected in Theorem 3.16. In
§4, we prove our main result, Theorem 1.4, in a slightly more general form
(Theorem 4.2). We close in §5 by listing some questions which remain open.

Acknowledgements. The first author would like to thank the Austrian
Science Fund (FWF) for the generous support through Lise-Meitner research
grant M1365-N13. The second and third authors gratefully acknowledge
the generous support from Sapere Aude grant no. 10-082689/FNU from
Denmark’s Natural Sciences Research Council.

2. Notation and Preliminaries

We start by reviewing the necessary definitions and introduce convenient
terminology, in particular the notion of a path.

(A) Since we build a generic element of S∞ from finite approximations, we
shall work with partial functions. We write par(N,N) for the set of partial
functions from N to N. For a ∈ par(N,N), when we write a(n) = k it is
clearly implied that n ∈ dom(a). We say a(n) is defined precisely when
n ∈ dom(a) and a(n) is undefined otherwise. For the set of fixed points of a
we write

fix(a) = {n ∈ N : a(n) = n}.
The set par(N,N) is naturally equipped with the operation of composition

of partial functions

(fg)(n) = m ⇐⇒ f(g(n)) = m,

making it an associative monoid.

Let G be an arbitrary group. By F(X) we denote the free group with
single generator X. We identify the group G ∗ F(X), i.e. the free product
of G and F(X), with the set WG,X of reduced words from the alphabet(
G \ {1G}

)
∪ {X,X−1}, equipped with the familiar ‘concatenate and reduce’

operation (see e.g. [16, Normal Form Theorem]). The neutral element 1G is
therefore identified with the empty word, which we denote by ∅ .

By a cyclic permutation of a non-empty word w = wn . . . w1 we mean the
result of reducing the word wσ(n) . . . wσ(1), where σ is a cyclic permutation
of {1, . . . , n}. By a subword of w we mean a contiguous subword wi . . . wj
for n ≥ i ≥ j ≥ 1, or the empty word. Thus, e.g. ca is a subword of a
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cyclic permutation of abc. Of course, the empty word is both the only cyclic
permutation and the only subword of itself.

We call a group homomorphism ρ : G → S∞ a cofinitary representation of
G if and only if all elements of ran(ρ) are cofinitary. Clearly, if ρ is injective,
we may identify G with the cofinitary subgroup ran(G) ≤ S∞.

For the remainder of this section, assume G ≤ S∞. Choosing an arbitrary
s ∈ par(N,N) gives rise to a unique homomorphism of monoids

ρ : G ∗ F(X)→ par(N,N)

such that ρ(X) = s and ρ is the identity on G. It can be defined by induction
on the length of words in the obvious way. Let’s denote this homomorphism
by ρG,s, departing from [6] (where it is precisely the map w 7→ ew(s)). Its
image is the compositional closure 〈G, s〉 of G ∪ {s} in par(N,N).

Convention 2.1. Whenever G can be inferred from the context, we adopt the
convention to denote ρG,s(w) by w[s], for any w ∈ WG,X (we “substitute s
for X in w”; as e.g. in [22, 11]).

Observe that slightly awkwardly, by this convention, ∅[s] = idN for any
s ∈ par(N,N).

(B) In the remainder of this section, we define the notion of a path, which
will be extremely useful in the next section. Fix s ∈ par(N,N). Say w ∈
WG,X , and in reduced form

w = an . . . a1.

We define the path under (w, s) of m (also called the (w, s)-path of m) to
be the following sequence of natural numbers:

path(w, s,m) = 〈mi : i ∈ α〉,

where m0 = m and for l, i ∈ N such that 0 < i ≤ n,

mnl+i =ai . . . a1w
l[s](m0)

and α ∈ ω+1 is maximal such that all of these expressions are defined. That
is, we simply iterate applying all the letters of w as they appear from right
to left, and record the outcome until we reach an undefined expression

We can represent such a path e.g. as follows:

. . .mn+2
a2←− mn+1

a1←− mn
an←− . . . a2←− m1

a1←− m0,

or more simply, we shall represent it as 〈. . . ,mn, . . . ,m1,m0〉.
Supposing k is least such that ai[s](mk) is undefined, for some i, we say

that the path terminates after α− 1 = k steps with last value mk. We shall
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also use the phrase the (w, s)-path terminates before (an occurrence of) the
letter ai in this situation.

If on the other hand ai[s](mk) is defined, we use the phrase that the letter
ai occurs, or is applied (to mk), at step k + 1 in the path (although strictly
speaking, it is ai[s] that is applied).

Sometimes we are interested in the path merely as a set, rather than as a
sequence; so let

use(w, s,m) = {mi : i < α}.

(C) Of course, we identify N and ω, but prefer to denote this set as N in
the context of permutations. We denote by |A| the cardinality of A, for any
set A. We do not regard it as compulsory to decorate names in the forcing
language with dots and checks as in [9]; we shall nevertheless freely use such
decorations occasionally, with the goal of aiding the reader.

