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Abstract. Let κ be an in�nite regular cardinal, let aκ, bκ, dκ be the almost disjointness, bound-
ing, and dominating numbers at κ, respectively, and let cκ = 2κ. Using a system of parallel non-
linear iterations, we establish the consistency of bκ = aκ < dκ < cκ where bκ, dκ, cκ are arbitrary
subject to the known ZFC restrictions.

1. Introduction

The cardinal characteristics of the continuum occupy a central place in the study of the set

theoretic properties of the real line, with many interesting research and survey articles, see [1], [9].

In the past decades, there has been an increased interest towards higher Baire spaces analogues

of many of those characteristics. In this article we further examine the bounding, dominating and

almost-disjointness numbers, denoted bκ,dκ,aκ respectively and show that subject to the known

ZFC restrictions between these characteristics, consistently κ+ < bκ = aκ < dκ < cκ holds for κ = ω
(which can be obtained also by other already existing methods) and more signi�cantly for the

current work, for κ arbitrary regular uncountable cardinal.

Our result builds upon the methods of non-linear iterations of Cummings and Shelah from [4]

and the method of matrix iterations as appearing in [2, 3]. Recall, that the method of matrix

iteration was introduced by A. Blass and S. Shelah in 1989 to prove the relative consistency of

u < d, where u denotes the minimal size of a base for a non-principal ultra�lter on ω. In [3] the

method was further developed and systematized to establish the consistency of b = a = κ < s = λ,
as well as µ < b = κ < a = s = λ above a measurable cardinal µ, where s denotes the splitting

number. Of particular importance for the current work is the method of forcing with restricted

Hechler posets along a matrix iteration introduced in the latter work. The method of non-linear

iteration was introduced in [4] in order to (among others) simultaneously control the values of the

generalized invariants bκ,dκ and cκ at an arbitrary regular uncountable cardinal κ.

To obtain our main results, we merge the above techniques both in the countable and uncount-

able settings. The resulting forcing construction can be seen as a system of parallel non-linear

iterations, which can be compared to the system of parallel (linear) matrix iterations given in [5].

Our main theorem states the following:
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Theorem. Let κ be an in�nite regular cardinal. If β, δ, µ are in�nite cardinals with κ+ ≤ β =
cof(β) ≤ cof(δ) ≤ δ ≤ µ and cof(µ) > κ, then there is a cardinal preserving generic extension in

which

bκ = aκ = β ≤ dκ = δ ≤ cκ = µ.

In addition, we outline a standard (linear) matrix iteration construction which gives an alter-

native proof of our main result for the special case in which dκ is regular and κ is an arbitrary

regular uncountable cardinal. To the best knowledge of the authors this is the �rst application of

the method of matrix iterations in the context of higher Baire spaces. A key feature of our forcing

construction is the fact that the iterands along relevant non-linear fragments are well-chosen, as

indeed we make use only of suitable restricted Hechler forcings.

The paper is structured as follows: In Section 2 we revisit some basic notions and in Section 3,

we introduce and study the properties of a well-founded index poset which plays a crucial role in

our main forcing construction. In section 4 we, recursively along a suitable index poset, de�ne the

above mentioned forcing notion, establish its properties. In section 5 we study the preservation of

a carefully chosen witness to aκ = β along this forcing construction. In Section 6 we complete the

proof of the main theorem. In the �nal, Section 7, we give alternative proofs of the special case of

the above theorem in which κ = ω, as well as the special case in which κ is regular uncountable and

dκ is regular. We conclude the article, with some interesting remaining open questions, regarding

(among others) the global behaviour or aκ, bκ, dκ and cκ.

2. Preliminaries

Throughout κ is a regular in�nite cardinal.

De�nition 2.1. Let f and g be functions from κ to κ.

