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We study maximal orthogonal families of Borel probability measures on 2¢ (abbreviated m.o.
families) and show that there are generic extensions of the constructible universe L in which each
of the following holds:

(1) There is a Al-definable well order of the reals, there is a II3-definable m.o. family, there are
no Yi-definable m.o. families and b = ¢ = w3 (in fact any reasonable value of ¢ will do).

(2) There is a A}-definable well order of the reals, there is a IT}-definable m.o. family, there are
no Yi-definable m.o. families, b = w; and ¢ = ws.
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1 Introduction

Let X be a Polish space, and let P(X) denote the Polish space of Borel probability measures on
X, in the sense of [9, 17.E]. Recall that if u,v € P(X) then pu and v are said to be orthogonal,
written plv, if there is a Borel set B C X such that u(B) = 0 and v(X \ B) = 0. A set of
measures A C P(X) is said to be orthogonal if whenever p,v € A and p # v then p L v. A
mazximal orthogonal family, or m.o. family, is an orthogonal family .4 C P(X) which is maximal
under inclusion.

The present paper is concerned with the study of definable m.o. families. A well-known result to
Preiss and Rataj [13] states that there are no analytic m.o. families, and in a recent paper [3] it was
shown by Fischer and Térnquist that if all reals are constructible then there is a II} m.o. family.
The latter paper also raised the question how restrictive the existence of a definable m.o. family
is on the structure of the real line, since it was shown that I1} m.o. families cannot coexist with
Cohen reals.

In the present paper we study II} m.o. families in the context of ¢ > wy, with the additional
requirement that there is a Aé -definable wellorder of R. Our main results are:
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Theorem 1 It is consistent with ¢ = b = w3 that there is a Aé—deﬁnable wellorder of the reals, a
1} definable maximal orthogonal family of measures and there are no 3i-definable maximal sets
of orthogonal measures.

There is nothing special about ¢ = w3. In fact the same result can be obtained for any reasonable
value of c.

Theorem 2 It is consistent with b = w1, ¢ = w9 that there is a A%—deﬁnable wellorder of the reals,
a 11} definable maximal orthogonal family of measures and there are no X-definable maximal sets
of orthogonal measures.

Taken together these theorems indicate that the existence of a II} m.o. family does not seem
to impose any severe restrictions on the structure of the real line. On the other hand, we show
(Proposition 1) that X} m.o. families cannot coexist with either Cohen or random reals, which is
why in the models produced to prove Theorems 1 and 2 there are no X3 m.o. families.

The theorems of this paper belong to a line of results concerning the definability of certain combi-
natorial objects on the real line and in particular the question of how low in the projective hierarchy
such objects exist. In [12] Mathias showed that there is no ¥i-definable maximal almost disjoint
(mad) family in [w]*. Assuming V = L, Miller obtained (see [11]) a II} mad family in [w]*.

The study of the existence of definable combinatorial objects on R in the presence of a projective
wellorder of the reals and ¢ > wy was initiated in [1], [4] and [2]. The wellorder of R in all those
models has a A}-definition, which is indeed optimal for models of ¢ > ws, since by Mansfield’s
theorem (see [7, Theorem 25.39]) the existence of a Y}-definable wellorder of the reals implies that
all reals are constructible. The existence of a II3-definable w-mad family in [w]* in the presence
of ¢ = b = wy was established by Friedman and Zdomskyy in [4]. In the same paper, referring to
earlier results (see [14] and [8]) they outlined the construction of a model in which ¢ = ws and there
is a II-definable w-mad family: Start with the constructible universe L, obtain a II}-definable
w mad family and proceed with a countable support iteration of length wy of Miller forcing. The
techniques were further developed in [2] to establish a model in which there is a I1}-definable w-
mad family and ¢ = b = w3. In particular, in the models from [4] and [2], there are no maximal
almost disjoint families of size < ¢ and so the almost disjointness number has a II}-witness.

The present paper combines the encoding techniques of [3] with the techniques of [1, 4, 2] to obtain
Theorems 1 and 2. We note that one significant difference from the situation for mad families is
that m.o. families always have size ¢ (see [3, Proposition 4.1}).
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Tornquist), as well as a Marie Curie grant from the European Union no. TRG-249167 (Térnquist).
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2 Preliminaries

In this section, we briefly recall the coding of probability measures on 2 and the encoding technique
for measures introduced in [3].