3. Coding into a generic group extension

Fix, for this section, a cofinitary group G ≤ S∞. We want to enlarge it by
σ∗ ∈ S∞, such that 〈G, σ∗〉 is cofinitary. This can be done using a forcing
invented by Zhang [22], which has proven extremely valuable in applications
(see [2, 23, 8, 24, 14, 7, 13]).

In Section 3.2, we introduce a new forcing Qz
G , such that in addition to

the above, every element of 〈G, σ∗〉 not already in G ‘codes’ a given, fixed
z ∈ 2N, in a certain sense.

Before we introduce this new forcing notion, we define our own version
of Zhang’s forcing, QG in Section 3.1, differing slightly from [22]. We then
analyze carefully how paths behave when conditions in QG are extended,
facilitating the treatment of Qz

G .

Note that in the case of countable G, Zhang’s QG from [22], our version
of QG described in §3.1, and the forcing Qz

G are all countable, i.e. particular
presentations of Cohen forcing.

3.1. Zhang’s forcing, revisited. We now turn to our definition of the
forcing to add a generic cofinitary representation of G ∗ F(X).

Definition 3.1 (The forcing QG).
(a) Conditions of QG are pairs p = (sp, F p), where s ∈ par(N,N) is

injective and F p ⊆WG,X \ G is finite.
(b) (sq, F q) ≤QG (sp, F p) if and only if sq ⊇ sp, F q ⊇ F p and for all

w ∈ F p, if m ∈ fix(w[sq]), then there is a non-empty subword w′ of
w such that use(w, sq,m) ∩ fix(w′[sp]) 6= ∅.
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For any condition p ∈ QG we write (sp, F p) if we want to refer to the
components of that condition.

If G is (V,QG)-generic, letting

σG =
⋃
p∈G

sp,

we have σG ∈ S∞ and 〈G, σG〉 is a cofinitary group which is isomorphic to
G ∗ F(X) via ρG,σG .

Note that in (b) above, we demand that if q ≤QG p and sq gives rise to
a new fixed point of w ∈ F p, then the (w, sq)-path of that fixed point must
meet a certain finite set of numbers, where this set depends only on p. We
will see below in Lemma 3.11 and 3.13 that this guarantees that 〈G, σG〉 is
cofinitary.

As is pointed out in [22, p. 42f.], one cannot replace (b) by the simpler

(b)′ (sq, F q) ≤QG (sp, F p) if and only if sq ⊇ sp, F q ⊇ F p and for all
w ∈ F p, if m ∈ fix(w[sq]), then m ∈ fix(w[sp]).

For with this simpler definition, supposing n ∈ fix(g), any condition p such
that X−1gX ∈ F p and n /∈ ran(sp) cannot be extended to any q so that
n ∈ ran(sq). Similar examples abound; (b) is formulated to pinpoint the
problem.

In a previous paper [6] by two of the present authors, allowing only so-
called ‘good words’ in F p made it possible to define ≤QG as in (b)′. Here, we
define ≤QG differently from [6] and also slightly differently from [22]. This
allows the coding to apply to arbitrary words (only subject to the obvious
constraint that they not be from G), while at the same time simplifying the
proofs of the Extension Lemmas (see below).

We now prove increasingly stronger versions of the Domain Extension
Lemma, culminating in a crucial lemma concerning the length of certain
paths (Lemma 3.4). This will considerably clean up the presentation when
we deal with the more complicated forcing Qz

G .

The following is implicit in [22]; for the convenience of the reader, we
include a new, very short proof.

Lemma 3.2 (Contingent Domain Extension for QG). Let s ∈ par(N,N)

and w ∈ WG,X be arbitrary, and suppose n ∈ N is such that n /∈ fix(w′[s])

for any non-empty subword w′ of w. Then for a cofinite set of n′, letting
s′ = s ∪ {(n, n′)}, we have that s′ is injective and fix(w[s′]) = fix(w[s]).
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Proof. Let W ∗ be the set of subwords of cyclic permutations of w and pick
n′ arbitrary such that

n′ /∈
⋃{

fix(w′[s]) : w′ ∈W ∗ \ {∅}
}
,

n′ /∈
⋃{

w′[s]i(n) : i ∈ {−1, 1}, w′ ∈W ∗
}
, and

n′ /∈ ran(s).

(3.1)

Clearly, (3.1) ensures that s′ is injective.
Assume towards a contradiction that m0 ∈ fix(w[s′])\fix(w[s]). Write the

beginning of the (w, s′)-path of m0 as

(3.2) . . .mk(3)
w′′
←− mk(2)

Xj

←− mk(1)
w′
←− mk(0) = m0

where w′, w′′ ∈ WG,X are the maximal subwords of w such that from mk(0)

to mk(1) and mk(2) to mk(3), the path contains no application of X to n or
of X−1 to n′; moreover, we ask that mk(1) = n when j = 1, mk(1) = n′

when j = −1. Clearly, we must allow either of w′, w′′ to be empty. This is
well-defined as m0 is not a fixed point of w[s].