(1) Then g eventually dominates f , denoted by f <∗ g, if ∃n < κ ∀m > n (f(m) < g(m)).
(2) A family F ⊆ κκ, is dominating if ∀g ∈ κκ ∃f ∈ F (g <∗ f).
(3) A family F ⊆ κκ is unbounded if ∀g ∈ κκ ∃f ∈ F (f /<∗ g).
(4) bκ and dκ denote the generalized bounding and dominating numbers respectively:

bκ = min{∣F∣ ∶ F ⊆ κκ,F is unbounded},
dκ = min{∣F∣ ∶ F ⊆ κκ,F is dominating}.

(5) Finally, cκ = 2κ.

De�nition 2.2. Let x, y ∈ [κ]κ.
(1) The sets x and y are almost disjoint if ∣x ∩ y∣ < κ.
(2) A family A ⊆ [κ]κ is κ-almost disjoint if any two pairwise distinct elements in A are almost

disjoint. An almost disjoint family is κ-maximal almost disjoint (κ-mad) if it is maximal

with respect to inclusion.

(3) The almost disjointness number aκ is the minimal size of a κ-maximal almost disjoint

family of cardinality at least κ and is denoted aκ.
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Some of the well-known relations between the above mentioned invariants are as follows: κ+ ≤
bκ = cof(bκ) ≤ cof(dκ) ≤ dκ ≤ cκ, bκ ≤ aκ, cof(cκ) > κ. We will use the following notation: 1 = {∅}
denotes the trivial forcing and for a forcing notion P, 1P is the largest element of P.

De�nition 2.3. The Hechler forcing notion is de�ned as the set H = {(s, f) ∶ s ∈ κ<κ, f ∈ κκ}
with extension relation given by: (t, g) ≤H (s, f) i� s ⊆ t, ∀n ∈ κ (g(n) ≥ f(n)) and ∀i ∈
dom(t)/dom(s) (t(i) > f(i)). If A ⊆ κκ, then H(A) = {(s, f) ∶ s ∈ κ<κ, f ∈ A} equipped with the

same extension relation is known as restricted Hechler forcing.

It is straightforward to check, that H(A) adjoins a κ-real eventually dominating the elements

in A. The �rst coordinate s of a condition (s, f) ∈ H(A) is called a stem. The poset given below

is the generalization of what is known as the Hechler forcing for adjoining a mad family, see [6]:

De�nition 2.4. Let λ be an ordinal. Then Hλ consists of all partial functions p ∶ λ×κ→ 2, with

dom(p) = Fp × np where Fp ∈ [λ]<κ, np ∈ κ and extension relation is de�ned as follows: q ≤ p i�

p ⊆ q and ∀i ∈ nq/np ∣q−1 ∩ Fp × {i}∣ ≤ 1.

If G is a Hλ-generic for an ordinal λ, then the family Aλ = {Aα ∶ α < λ}, where Aα = {i ∶ ∃p ∈
G p(α, i) = 1} is κ-almost disjoint. Moreover, if λ ≥ κ+ then Aλ is κ-maximal almost disjoint.

If α ≤ β are two ordinals, then Hβ decomposes as follows: Let G be a Hα-generic. In V [G] let

H[α,β) consist of pairs (p,H), where p∶ (β/α) × κ → 2 has domain dom(p) = Fp × np, H ∈ [α]<κ
with (p,H) ≤ (q,K) i� p ≤Hβ q, K ⊆ H and for every j ∈ Fq, k ∈ np/nq and i ∈ K, if k ∈ Ai, then
p(j, k) = 0 holds. Then Hβ ≃ Hα ∗ Ḣ[α,β).

De�nition 2.5. If (Q,≤Q,1Q) and (P,≤P,1P) are forcing posets, then i ∶ Q → P is called a

complete embedding, denoted Q t P, if the following properties hold:

(1) i(1Q) = 1P,

(2) ∀q, q′ ∈ Q(q ≤Q q′ → i(q) ≤P i(q′)),
(3) ∀q, q′ ∈ Q(q ⊥Q q′ ↔ i(q) ⊥P i(q′)) and

(4) if A ⊆ Q is a maximal antichain in Q, then i(A) is a maximal antichain in P.

We will make use of the following, which is a slightly modi�ed version of [3, Lemma 13].