Let X be a Polish space. Recall that measures if p,v € P(X) then p is said to be absolutely
continuous with respect to v, written p < v, if for all Borel subsets of X we have that v(B) =0
implies that u(B) = 0. Two measures pu,v € P(2¥) are called absolutely equivalent, written p =~ v,
if p<<vand v < p.

If s €2<% welet Ny ={x €2¥:sC x} be the basic neighbourhood determined by s. Following
[3], we let

p(29) = {f : 25 = [0,1] : f(0) = L A (Vs € 2°%) f(s) = f(s70) + f(s"1)}.

The spaces p(2*) and P(2“) are homeomorphic via the recursively defined isomorphism f — py
where py € P(2%) is the measure uniquely determined by requiring that pr(Ns) = f(s) for all
s € 2<¥. We call the unique real f € p(2¥) such that = ps the code for p. The identification of
P(2¥) and p(2¥) allow us to use the notions of effective descriptive set theory in the space P(2¥).
For instance, the set P.(2¥) of all non-atomic probability measures on 2 is arithmetical because
the set p.(2¥) = {f € p(2¥) : puy is non-atomic} is easily seen to be arithmetical, as shown in [3].

We will use the method of coding a real z € 2“ into a measure p € P.(2¥) introduced in [3]. For
convenience we repeat the construction in minimal detail. Given p € P.(2¥) and s € 2<% we let
t(s, ) be the lexicographically least ¢ € 2<% such that s C ¢, u(Ny~g) > 0 and pu(Np~p) > 0,
if it exists and otherwise we let ¢(s,u) = (). Define recursively ti, € 2<¢ by letting tf = 0 and
th.1 = t(th 0,p). Since p is non-atomic, we have Ih(t) ;) > Ih(t;). Let th, = Up_ytn. For
f €pc(2¥) and n € wU{oo} we will write th for th7. Clearly the sequence (t£ :n € w) is recursive
in f.

Define the relation R C p.(2¥) x 2¥ as follows:

R(f,2) = (Fn€w)(0n) = 1o (F(70) = 2 F(E) A (1) = 5 (1))

~ 1 ~ 2
A(z(n) =0 & F(#h70) = S () A F(EL1) = SF(H))-
Whenever (f,z) € R we say that f codes z. Note that dom(R) = {f € p.(2¥) : (32)R(f,2)} is
19 and so the function r : dom(R) — 2¥, where 7(f) = 2 if and only if (f,2) € R, is also IIV. If
v is a measure such that v = py for some code f, then let r(v) = r(f). The key properties of this
construction is contained in the following Lemma (see [3, Coding Lemmal):

Lemma 1 There is a recursive function G : pc(2¥) x 2* — p.(2*) such that ug(s.) =~ py and
R(G(f,z),z) for all f € p.(2¥) and 2z € 2¥.
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The proofs of Theorems 1 and 2 use the following result, which we now prove.

Proposition 1 Let a € R and suppose that there either is a Cohen real over L[a] or there is a
random real over L[a]. Then there is no ¥i(a) m.o. family.

We first need a preparatory Lemma. In 2% consider the equivalence FE; defined by

zFEy <— Zw<oo.

We identify 2¢ with Z% and equip it with the Haar measure p.

Lemma 2 Let A C 2¥ be a Borel set such that p(A) > 0. Then E; <p E; [ A, where E; [ A is
the restriction of E; to A.

Notation: The constant 0 sequence of length n € wU {co} is denoted 0™. If A C 2¥ and s € 2<%
let
Ay ={r€2¥:5 x € A},

the localization of A at s.

Proof of Lemma 2 Without loss of generality assume that A C 2% is closed. We will define
qn € W, Spi, St € 2<% recursively for all n € w, i € {0,1} and ¢ € 2<% satisfying

(1) go =0 and gn41 = gn + Ih(sn0).

(2) so; =0 and lh(sp;) =1h(sp1-4) > 0 when n > 0.

(3) sp =10 and s;~; = sy sm(e)41,; for all £ € 2<¥, i € {0,1}.
lh(sp41, Sn+t1,0(k)—sny1,1(k

() oh s Tho) bt < 1

(5) N, CA

(6) If t€2" then pu(A,)) >1-27".