Obviously, it makes no difference whether we use s′ or s in the following:

w′[s](mk(0)) = w′[s′](mk(0)) = mk(1),

w′′[s](mk(2)) = w′[s′](mk(0)) = mk(3).

First, we show that in fact w = w′′Xjw′. Towards a contradition, assume
not. Then by maximaliy of w′′, the path has the form

. . .
Xj′

←− mk(3)
w′′
←− mk(2)

Xj

←− mk(1)
w′
←− m0

We make some simple observations:

1. mk(2) = mk(3); for otherwise, n′ = (w′′)i[s](n) for some i ∈ {−1, 1},
contradicting the choice of n′.

2. Thus, w′′ 6= ∅, since on one side of w′′ we have X and on the other
X−1 and w is in reduced form.

3. As n′ /∈ fix(w′′[s]), we have that mk(2) = mk(3) = n.
4. So n ∈ fix(w′′[s]), contradicting the hypothesis of the lemma.

Thus, w = w′′Xjw′ and m0 = mk(3). We infer that n′ = (w′w′′)−j [s](n),
again contradicting the choice of n′. �

This puts us in the position to give a short proof of Lemmas 2.2 and 2.3
from [22]:

Lemma 3.3 (Domain Extension for QG). For any n ∈ N, the set of q such
that n ∈ dom(sq), is dense in Q.
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Proof. Fix p ∈ Q; we shall find a stronger condition q ∈ Q such that n ∈
dom(sq). Analogously to the previous proof, let F ∗ consist of all words which
are a subword of a cyclic permutation of a word in F p, and let n′ be arbitrary
such that

(3.3)

n′ /∈
⋃
{fix(w[s]) : w ∈ F ∗ \ {idN}},

n′ /∈
⋃{

w[s]i(n) : i ∈ {−1, 1}, w ∈ F ∗ ∪ {∅}
}
, and

n′ /∈ ran(s).

Note that (3.3) excludes only finitely many possible values for n′. Define
s′ = s ∪ {(n, n′)} and q = (s′, F p). As in the proof of Lemma 3.2, s is
injective.

Given w ∈ F p and supposing m0 ∈ fix(w[s′]) \ fix(w[s]), the proof of
the previous lemma shows that there is a subword w′ of w such that n ∈
fix(w′[s]). As moreover, n shows up in the (w, s′)-path of m0, we have

use(w, s′,m) ∩ fix(w′[s]) 6= ∅.

Thus, q ≤QG p. �

A crucial observation for the following discussion of Qz
G is that when ex-

tending the domain of sp for a given condition p, we have fine control over
the length of paths that result from this extension.

Lemma 3.4 (Lengths of paths). Fix w ∈ WG,X and m ∈ N. Moreover, let
s ∈ par(N,N) and n ∈ N \ dom(s) be given.

Then for cofinitely many n′ ∈ N, if we let s′ = s ∪ {(n, n′)} the following
obtains:

1. If the (w, s)-path of m terminates with last value n before an occur-
rence of X, the (w, s′)-path of m contains exactly one more applica-
tion of X than does the (w, s)-path.

2. If the (w, s)-path of m does not terminate with last value n before an
occurrence of X, path(w, s′,m) = path(w, s,m).

Proof. Let E = dom(s)∪ ran(s)∪{n}∪ {m} and W ∗ be the set of subwords
of cyclic permutations of w. Suppose n′ is arbitrary such that

n′ /∈
⋃{

fix(w′[s]) : w′ ∈W ∗ \ {∅}
}
and

n′ /∈
⋃{

w′[s]i[E] : i ∈ {−1, 1}, w′ ∈W ∗
}
.

(3.4)

For Case 1 of the lemma, suppose that the (w, s)-path of m terminates
after k steps with last value mk = n before an occurrence of X. In the
(w, s′)-path we have on the contrary that mk+1 = n′.
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If the next letter to be applied to mk+1 = n′ at step k + 2 in this path
is X, the path terminates here, after k + 1 steps with last value n′, since
n′ /∈ dom(s′) by (3.4).

If the next letter to be applied to mk+1 = n′ at step k + 2 in this path is
g ∈ G \ {idN} the path terminates as otherwise, n′ ∈ g−1[dom(s′) ∪ ran(s′)],
which implies n′ ∈ g−1[E] or n′ ∈ fix(g), contradicting (3.4).

In Case 2 of the lemma, show path(w, s′,m) = path(w, s,m). Suppose
that the (w, s)-path of m terminates after k steps with last value mk before
an occurrence of Xj , j ∈ {−1, 1}. If j = 1, mk 6= n by assumption; and
as the (w, s)-path terminates with mk, we have mk /∈ dom(s) ∪ {n}, so
(w, s′)-path terminates as well.

So assume towards a contradiction that j = −1 and mk+1 in the (w, s′)-
path of m is defined. As the (w, s)-path terminates with mk, before an
occurrence of X−1, while (w, s′)-path does not terminate, mk = n′. Thus,
n′ ∈ w′[s](m) for a subword w′ of w, contradicting (3.4). �

Remark 3.5. The requirements in (3.4) were chosen to be easy-to-state rather
than minimal (and so were those in (3.1) and (3.3)).