Lemma 2.6. Let P and Q be forcing notions with P t Q. Suppose Ȧ (resp. Ḃ) is a P-name (resp.

Q-name) for a forcing poset, where in V Q there is an embedding i∶A→ B with

● i(1A) = 1B,

● ∀p, p′ ∈ A (p ≤ p′ → i(p) ≤ i(p′)),
● ∀p, p′ ∈ A (p ⊥ p′ ↔ i(p) ⊥ i(p′)) and

● for every maximal antichain A of Ȧ in V P, i(A) is a maximal antichain of Ḃ in V Q.

Then P ∗ Ȧ t Q ∗ Ḃ.

Proof. Let j∶P → Q be a witness for P t Q. De�ne the following embedding: k∶P ∗ Ȧ → Q ∗ Ḃ,
k(p, q̇) = (j(p), ˙i(q)). Conditions (1), (2), (3) of De�nition 2.5 are easily checked. We show

property (4) of De�nition 2.5. For suppose not and let W = {(pα, ȧα) ∶ α < κ} be a maximal
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antichain of P∗ Ȧ and (q, ḃ) ∈ Q∗ Ḃ be incompatible with every condition in k(W ). Let Ḣ be the

canonical P-name for a P-generic �lter and let İ be a P-name with ⊩ İ = {α ∶ pα ∈ Ḣ}.
We claim that ⊩ “{ȧα ∶ α ∈ İ} is a maximal antichain of Ȧ”. Otherwise, we can �nd a P-name

ȧ and p ∈ P such that

(∗) p ⊩ ∀α(α ∈ İ → ȧ ⊥ ȧα).
Since (p, ȧ) ∈ P∗ Ȧ and W is maximal, we can �nd α < κ and (p′, ȧ) which is a common extension

of (p, ȧ) and (pα, ȧα). Then p′ ⊩ ȧ′ ≤ ȧ∧ ȧ′ ≤ ȧα and p′ ⊩ α ∈ İ. Hence p′ ⊩ α ∈ İ ∧ ȧ′ ≤ ȧ∧ ȧ′ ≤ ȧα
which is a contradiction to (∗).

Now let G be a Q-generic �lter containing q. As P t Q we can �nd a P-generic �lter H with

V [H] ⊆ V [G] (see [7, p. 270]). Let b = ḃ[G], aα = ȧα[G] = ȧα[H] and I = İ[G] = {α < κ∶pα ∈ H}.
By the above {aα ∶ α ∈ I} is a maximal antichain of A in V [H] ⊆ V [G] and by assumption

{i(aα)∶α ∈ I} is a maximal antichain of B in V [G]. Thus ∃α ∈ I b /⊥ i(aα) and so ∃q′ ≤ q, j(pα)
such that q′ ⊩ α ∈ İ∧ ḃ /⊥ ˙i(aα). This further means that there is a Q-name ṙ with q′ ⊩ ṙ ≤ ḃ, ˙i(aα),
hence (q′, ṙ) is a common extension of (q, ḃ) and (j(pα), ˙i(aα)), which is a contradiction. �

3. The index set

Bounding and dominating can be de�ned generally for arbitrary posets as follows:

De�nition 3.1 ([4]). Let (P,≤P ) be a partial order.

(1) We call U ⊆ P unbounded if ∀p ∈ P ∃q ∈ U (q /≤P p).
(2) b(P ) = min{∣U ∣∶U ⊆ P is unbounded}.
(3) A subset D ⊆ P is dominating if ∀p ∈ P ∃q ∈D (p ≤P q).
(4) d(P ) = min{∣D∣∶D ⊆ P is dominating}.

Note that ≤∗ is not antisymmetric. However the relation =∗ is an equivalence relation on κκ.

Let [f]=∗ = {g ∈ κκ∶ f =∗ g} denote the equivalence class of f . The relation ≤=∗ on the equivalence

classes, given as [f] ≤=∗ [g] i� f ≤∗ g is well-de�ned and a partial order. So bκ = b({[f]=∗ ∶ f ∈
κκ},≤=∗) and dκ = d({[f]=∗ ∶ f ∈ κκ},≤=∗).