Suppose this can be done. We claim that the map 2% — A : x +— a, defined by
Ay = U Szin
new
is a Borel (in fact, continuous) reduction of E; to E; [ A. To see this, fix z,y € 2* and note that
by (4) we have that

oo lh(sni1,0)

|x(n |s n+1,x(i)(k) — Sp+1, (i)(k)| . |laz(n) — ay |z(n
; n+1 <nZ:O z_: Qn+k+1y *Z n+1 <2nz: n+1

n=0

so that xEry if and only if a,Eja,.
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We now show that we can construct a scheme satisfying (1)—(6) above. Suppose qi, si; and s;
have been defined for all k < n and t € 25", It is enough to define s,,41,; satisfying (4)—(6). Define
o a(k)

fan 122 =[0,00] : fy,(z) = ];OW'

It is clear that fg, (Ngr) is dense in [0, 00] for all k € w. Let
A = {$ € A: lim M(A(z(k‘)) — 1},
k—oo

i.e, the set of points in A of density 1. By the Lebesgue density theorem [9, 17.9] we have u(A\A’) =
0. Let A” = (N;con A’(St) and note that by (6) we have u(A”) > 0. Thus the set of differences
A" — A" contains a neighborhood of 0% by [9, 17.13]. It follows that there are xg,z1 € A” such
that

[e.9]

1 SZ’xO(k)_xl(k)‘S 2
n—+ 2 prd gn+k+1 n—+ 2

Since all points in A’(St) have density 1 in A’(St) there is some kg € w such that

(Al pihg) > 1277
for all ¢t € 2™. Defining s,41; = x; | ko, it is then clear that (4)—(6) holds. O

Proof of Proposition 1 As the proof easily relativizes, assume that a = 0. We proceed exactly
as in [3, Proposition 4.2]. Suppose A C P(2%) is a ¥} m.o. family. Recall from [10] and [3, p.
1406] that there is a Borel function 2¢ — P(2¥) : x + p” such that

vEry = p* = p?
and

By = p* LY.
Define as in [3, Proposition 4.2] a relation @ C 2¥ x P(2¥)“ by

Qz, (vn)) <= (Vn)(vn € ANy L ") AN (V) (e L u* — 3n)vy, L p)

and note that this is ¥} when A is. Note that Q(x,(vy,)) precisely when (v,) enumerates the
measures in A not orthogonal to p® (this set is always countable, see [10, Theorem 3.1].) Since
A is maximal, each section @), is non-empty, and so we can uniformize ) with a (total) function
f:2¥ — p(2¥)* having a A} graph. Note that assignment

z— Alx) ={f(z)n:n €N}
is invariant on the Ej classes.

If there is a Cohen real over L it follows from [6] that f is Baire measurable. Since E7 is a turbulent
equivalence relation (in the sense of Hjorth, see e.g. [10]) the map x — A(x) must be constant on
a comeagre set. But this contradicts that all Ej classes are meagre.
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If on the other hand there is a random real over L, then f is Lebesgue measurable by [6]. Let
F C 2% be a closed set with positive measure on which f is continuous, and let g : 2 — F be a
Borel reduction of Ej to Er | F'. Note that x — A(g(x)) is then an Ej-invariant Borel assignment
of countable subsets of p(2¥), and so since Ej is turbulent the function f o g must be constant on
a comeagre set. This again contradicts that all E; classes are meagre. m]

3 Al w.o. of the reals, II m.o. family, no ¥} m.o. families with
b=c¢= ws

We proceed with the proof of Theorem 1. We will use a modification of the model constructed
in [2]. The preliminary stage Py = P? * P! x P? of the iteration will coincide almost identically
with the preliminary stage Py of [2] (see Step 0 through Step 2). For convenience of the reader we
outline its construction. We work over the constructible universe L.

Recall that a transitive ZF~ model is suitable if wé\/t exists and wé\/t = ng. If M is suitable
then also wiM = wlLM and wy! = wQLM.