All other proofs regarding QG will be omitted (but note that they can be
easily inferred from their counterparts for Qz

G in the next section).

3.2. Coding into a generic cofinitary group extension. Our next goal
is to define, given z ∈ 2N, a forcing Qz

G such that whenever G is (V,Qz
G)-

generic, the following holds: There exists σG ∈ S∞ such that for each σ ∈
〈G, σG〉 \ G, we have z ≤T σ.

First, we describe the algorithm by which z is computed from an element
of 〈G, σG〉 \ G. Since our forcing uses finite approximations to σG, we define
the coding for elements of par(N,N).

Definition 3.6 (Coding).
(1) We say that σ ∈ par(N,N) codes a finite string t ∈ 2l with parameter

m ∈ N if and only if

(∀k < l) σk(m) ≡ t(k) mod 2.

We say it exactly codes t (with parameter m) if and only if it codes
t and in addition, σl(m) is undefined.

(2) We say that σ ∈ par(N,N) codes z ∈ 2N with parameter m if and
only if

(∀k ∈ N) σk(m) ≡ z(k) mod 2.

For the rest of this section, fix an arbitrary z ∈ 2N. Now we can define
the forcing.
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Definition 3.7 (Definition of Q = Qz
G).

(A) Conditions of Q are triples p = (sp, F p, m̄p) s.t.
(1) (sp, F p) ∈ QG
(2) m̄p is a partial function from F p to N.
(3) For any w ∈ dom(m̄p) there is l ∈ ω such that w[sp] exactly

codes z � l with parameter m̄p(w).
(4) If w,w′ ∈ dom(m̄p) and w 6= w′,

use(w, sp, m̄p(w)) ∩ use(w′, sp, m̄p(w′)) = ∅

(B) (sq, F q, m̄q) ≤ (sp, F p, m̄p) if and only if both
(1) (sq, F q) ≤QG (sp, F p),
(2) m̄q extends m̄p as a function.

For any condition p ∈ Q we write (sp, F p, m̄p) if we want to refer to the
components of that condition.

Note that (A3) ensures that for any p ∈ Q and w ∈ dom(m̄p), the path
under (w, sp) of m̄p(w) is finite (although other paths may be eventually
periodic and thus infinite). Also note that by (A4), |G| is collapsed to ω by
Q whenever G is uncountable in the ground model.

For a (V,Q)-generic G, as in the previous section we let

σG =
⋃
p∈G

sp.

We now show in a series of lemmas that 〈G, σG〉 is a cofinitary group which
is isomorphic to G ∗ F(X) and for any τ ∈ 〈G, σG〉 \ G, τ codes z.

We begin with a Lemma showing that σG is forced by Q to be totally
defined on N.

Lemma 3.8 (Domain Extension).
1. For any n ∈ N, the set of q such that n ∈ dom(sq), is dense in Q.
2. In fact, suppose p ∈ Q and n ∈ N are such that for some w∗ ∈WG,X

and m∗ ∈ N, n is the last value of path(w∗, sp,m∗) and this path
terminates before an occurrence of X. Then one can find q ∈ Q such
that q ≤ p and path(w∗, sq,m∗) contains exactly one more application
of X, and no further application of X−1, than does path(w∗, sp,m∗).

While our only use of Part 2 of the lemma is to simplify the proof that
ρG,σG is forced to be injective (Lemma 3.15), a fact which is not needed for
the main result of this paper, its proof presents no additional burden.

Before we prove the lemma, to avoid repetition, we introduce the following
terminology: For w ∈ WG,X and j ∈ {−1, 1}, call an occurrence of Xj in w
critical if there is no occurrence of X or X−1 in w to its left. Otherwise, we
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call it an uncritical occurrence. Clearly, it is through a critical occurrence of
X (resp. X−1) in some word in dom(m̄) that the coding requirements from
(A3) restrict our possibilities to extend dom(sp) (resp. ran(sp)).

Proof of Lemma 3.8. Let p ∈ Q, w∗ ∈ WG,X , and m∗, n ∈ N be as in the
statement of the lemma and suppose n 6∈ dom(sp). We will find n′ such that
for s′ = sp ∪ {(n, n′)}, q = (s′, F p, m̄p) is a condition stronger than p.

Write s for sp and m̄ for m̄p. Let

E = ran(s) ∪ dom(s) ∪ {n} ∪ ran(m̄) ∪ {m∗},

and let F ∗ consist of all words which are a subword of a cyclic permutation
of a word in F p ∪ {w∗}. The first requirement we make is that n′ be chosen
such that

(3.5)
n′ /∈

⋃
{fix(w[s]) : w ∈ F ∗ \ {∅}} and

n′ /∈
⋃{

g−1wi[s][E] : i ∈ {−1, 1}, w ∈ F ∗, g ∈ F ∗ ∩ G
}
.