Lemma 3.2 ([4]). For any poset P there is a well-founded and dominating subposet P ′ of P .

Proof. Let τ = ⟨pα ∶ α < λ⟩ be a maximal sequence such that ∀α < λ ∀β < α (pα /< pβ). It is not

di�cult to check that P ′ is dominating, as if not for any p ∈ P such that ∀α < λ(p /< pα), the
sequence ⟨pα ∶ α ≤ λ⟩ contradicts the maximality of τ , where pλ = p. Take P ′ = {pα∶α < λ}. �

In the above Lemma P ′ is clearly co�nal in P and so d(P ) = d(P ′) and b(P ) = b(P ′).
For the purposes of the next lemma, let (R,<R) be a well-founded poset such that ∣R∣ = δ,

d(R) = δ and b(R) = β for some cardinals β and δ. Further, for each a ∈ R, let (La,<La) be a well-
order of order type δ and let La = ⟨la,γ ∶ γ < δ⟩ where la,γ ≤La la,γ′ i� γ ≤ γ′. Let Q be the disjoint

union Q = R∪⋃{La∶a ∈ R} and let <Q be the partial order on Q de�ned as follows: <Q↾ R×R =<R,
∀a ∈ R (<Q↾ La ×La =<La), ∀a ∈ R (a <Q la,0) and ∀a′ ≠ a ∈ R ∀γ ∈ δ (a′ <R a→ la′,γ <Q la,γ).

Lemma 3.3. If (R,<R), {La∶a ∈ R}, and (Q,<Q) are given as above, then d(Q) = δ,b(Q) = β,
∣Q∣ = δ, Q is well-founded and for each b ∈ Q, ∣b ↑Q ∣ = δ.
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Proof. For any element q ∈ Q, de�ne the trace qR of q in R to be

qR =
⎧⎪⎪⎨⎪⎪⎩

a q ∈ La
q q ∈ R

and for any subset A ⊆ Q, AR to be {aR∶a ∈ A}. Let b ∈ Q. Then ∣b ↑Q ∣ = δ, as either b = a for an

a ∈ R or b = la,γ for an a ∈ R and γ < δ. In either case ∣La ∩ b ↑Q ∣ ≥ δ. Also ∣Q∣ = δ, because ∣R∣ = δ
and ∣La∣ = δ for each a ∈ R and δ is an in�nite cardinal. As Q is dominating and ∣Q∣ = δ, we have
d(Q) ≤ δ.

d(Q) ≥ δ: Let A ⊆ Q and ∣A∣ < δ. Then also ∣AR∣ < δ and AR is not dominating in R. So

∃b ∈ R ∀a ∈ AR (b /<R a). Then b is also unbounded in A.

b(Q) ≥ β: Let A ⊆ Q and ∣A∣ < β. Then also ∣AR∣ < β and AR is not unbounded in R and so

∃d ∈ R ∀a ∈ AR (a <R d). For an ordinal α < δ, let Hα = {la,α∶a ∈ R}. Let α′ = sup{γ∶A∩Hγ ≠ ∅}.
By regularity of β, α′ < β. However δ ≥ β > α′ and any ld,γ where α′ < γ < δ domintaes A.

b(Q) ≤ β: Let A ⊆ R be unbounded in R with respect to <R and let ∣A∣ = β. Consider an

arbitrary q ∈ Q. Note that if a ∈ A is such that a /<R qR, then also a /<Q q. Thus A is an

unbounded family of Q with respect to <Q.
Finally, to show that Q is well-founded consider an arbitrary, non-empty A ⊆ Q. If A ∩R ≠ ∅,

then a minimal element of A∩R is also a minimal element of A. Otherwise let m ∈ R be a minimal

element of AR. Let α′ = min{γ∶A ∩Hγ ≠ ∅}. Then lm,α′ is a minimal element of A. �

We will make use of the following notation: Whenever (X,<X) is a well-founded poset, then

for an arbitrary y in X, let Xy = {x ∈X ∶ x <X y} and y ↑X= {x ∈X ∶ y <X x}.