Fix a Oy, (cof(wy)) sequence (G¢ : & € wa N cof(wr)) which is 3 -definable over L, . For a < ws,
let W, be the L-least subset of wy coding o and let S, = {{ € wy Ncof(wr) : Ge = Wy NE # 0}
Then S = (Sa 11 < a < ws) is a sequence of stationary subsets of ws Ncof(w;), which are mutually
almost disjoint.

For every a such that w < o < w3 shoot a club C, disjoint from S, via the poset P, consisting of
all closed subsets of wy which are disjoint from S, with the extension relation being end-extension,
and let PV = [o<ws
P is the trivial poset. Then P is countably closed, wo-distributive and ws-c.c.

PO be the direct product of the PO ’s with supports of size wy, where for a € w,

For every a such that w < o < w3 let Dy C w3 be a set coding the triple (Cy, W, Wy) where ~
is the largest limit ordinal < «. Let

B = {Mnws: M < Lajwi1[Dal, w1 U{Da} € M}.

Then E, is a club on wy. Choose Z, C wq such that Even(Z,) = D,, where Even(Z,) = {j :
2.8 € Zy}, and if B < wy is the wg! for some suitable model M such that Z, N 3 € M, then
B € E,. Then we have:

(%)a: If B <ws, M is a suitable model such that w; C M, wé\/‘ =0,and Z, NS € M, then
M E (ws, Zo N B), where 1)(ws, X) is the formula “ Even(X) codes a triple (C, W, W),
where W and W are the L-least codes of ordinals @, & < ws such that & is the largest
limit ordinal not exceeding @&, and C' is a club in wy disjoint from Sg”.
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Similarly to S define a sequence A= (A¢ 1 & < wy) of stationary subsets of w; using the “standard”
O-sequence. Code Z, by a subset X, of w; with the poset P consisting of all pairs (sg,s1) €
[w1] <1 X [Zo] <t where (to,t1) < (S0, s1) iff so is an initial segment of ¢y, s1 C ¢; and t\spNAe =0
for all € € s;. Then X, satisfies the following condition:

(#%)o: If w1 < B < wy and M is a suitable model such that wj! = 8 and {X,} Uw; C M,
then M E ¢(w1,ws, X ), where ¢(wq,ws, X) is the formula: “ Using the sequence A, X
almost disjointly codes a subset Z of ws, such that Even(Z) codes a triple (C, W, ﬁ/>,
where W and W are the L-least codes of ordinals @, & < ws such that & is the largest
limit ordinal not exceeding @&, and C' is a club in wy disjoint from Sg”.

Let P =], <ws Pl , where P! is the trivial poset for all a € w, with countable support. Then P!

is countably closed and has the ws-c.c.

Finally we force a localization of the X,’s. Fix ¢ as in (xx), and let £(X, X’) be the poset defined
in [2, Definition 1], where X, X’ C w; are such that ¢(wy,ws, X) and ¢(wy,wsz, X’) hold in any
suitable model M with w{\’l = wlL containing X and X', respectively. That is £(X, X’) consists
of all functions r : |r| — 2, where the domain |r| of r is a countable limit ordinal such that:

(1) if vy < |r| then v € X iff r(3y) =1

(2) if vy <|r| then y € X" iff r(3y+1) =1

(3) if v < |r|, M is a countable suitable model containing | v as an element and v = w"!,

then M E ¢(w1, w2, X NY) A ¢(wr,we, X' N7).

= L(Xa+tm, Xo) for every o € Lim(ws)\{0}
and m € w. Let P2 be the trivial poset for « = 0, m € w and let

[P2: H Hpi-i-m

a€ Lim(ws) mEw

The extension relation is end-extension. Then let ]P% m

2
a+m>

in “12 (of LPOP! ), which is the characteristic function of a subset Y4, of wy with the following
property:

with countable supports. Note that the poset P where o« > 0, produces a generic function

(#%%)o: For every f < w; and any suitable M such that w{” = [ and Yy, NG belongs to M,
we have M F ¢(w1, w2, Xatm N B) A dp(w1, w2, Xo N B).

Claim Pj:= PV« P! « P? is w-distributive.