Note that (3.5) excludes only finitely many possible values for n′. The taking
of preimages under g ∈ F ∗ ∩ G in (3.5) serves the sole purpose of ensuring
that the following obtains:

(3.6) g(n′) /∈
⋃
{use(w, s, m̄(w)) : w ∈ dom(m̄)}

for g = idN as well as for all g ∈ G \ {idN} occuring in a word from F p.

If for some w ∈ dom(m̄), n appears in the (w, s)-path of m̄(w) before
a critical occurrence of X, we must make an additional requirement. So
fix such w, and note that there is no other w′ ∈ dom(m̄) in whose path n
appears. Let l be such that w[s] exactly codes z � l with parameter m̄(w).
Further, suppose w = gXw′, where w′ ∈WG,X and we allow g ∈ G to be idN
but no cancellation in Xw′. Now in addition to (3.5), require that g(n′) be
even if z(l) = 0 and odd if z(l) = 1.

To see that q is a condition, we verify (A3) and (A4). For (A3), towards
a contradiction, let m = m̄(w) and assume wl+1[s′](m) 6≡ z(l) (mod 2). As
w[s] exactly codes an initial segment of z, the (w, s′)-path is longer than the
(w, s)-path of m. Thus, by choice of n′ and the proof of Lemma 3.4, we
have that Case 1 in the statement of Lemma 3.4 holds: The (w, s)-path of m
terminates with last value n before an occurrence of X, and the (w, s′)-path
of m continues for exactly one or two more steps, as follows:

wl+1[s′](m)
g←− n′ X←− n←− . . . ,

where we allow g ∈ G to be idN. Thus, the occurrence of X in the above is
critical; but then n′ was chosen so that wl+1[s′](m) = g(n′) ≡ z(l) (mod 2),
in contradiction to the assumption.
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We have seen that if (w, s)-path and the (w, s′)-path of m̄(w) differ for
w ∈ dom(m̄), then the latter must terminate with n. Thus, by (A4), at most
one such path acquires new values, and these were seen to be n′ and possibly
g(n′), where g ∈ G occurs in a word in dom(m̄). By (3.6), requirement (A4)
holds of q, allowing us to conclude that q is a condition in Q.

We end the proof of Part 1 of the lemma by quoting the proof of the
Domain Extension Lemma for QG to conclude that q ≤ p.

For Part 2 of the lemma, note that by the proof of Lemma 3.4, indeed
the (w∗, s)-path of m∗ contains exactly one more application of X, and no
further application of X−1, than does the (w∗, s′)-path of m∗. �

Remark 3.9. Again, the requirements in (3.5) are by no means minimal.

The next lemma shows that Q forces σG to be onto N.

Lemma 3.10 (Range Extension).
1. For any n ∈ N, the set of q such that n ∈ ran(sq), is dense in Q.
2. In fact, suppose p ∈ Q and n ∈ N are such for some w∗ ∈WG,X and
m∗ ∈ N, n is the last value of path(w∗, sp,m∗) and this path termi-
nates before an occurrence of X−1. Then one can find q ∈ Q such
that q ≤ p and path(w∗, sq, m̄∗) contains exactly one more application
of X−1, and no further application of X, than does path(w∗, sp, m̄∗).

Proof. The lemma is entirely symmetrical to the Domain Extension Lemma.
By symmetry, the proofs of Lemmas 3.2, 3.3, 3.4 and 3.8 can easily be
adapted. �

By the previous two lemmas, Q σĠ ∈ S∞. By the next two lemmas, Q
forces that for all w ∈WG,X , w[σĠ] codes z, as promised:

Lemma 3.11. For any w ∈ WG,X , the set of q such that w ∈ F q is dense
in Q.

Proof. Simply observe that (sp, F p ∪ {w}, m̄p) is a condition in Qz
G . �

Lemma 3.12 (Generic Coding). If p ∈ Q, w ∈WG,X \G and l ∈ N, there is
q ≤ p such that w ∈ dom(m̄) and q exactly codes z � l with parameter m̄(w).

Proof. Fix p, w and l as above. We may assume w ∈ dom(m̄p); otherwise,
find an n′ ∈ N such that (3.5) holds and replace F p by F p ∪ {w} and m̄p by
m̄p ∪ {(w, n′)} in p and call the result p′. By (3.5), (A4) is satisfied for p′

and by the argument in the proof of Lemma 3.4, the (w, sp
′
)-path of n′ will

terminate before the right-most application of X or X−1 in w. As sp = sp
′ ,

this suffices to show p′ is a condition below p.
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So supposing w ∈ dom(m̄p), let m′ be the last value of the (w, sp)-path of
m̄(w) and assume this path terminates before an occurrence of the letter X.
By the Domain Extension Lemma, we may find q ≤ p such thatm′ ∈ dom(sq)

and the (w, sq)-path at m̄(w) terminates either at the next step or after one
further application of a letter in G \ {idN}.

If instead the (w, sp)-path of m̄(w) terminates before an occurrence of the
letter X−1, argue similarly using the Range Extension Lemma.

Repeating the argument if necessary, we obtain a condition q such that sq

exactly codes z � l. �

By the next lemma, 〈G, σG〉 is forced to be cofinitary. The reader may
care to notice that the proofs of the remaining lemmas, up to Theorem 4.2,
go through (sometimes in simpler form) for 〈QG ,≤G〉 (as was the case for
Lemma 3.11).