Corollary 3.4. (GCH) Let κ be a regular in�nite cardinal and let β, δ be cardinals such that

κ+ ≤ β = cof(β) ≤ cof(δ). There is a well-founded (index) partial order (W,<W ) of cardinality

δ, which has a least and largest elements, denoted c and m respectively and such that for Q =
W /{m,c}, <Q= Q ×Q∩ <W the following holds

b(Q) = β,d(Q) = δ, and ∀b ∈ Q (∣b ↑Q ∣ ≥ δ).

Proof. Let (Q,<Q) be a well-founded suborder of ([δ]<β,⊆) having the same generalized bounding

and dominating numbers as ([δ]<β,⊆) such that ∀b ∈ Q (∣b ↑Q ∣ ≥ δ). By Lemmas 3.2 and 3.3,

such a (Q,<Q) exists. Now, let W = {c} ∪̇ Q ∪̇{m} be a disjoint union and let <W be de�ned as

follows:

(1) for each a ∈ Q, c <W a

(2) <W ↾ Q ×Q =<Q,
(3) for each a ∈ {c} ∪̇ Q, a <W m.

Then (W,<W ) is a well-founded poset with the desired properties. �

4. The iteration and its properties

Now we are ready to construct our iteration, which is a slight modi�cation of the non-linear

iteration of Hechler forcing for adjoining a dominating real D(ω,Q) from [4]. From now on

assume GCH in the ground model V and we �x κ a regular cardinal, β, δ in�nite cardinals with
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κ+ ≤ β = cof(β) ≤ cof(δ). Let (W,<W ) and (Q,<Q) be the well-founded index posets de�ned in

Corollary 3.4. Moreover, let Q′ = Q ∪ {m}, <Q′= Q′ ×Q′∩ <W .

Fix a surjective book-keeping function F ∶ Q → β such that for all α ∈ β, F−1(α) is co�nal

in Q. That is ∀α < β ∀b ∈ Q (b ↑Q ∩F−1(α) /= ∅). Such a F exists, since ∣Q∣ = δ ≥ β and

∀b ∈ Q (∣b ↑Q ∣ ≥ δ). In addition, for each γ ≤ β, let Jγ = {a ∈ Q∶F (a) ≥ γ}.
In the following, we consider (β + 1) ×W with the inherited lexicographic order <lex and the

product order < where (α0, a0) < (α1, a1) i� α0 ∈ α1 and a0 <W a1, or α0 = α1 and a0 <W a1.

De�nition 4.1. For each (α,a) in (β + 1) ×W we will de�ne recursively on <lex a forcing notion

Pα,a and take Vα,a = V Pα,a . For each α ≤ β let Pα,c = Hα. Let (α,a) ∈ (β + 1) ×Q′ and suppose:

(1) for each (γ, b) <lex (α,a) the poset Pγ,b has been de�ned;

(2) in case b ≠ c, also a Pγ,c-name Ṫγ,b for a forcing notion is given so that Pγ,b = Pγ,c ∗ Ṫγ,b;
(3) whenever (α0, a0) < (α1, a1) < (α,a), c ≠ a0 then ⊩Pα1,c Ṫα0,a0 t Ṫα1,a1 .

Then, in particular, for each (α0, a0) < (α1, a1) ≤ (α,a), Pα0,a0 t Pα1,a1 (see Lemma 4.3).

We proceed to de�ne Pα,a. Since for each b ∈ Q′
a/Jα, F (b) < α and so (F (b), b) < (α, b), in Vα,c

we can �x a Tα,b-name Ḣα
b for V F (b),b ∩ κκ. Now, in Vα,c let Tα,a be the poset of all functions p

such that dom(p) = Q′
a and

(1) for each b ∈ Q′
a ∩ Jα, p(b) is a Tα,b-name for an element in the trivial poset;

(2) for each b ∈ Q′
a/Jα, ⊩Tα,b p(b) ∈ H(Ḣα

b );
(3) for supp(p) = {b ∈ Q′

a/Jα ∶ ⊩Tα,b p(b) ≠ 1H(Ḣα
b
)} we have ∣ supp(p)∣ < κ.