Proof [2, Lemma 1]. O
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Let B = (Beym : ¢ < wi,m € w) be a nicely definable sequence of almost disjoint subsets of w. We
will define a finite support iteration (P,,Qs : o < w3, < ws) such that Py = PO« PL x P2 for
every a < w3, Qg is a Py-name for a o-centered poset, in LP«s there is a Aé—deﬁnable wellorder
of the reals, a II3-definable maximal family of orthogonal measures and there are no Y.}-definable
maximal families of orthogonal measures. Along the iteration for every a < ws, we will define in
VPa a set O, of orthogonal measures and for a € Lim(a) a subset A, of [, + w). Every Qg
will add a generic real, whose P,-name will be denoted u,, and similarly to the proof of [2, Lemma
2] one can prove that L[Gy] N“w = L[{u
gives a canonical wellorder of the reals in L[G,]| which depends only on the sequence (u¢ : { < a),

éGa 1€ < )] N“w for every P,-generic filter G,. This

whose P,-name will be denoted by <,. We can additionally arrange that for a < 3, <, is an
initial segment of <g, where <,= <Ga and <g= <gﬁ . Then if G is a P,,-generic filter over L,
then <%= J{<¢ : a < w3} will be the desired wellorder of the reals and O = |J,,__ O. will be
the TI.-definable maximal family of orthogonal measures.

a<ws

We proceed with the recursive definition of P,,. For every v € [wa,ws) let i, : v U{(&,n) : £ <
n < v} — Lim(ws) be a fixed bijection. If G, is a P,-generic filter over L, <,= <§"‘ and
x,y are reals in L[G,] such that x <, y, let zxy = {2n : n € 2} U{2n+1 : n € y} and
Alzxy)={2n+2:nexzxytU{2n+1:n ¢ x*y}. Suppose P, has been defined and fix a
P, -generic filter G, .

Ga

If «a =wy-a/ +&, where o/ >0, £ € Lim(w2), let v = 0.t.(<w2.a,) and let ¢ = 4,,.

Case 1. If i71(€) = (£, &) for some & < & < v, let ¢, and z¢, be the &-th and &;-th reals in
L|G,,.«] according to the wellorder <S;-o/' In LFe let

Qo ={(so,s1):s0€ W siel  |J  Yorm x {m}]*},

MEA(zgy*we, )

where (to,t1) < (so,s1) if and only if s; C 1, s is an initial segment of to and (to\so) N B¢ = 0
for all ((,m) € s1. Let uq be the generic real added by Qq, Aq = a+w\A(zg, xx¢,) and Oy = 0.

Case 2. Suppose i (&) = ¢ € v. If the (-th real according to the wellorder <S‘% , is not the
2+

code of a measure orthogonal to O/, = U7<a O+, let Qq be the trivial poset, Ay, = 0, Oy = 0.

Otherwise, i.e. in case x¢ is a code for a measure orthogonal to O, let

Qu = {(s0,s1) s s0 € W™, s1 €[ |J  Yarm x {m}]=},
meA(x¢)

where (to,t1) < (so, s1) if and only if 51 C ¢1, sg is an initial segment of ¢y and (to\so) N B¢ =0
for all (¢,m) € s1. Let uq be the generic real added by Q. In LFet+1 = [Pa*Qa Jet g, = G(x¢, ua)
be the code of a measure equivalent to fi,;. which codes u, (see [3, Lemma 3.5]) and let Oq = {14, }-
Let Ay = a4+ w\A(ug).
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If « is not of the above form, i.e. « is a successor or « € wy, let Q, be the following poset for
adding a dominating real:

QO‘ = {<80751> 180 € w<“’,31 = [O.t.(<g°‘)}<“’}’

where (to,t1) < (so,s1) if and only if so is an initial segment of to, s1 C t1, and to(n) > x¢(n)
for all n € dom(tg)\dom(sg) and £ € s1, where x¢ is the £-th real in L[G,] Nw* according to the
wellorder <Go. Let Ay =0, Oq = 0.