Lemma 3.13. For all w ∈WG,x, Q fix(w[σĠ]) is finite.

Proof. We shall show that whenever p ∈ Q satisfies w ∈ F p, there is N such
that p  fix(w[σĠ]) \ fix(w[sp]) has size at most N . Thus, the set of p which
force fix(w[σĠ]) to be finite, is dense.

So fix p satisfying w ∈ F p and let q ≤ p be arbitrary. Consider

(3.7) n ∈ fix(w[sq]) \ fix(w[sp]).

Then, letting 〈mk, . . . ,m0〉 be the (w, sq)-path of n, we have that for some
l ≤ k, ml ∈ fix(u[sp]), for some subword u of a word in F p. For each n

satisfying (3.7), pick some such l = l(n) and u = u(n) and let m(n) = ml ∈
fix(u[sp]). If we have

n, n′ ∈ fix(w[sq]) \ fix(w[sp]),

such that l(n) = l(n′), u(n) = u(n′) and m(n) = m(n′), it must be that
n = n′ (by injectivity).

Let N ′ be the number of triples (l, u,m) such that l is less than the length
of w, u is a subword of w, andm ∈ fix(u[sp]). We have that no q ≤ p can force
that (w[σĠ]) has more than N ′ fixed points not already in fix(w[sp]). �

The next lemma shows that our construction yields a group which is max-
imal with respect to permutations from the ground model. It is a special
case of the P-generic Hitting Lemma in §4.

Lemma 3.14 (Generic Hitting). For any τ ∈ S∞ and m ∈ N, the set of q
such that there is n ≥ m with sq(n) = τ(n), is dense.

Proof. The proof is a warm-up for the P-generic Hitting Lemma below. Let
p ∈ Q, τ ∈ S∞ and m ∈ N be given. Find n ∈ N such that n ≥ m,
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and such that letting n′ = τ(n), n′ satisfies the first requirement given in
the proof of the Domain Extension Lemma, i.e. (3.5) with s = sp, E =

dom(sp) ∪ ran(sp) ∪ {n} and F ∗ precisely as defined there.
To see this is possible, note that (3.5) holds for n′ = τ(n) if and only if

for E′ = dom(s) ∪ ran(s),

n /∈
⋃
τ−1

[{
fix(w[s]) : w ∈ F ∗ \ {∅}

}]
,

n /∈
⋃
τ−1

[{
g−1w′[s]i[E′] : i ∈ {−1, 1}, w′ ∈ F ∗, g ∈ F ∗ ∩ G

}]
, and

n /∈
⋃{

fix(τ−1g−1w′[s]i) : i ∈ {−1, 1}, w′ ∈ F ∗, g ∈ F ∗ ∩ G
}
.

(3.8)

These requirements exclude only finitely many n, proving n as above can
indeed be found.

By the proof of the Domain Extension Lemma, letting s′ = sp∪{(n, τ(n))},
q = (s′, F p) is a condition stronger that p. �

For the sake of completeness we also show the following:

Lemma 3.15. Q forces that ρG,σG is injective.

Proof. In fact, we show that for any p ∈ Q, w ∈ WG,X \ G and τ ∈ S∞, we
can find q ≤ p such that

q Q w[σĠ] 6= τ̌ .

By taking inverses, we can assume without loss of generality that w starts
with X and ends with Xj for j ∈ {−1, 1}. Suppose w has length k.

Pick n /∈ dom(sp)∪ ran(sp), or in any case such that the (w, sp)-path of n
terminates before the kth step. If necessary, by repeatedly using Part 2 of the
Domain extension Lemma or the Range extension Lemma, find p′ ≤ p such
that the (w, sp

′
)-path of n terminates after k− 1 steps, before the first letter

from the left in w, i.e. X. Let m be its last value. As m /∈ dom(sp
′
), we may

easily extend p′ once more to obtain q ∈ Q, q ≤ p′ such that sq(m) 6= τ(n),
since the proof of the Domain Extension Lemma shows we can chose sq(m)

arbitrarily in a cofinite subset of N. �

We sum up the crucial properties of Qz
G in the following theorem:

Theorem 3.16. Suppose G ≤ S∞ is cofinitary, z ∈ 2N and M is a transitive
∈-model satisfying the axiom of separation and such that {G, z} ⊆M (whence
Qz
G ∈M). For any (M,Qz

G)-generic filter G, letting

σG =
⋃
p∈G

sp

we have:
(I) σG ∈ S∞
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(II) 〈G, σG〉 is a cofinitary group isomorphic to G ∗ F(X).
(III) For any word w ∈WG,X \G, we have that w[σG] codes z in the sense

of definition 3.6, and thus z ≤T w[σG].
(IV) For any τ ∈ cofin(S∞) ∩M such that τ /∈ G, there is no cofinitary

group G′ such that

〈G, σG〉 ∪ {τ} ⊆ G′.