The extension relation of Tα,a is de�ned as follows: p ≤ q i� supp(q) ⊆ supp(p) and for each

b ∈ supp(q), if b ∈ Q′
a/Jα then p ↾ b ⊩Tα,b p(b) ≤H(Ḣα

b
) q(b), where p ↾ b abbreviates p ↾ Q′

b. For

b ∈ Q′
a/Jα, w.l.o.g. we assume that p(b) = (spb , ḟ

p
b ) where the stem spb is in the ground model and

ḟpb is a nice Tα,b-name for a κ-real in V PF (b),b ∩ κκ. Let Pα,a = Pα,c ∗ Ṫα,a.

Lemma 4.2. For any α ≤ α′ ≤ β and a ∈ Q′, Vα′,c ⊧ Tα,a t Tα′,a.

Proof. Consider in Vα′,c the mapping i∶Tα,a → Tα′,a where supp(i(p)) = supp(p) and for each

b ∈ supp(i(p)), ⊩Tα′,b i(p)(b) = (si(p)b , ḟ
i(p)
b ), where si(p)b = spb and ḟ

i(p)
b is a Tα′,b-name for the

κ-real named by ḟpb . The mapping i witnesses that Tα,a ⋖ Tα′,a in Vα′,c, by making crucial use

of Jα
′ ⊆ Jα. If b ∈ supp(p) ⊆ Q′

a/Jα, then (by Jα
′ ⊆ Jα) b ∈ supp(i(p)) ⊆ Q′

a/Jα
′

. In this case,

F (b) < α and Ḣα
b is a Tα,b-name for V PF (b),b∩κκ. But F (b) < α′ holds also and Ḣα′

b is a Tα′,b-name

for V PF (b),b ∩ κκ as well. As the second coordinates refer to the same set of κ-reals, compatibility

and incompatibility depends on the stems at supp(p). �

Lemma 4.3. ∀b ∈W ∀α < α′ ≤ β (Pα,b t Pα′,b).

Proof. Proceed inductively on W . If b = c and α ≤ β, then the Lemma holds by the product-like

property of the forcing in De�nition 2.4. For b ∈ Q′ the claim holds by Lemmas 4.2 and 2.6. �

Remark 4.4. All together we have ∀α,α′ ≤ β ∀a, b ∈W (α ≤ α′ ∧ a <W b→ Pα,a t Pα′,b).

Remark 4.5. Note that J0 = Q, so at the bottom �plane� we iterate with trivial forcing only.

Also Jβ = ∅, so at the top �plane� we have no trivial forcings, but only restricted Hechlers.
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Example 4.6. Working in Vα,c observe the following: Let p, q ∈ Tα,a for some a ∈ Q′ be such

that for each b ∈ supp(q) ∩ supp(p), spb ⊆ s
q
b ∨ s

p
b ⊇ s

q
b . Then p, q are compatible, with a common

extension r ∈ Tα,a de�ned as follows: supp(r) = supp(p) ∪ supp(q) and

● ⊩Tα,b r(b) = p(b) if b ∈ supp(p)/ supp(q)
● ⊩Tα,b r(b) = q(b) if b ∈ supp(q)/ supp(p)
● ⊩Tα,b r(b) = (srb , ḟ rb ) if b ∈ supp(p) ∩ supp(q), where srb = s

p
b ∪ s

q
b and ḟ

r
b is a Tα,b-name for

the pointwise maximum of ḟ qb and ḟpb .

Lemma 4.7. For any α ≤ β and a ∈W , the forcing Pα,a is κ+-c.c. and is κ-closed.

Proof. If a = c, then Pα,a equals Hα which has the κ+-c.c. and is κ-closed.