With this the definition of Py, is complete. Let O =,
in the set O if and only if for every countable suitable model M such that v € M, there is a < wé\/t
such that Sgim is nonstationary in (L[r(v)])™ for every m € A(r(v)). Therefore O has indeed a

Oy. In LFes we have: v is a measure

11} definition. Furthermore O is maximal in P.(2¢). Indeed, suppose in LFs there is a code z for
a measure orthogonal to every measure in the family O. Choose o minimal such that o = wy-a’+¢&
for some o' > 0 and & € Lim(ws2) and x € L[Gy,.o/]. Let v = 0.t.(<§;a,) and let ¢ = 4,,. Then
x = x¢ is the (-th real according to the wellorder <S2a o » Where ¢ € v and so for some § € Lim(wo),
i~1(¢) = ¢. But then x¢ = x is the code of a measure orthogonal to O, and so by construction
Oq+1 contains a measure equivalent to p,, which is a contradiction. To obtain a H%—deﬁnable m.o.
family in LP,, consider the union of O with the set of all point measures. Just as in [2] one can

show that < is indeed a A%—deﬁnable wellorder of the reals.

Since P, is a finite support iteration, we have added Cohen reals along the iteration cofinally
often. Thus for every real a in LFvs there is a Cohen real over L[a] and so by Proposition 1 in
LFes there are no 33 m.o. families. Also note that since cofinally often we have added dominating
reals, LFws E b = ws.

4 A} w.o. of the reals, a II} m.o. family, no 3} m.o. families with

C = W2

In this section we establish the proof of Theorem 2. The model is obtained as a slight modification
of the iteration construction developed in [1]. We restate the definitions of the posets used in this
construction. For a more detailed account of their properties see [1]. We work over the constructible
universe L.

If S C w; is a stationary, co-stationary set, then by Q(S) denote the poset of all countable closed
subsets of wy\S with the extension relation being end-extension. Recall that Q(S) is w1\S-proper,
w-distributive and adds a club disjoint from S (see [1], [5]). For the proof of Theorem 2 we use the
form of localization defined in [1, Definition 1]. That is, if X C w; and ¢(wy, X) is a X1-sentence
with parameters wq, X which is true in all suitable models containing w; and X as elements, then
L(¢) be the poset of all functions 7 : |r| — 2, where the domain |r| of r is a countable limit ordinal,
such that
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(1) if v < |r| then v € X iff r(2v) =1
(2) if v < |r|, M is a countable, suitable model containing r | v as an element and v = w!,
then ¢(v, X N+) holds in M.

The extension relation is end-extension. Recall that £(¢) has a countably closed dense subset
(see [1, Remark 2]) and that if G is £(¢)-generic and M is a countable suitable model containing
(UG) | v as an element, where v = wM, then M E ¢(v, X N) (see [1, Lemma 2]).

We will use also the coding with perfect trees defined in [1, Definition 2|. Let Y C w; be generic
over L such that in L[Y] cofinalities have not been changed and let i = {u;}icw, be a sequence
of L-countable ordinals such that u; is the least p > sup;; pj, Lu[Y Ni] F ZF~ and L, F
w is the largest cardinal. Say that a real R codes Y below i if for all j < ¢, j € Y if and only if
L,;,[YNj, R EZF~. For T C 2<% a perfect tree, let |T'| be the least i such that T' € L,,[Y Ni].
Then C(Y) is the poset of all perfect trees T such that R codes Y below |T'|, whenever R is a
branch through 7', where for Ty, T} conditions in C(Y), Ty < Ti if and only if Ty is a subtree of

T . Recall also that C(Y') is proper and “w-bounding (see [1, Lemmas 7,8]).

Fix a bookkeeping function F': wy — L, and a sequence S = (Sg : B < wa) of almost disjoint
stationary subsets of w;, defined as in [1, Lemma 14]. Thus F' and S are X -definable over L,
with parameter wy, F'~!(a) is unbounded in ws for every a € L, and whenever M, N are suitable
models such that w{\/‘ = w{\f then FM, GM agree with FN SN on wé\/l ﬂwé\/ . Also if M is suitable
and wy" = wi then F M _SM equal the restrictions of F, S to the wo of M. Fix also a stationary
subset S of w; which is almost disjoint from every element of S.

Recursively we will define a countable support iteration (Pn, Qg : o < wa, 8 < wa) and a sequence
(Oq : @ € wy), such that in LF«2 there is a A}-definable wellorder of the reals and O = (J,, <wy Oa
is a maximal family of orthogonal measures. Define the wellorder <, in L[G,] where G, is P,-
generic just as in [1]. We can assume that all names for reals are nice and that for a < f < wa,
all P,-names for reals precede in the canonical wellorder <y, of L all Pg-names for reals, which
are not P,-names. For each a < wy, define a wellorder <, on the reals of L[G,], where G, is a
P, -generic as follows. If x is a real in L[G,] let 0% be the <p-least P,-name for z, where v < «
is least so that z has a P,-name. For z,y reals in L[G,] define z <, y if and only if of <y oy
Note that whenever o < 3, then <, is an initial segment of <.