Proof. The only fine point here is that we do not assume that M can define
the forcing relation. We thus have to circumvent its use.

The Domain and Range Extension Lemmas can be seen as describing a
countable family of dense subsets of Q, and by separation each of these dense
subsets of Q is an element of M . Thus G meets each of them, proving (I).

By analogous arguments, (II), (III) and (IV) are obtained using dense sets
described in (the proofs of) Lemma 3.11, the Generic Coding Lemma 3.12,
Lemma 3.13, Lemma 3.15, and the Hitting Lemma 3.2. �

4. A co-analytic Cohen-indestructible mcg

We now use the ideas from the previous section to prove the main results
of this paper, Theorem 4.2 and Corollary 4.4 below. At the same time, we
give a new proof of Kastermans’ result that there is a Π1

1 mcg in L, based
on the idea of finding generics over countable models.

We make crucial use of the following lemma, the proof of which draws
inspiration from [5, Theorem 4.1]. The lemma implies that for any forcing
P ∈ V, the product P × Qz

G forces that the generic group extension added
by Qz

G is maximal with respect to S∞ ∩VP.

Lemma 4.1 (P-generic hitting). Let G, z and Q = Qz
G be as in Theorem

3.16. Let an arbitrary forcing P, a P-name τ̇ , a condition (p, q) ∈ P×Q and
k ∈ ω be given and suppose p P τ̇ ∈ S∞.

Then there is (p′, q′) ∈ P×Q such that (p′, q′) ≤P×Q (p, q) and

(p′, q′) P×Q (∃n ∈ N) n > k ∧ σĠ(n) = τ̇(n).

Proof. Fix P, τ̇ and (p, q) ∈ P×Q as in the statement of the lemma. Let G
be (P,V)-generic and such that p ∈ G.

Working in V[G], argue just as in the proof of the Generic Hitting Lemma:
Find n such that for s = sq, F ∗ equal to the set of subwords of cyclic
permutations of a word in F q, E′ = dom(sq) ∪ ran(sq) and τ = τ̇ [G], (3.8)
holds. Letting n′ = τ̇ [G], we can find p′ ∈ G extending p such that

p′ P τ̇(ň) = ň′.

Just as in the proof of the Generic Hitting Lemma, by choice of n and n′,
we have that for E = E′ ∪ {n}, (3.5) holds in V.
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By the Domain Extension Lemma we can extend q to q′ ∈ Q such that

q′ Q σĠ(ň) = ň′,

and we are done. �

We are now ready to prove the main theorem of this paper:

Theorem 4.2. Assume V = L. Let G0 be any countable cofinitary group,
and fix c ∈ 2N such that G0 is ∆1

1(c) as a subset of NN. Then there is a
Cohen-indestructible Π1

1(c) maximal cofinitary group which contains G0 as a
subgroup.

While for the appropriate choice of G0, our method will produce a group
which is isomorphic to Kastermans’ group from [11], these groups are not
outright identical. In fact, we shall see our group is Cohen-indestructible,
which is unlikely to be the case for Kastermans’ group.

Our argument resembles Miller’s classical construction of co-analytic sets
given in [19].

To simplify matters, we adopt the following convention: Given x ∈ 2N, let
Ex ⊆ ω2 be the binary relation defined by

mEx n ⇐⇒ x(2m3n) = 0.

If it is the case that Ex is well-founded and extensional, we denote by Mx

the unique transitive ∈-model isomorphic to 〈ω,Ex〉. Note also that for any
countable transitive set M , we can find x ∈ 2N such that 〈M,∈〉 = Mx.
Moreover, if M ∈ Lωy1 , for y ∈ 2N, then we may find such x ∈ Lωy1 .

Proof. Fix G0 as above. Since the argument relativizes to any parameter c,
we may suppress c and assume that G0 is (lightface) ∆1

1.

Work in L. For each ξ < ω1 we shall define

• δ(ξ), a countable ordinal,
• zξ ∈ 2N ∩ Lδ(ξ)+ω,
• σξ ∈ S∞ ∩ Lδ(ξ)+ω.

We define these so that the following is satisfied for each ξ < ω1:

(i) δ(ξ) is the least ordinal δ above supν<ξ δ(ν) such that Lδ projects to
ω and G0 ∈ Lδ.

(ii) zξ is the unique code for the theory of Lδ(ξ), obtained via the canon-
ical definable surjection from ω onto Lδ(ξ) (see, e.g. [10]).

(iii) Letting Gξ = { σν : ν < ξ} ∪ G0, we have that Gξ is cofinitary and
Gξ ∈ Lδ(ξ).
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(iv) σξ = σG, where G is the unique (Lδ(ξ),Q
zξ
Gξ)-generic obtained by hit-

ting dense subsets of Qzξ
Gξ in the order in which they are enummerated

by the canonical definable surjection from ω onto Lδ(ξ).

Obtaining such a sequence is straight-forward, since (i) and (ii) determine
〈(δ(ξ), zξ) : ξ < ω1〉, and assuming (iii) by induction, (iv) uniquely deter-
mines σξ from δ(ξ), zξ and the sequence 〈σν : ν < ξ〉. Gξ+1 is a cofinitary
group by induction and Theorem 3.16.

Finally, we let
G =

⋃
ξ<ω1

Gξ,

which is a cofinitary group by (iii) above.

Claim 4.3. As a subset of NN, G is Π1
1.

Proof of Claim. Let Ψ(~x) be the formula saying that for some ξ, ~x is a
sequence

~x = 〈(ρ(ξ), zξ, σξ) : ξ ≤ ζ〉,
such that for every ξ < ζ, (i), (ii) and (iv) above hold. That is, Ψ(~x) holds
if and only if ~x is an initial segment of our construction above.

Note that Ψ(~x) is absolute for all transitive models of a certain fragment
of ZFC—say, Mathias’ MW from [18]—satisfied by all initial segments of the
L-hierarchy of limit height.

Thus, membership in G is determined by a Σ1(H(ω1)) formula: σ ∈ G
holds if and only if

(4.1) there exists a countable ∈-model M of MW s.t. for some ~x ∈M ,

M � “~x = 〈(δζ , zζ , τζ) : ζ ≤ ξ〉) ∧Ψ(~x)” and σ = (τξ)
M .

In fact, examining our construction of the sequence 〈(δ(ξ), zξ, σξ) : ξ < ω1〉,
one finds that for σ = σξ, we can take M in (4.1) to be Lδ(ξ)+ω.

Let Φ(y, σ) be the formula expressing that Ey is well-founded and exten-
sional, My |= MW and for some ~x ∈My,

My � “~x = 〈(δζ , zζ , τζ) : ζ ≤ ξ〉) ∧Ψ(~x)”

with σ = (τξ)
My . We can take Φ(y, σ) to be a Π1

1 formula.

Thus (4.1) is equivalent to

(∃y ∈ 2N) Φ(y, σ).

We now make use of the fact that y as in the preceding formula can be found
effectively in σ.
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Since a well-order of length δ(ξ) is computable in zξ and zξ ≤T σξ, we
have δ(ξ) < ω

σξ
1 . Thus, a y ∈ 2N such thatMy = Lδ(ξ)+ω can be found inside

Lωσ1 when σ = σξ. This gives us “⇒” in the following (“⇐” is obvious):

σ ∈ G ⇐⇒ (∃y ∈ 2N ∩ Lωσ1 ) Φ(y, σ).

By Mansfield-Solovay [17, Corollary 4.19, p. 53], the right-hand side can be
rendered as a Π1

1 formula, proving the claim. �Claim.

Since any σ ∈ S∞ appears in some Lδ(ξ), maximality of G follows from
(IV) of Theorem 3.16, and (iv) above. In fact, we show the stronger state-
ment that G is Cohen-indestructible:

Towards a contradiction, suppose we have a C-name τ̇ and p ∈ C such
that

p C 〈Ǧ, τ̇〉 is cofinitary.

We may assume that there is ξ < ω1 such that τ̇ ∈ Lδ(ξ). In fact, we may
assume that there is a ∆0(τ̇) formula Ψ(x, y, z) such that for all p′ ∈ C below
p and all n, n′ ∈ N,

p C τ̇(ň) = ň′

is equivalent to Ψ(p, n, k) (by choosing a ‘nice’ name).
We may also assume (by strengthening p if necessary) that there is N such

that

(4.2) p C |{n ∈ N : σ̌ξ(n) = τ̇(n)}| = Ň .

By repeatedly using Lemma 4.1, the set D of q ∈ Qzξ
Gξ such that for some

p′ ∈ C stronger than p and for some set Z ⊆ dom(sq) of size N + 1 we have

(4.3) (∀n ∈ Z) p′ C τ̇(ň) = šq(ň)

is dense in Qzξ
Gξ . As (4.3) can be replaced by a ∆0(τ̇) formula, D ∈ Lδ(ξ).

Thus, the generic which gave rise to σξ meets D and we conclude that for
some p′ ∈ C stronger than p and for some set Z ⊆ N of size N + 1 we have

(∀n ∈ Z) p′ C τ̇(ň) = σ̌ξ(ň),

contradicting (4.2); thus, G is Cohen-indestructible. �

We obtain as an immediate corollary:

Corollary 4.4. Theorem 1.2 holds: The existence of a Π1
1 maximal cofinitary

group is consistent with ¬CH (in fact, with arbitrarily large continuum),
provided ZFC is consistent.
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5. Questions

Considering the many known models where some inequality holds between
ag and another cardinal invariant of the continuum, the methods developed
in the present paper suggest to consider the following definable analog:

For Γ an arbitrary pointclass, let ag(Γ) be the least cardinal κ such that
there is a mcg G ∈ Γ of size κ.

Question 5.1. How does ag(Π1
1) compare to other cardinal invariants of the

continuum?

Lastly, we would like to mention the following long-standing open question
in relation to definable mcgs:

Question 5.2. Can a mcg be Borel (equivalently, analytic)?

Note that it is still open whether ZFC rules out that a mcg be closed.
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