We proceed with the definition of the poset. Let Py be the trivial poset. Suppose P, and (O, :
v < a) have been defined. Let Q, = Qg * Qé be a P,-name for a poset where Qg is a P,-name
for the random real forcing and Q) is defined as follows:

Case 1. If F(a) = {og,0y} for some pair of reals z,y in L[G,], then define Q, as in [1]. That is

Q. is a three stage iteration KO x K! x K2 where:

(1) In VFe*@a | KO is the direct limit (P K, :n € w), where KY, , is a P, -name for Q(Sat2n)

a,n’

for n € Ty * Yo, and Kg,n isa Pg’n—name for Q(Sat2n+1) for n &€ xo * yq .
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(2) Let GY be a P, * QU-generic filter and let H, be a KY-generic over L[G]. In L[GY % H,)
let X, be a subset of w; coding «, coding the pair (z4,¥q), coding a level of L in which « has
size at most wy and coding the generic G x H,, which we can regard as a subset of an element
of Ly,. Let K} = L(¢o) where ¢po = ¢o(wr, X) is the ¥;-sentence which holds if and only if X
codes an ordinal @ < wy and a pair (z,y) such that Szi2, is nonstationary for n € x *y and
Sa+on+1 1s nonstationary for n &€ x xy. Let X, be a Pg * Qg * Kg—name for X, and let K}x be a
P? x QY * KO -name for K .

(3) Let Y, be K!-generic over L[GY x H,]. Note that the even part of Y,-codes X, and so codes
the generic GO x H,. Then in L[Y,] = L[G% * H, * Y,], let K2 = C(Y,). Finally, let K2 be a
P, * Q% + KO x K. -name for K2.

Case 2. If F(a) = {og} where z is a code for a measure orthogonal to |J, . O, then let QL be
a P, x QL -name for KO x K, x K2 where in LFo*Qa KO is the direct limit (]ngn,ngn ‘n € w)
where Q) ,, is a PQ ,-name for Q(Sa424) for every n € z and a PJ ,-name for Q(Sat2ns1) for
every n ¢ z. Define K} and K2 just as in Case 1. In L¥*Qa let g = G(z, R,) be a code for a
measure which is equivalent to p,; and codes the real R,. Let Oy = {pg}.

In any other case, let Q, be a P,-name for the trivial poset, O, = (). With this the definition of

P,, and the family O = J O, is complete.

y<ws2

Claim O =/ O~ is a maximal family of orthogonal measures in P.(2%).

Y<wz
Proof It is clear that O is a family of orthogonal measures. It remains to verify its maximality.
Suppose the contrary and let f be a code for a measure in L[G] where G is P,,-generic over L,
which is orthogonal to all measures in O. Fix « minimal such that f is in L[G,] and let o be
the <y -least name for f. Since F~!(o) is unbounded, there is 8 > « such that F(B) = {o}.
Therefore Qg is nontrivial and Og = {p,} for some measure i, which is equivalent to pf, which
is a contradiction. m|

Clearly, u € O if and only if for every countable suitable model M such that p € M there is
a < wit such that Seim is nonstationary in L{r(u)]™ for every m € A(r(u)). Thus our family
O has indeed a II} definition. Just as in the proof of Theorem 1, to obtain a II}-definable m.o.
family in LF«s consider the union of O with the set of all point measures.

Since for every real a € LP«s there is a random real over L, by Proposition 1 in LF«s there are
no X} m.o. families. The bounding number b remains w; in LPes  since the countable support
iteration of S-proper “w-bounding posets is “w-bounding (see [1, Lemma 18] or [5]). O

Remark 4.1 In [3] the following question was raised:
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Question 1 If there is a H% m.o. family, are all reals constructible?

This is to our knowledge still unsolved. Térnquist has recently shown that the existence of a 3
m.o. family implies the existence of a II} m.o. family, and that the existence of Y1 mad family
implies the existence of a II} mad family.
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