If a ≠ c, then Pα,a = Pα,c ∗ Ṫα,a. Since Pα,c = Hα has the κ+-c.c., it is su�cient to show that

for any Hα-generic G, V [G] ⊧ “Tα,a has the κ+-c.c.�. In V [G], consider any S = {pα∶α < κ+}
a family of conditions in Tα,a of size κ+. We will show that S is not an antichain. Since the

support of each condition is of size less than κ, and κ<κ = κ, we can apply the ∆-System-Lemma

to {supp(pα)∶α < κ+} to get a Y ∈ [S]κ+ such that {supp(pα)∶pα ∈ Y } forms a ∆-System with

root R. Again since κ<κ = κ, ∣Y ∣ = κ+ and ∣R∣ < κ, we can assume that if b ∈ R and pα ∈ Y then

pα(b) = (tb, ḟαb ) where tb is the same stem for each pα ∈ Y . Now, for pα, pβ ∈ Y one can de�ne

a common extension q as follows: supp(q) = supp(pα) ∪ supp(pβ); if b ∈ R then q(b) = (tb, ḟb)
where ḟb is the pointwise maximum of {ḟαb , ḟ

β
b }. If b ∈ supp(pα)/ supp(pβ) then q(b) = pα(b) and

if b ∈ supp(pβ)/ supp(pα) then q(b) = pβ(b).
Again as Pα,c = Hα is κ-closed, it is su�cient to show that for any Hα-generic G, V [G] ⊧ “Tα,a

is κ-closed�. Consider in V [G] a decreasing sequence (pα∶α < γ) of conditions, where γ < κ.

We will de�ne a common extension p, by using the fact that the forcing in De�nition 2.3 is

κ-closed. Proceed as follows. Let supp(p) = ⋃α<γ supp(pα). Then ∣ supp(p)∣ < κ by regularity

of κ. If for any α < γ and b ∈ supp(pα) we have pα(b) = (tα(b), ḟα(b)), then let p(b) = (t, ḟ)
where t = ⋃{tα(b) ∶ b ∈ supp(pα)} and ḟ is a Tα,b-name for the pointwise supremum of the second

coordinates {ḟα(b) ∶ b ∈ supp(pα)}. Then p is as desired. �

The next Lemma is analogous to Lemma 15 in [3].

Lemma 4.8. Suppose b ∈W , then the following two properties hold:

(a) Any condition p ∈ Pβ,b is already in Pα,b for some α < β.
(b) If ḟ is a Pβ,b-name for a κ-real then it is a Pα,b-name for some α < β.

Proof. We show (a) and (b) simultaneously by trans�nite induction on b ∈ W , the well-founded

poset. Because Pβ,b has the κ
+-c.c. property and β is such that cof(β) > κ, we can easily see that

(a) implies (b) if we pass over to a nice name of the κ-real at hand.

Now we begin the induction by letting b = c: Properties (a) and (b) for b = c are both true as

β is regular, above κ and the domain of a condition in Hβ is of size less than κ. Hence this stage

does not add new κ-reals.

Let b /= c and let p ∈ Pβ,b = Pβ,c ∗ Ṫβ,b. Then p is of the form (p0, ṗ1), where p0 ∈ Pβ,c and

⊩Pβ,c ṗ1 ∈ Ṫβ,b. For p0 ∈ Pβ,c the induction hypothesis on (a) holds. So there is a α0 < β such
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that p0 ∈ Pα0,c. Since ⊩Tβ,b ∣ supp(ṗ1)∣ < κ, ṗ1 involves less than κ-many names for κ-reals (the

second coordinate of the restricted Hechler forcing). This gives an object of size at most κ, and

we can use the induction hypothesis on (b) in order to �nd an α1 < β such that ṗ1 is a Pα1,c-name.

Then p = (p0, ṗ1) belongs to Pα,b, where α = max{α0, α1}. So (a) is true for stages with b /= c
and implies (b) for stages with b /= c, because a nice name for a κ-real involves at most κ-many

conditions and cof(β) = β > κ. �

5. Preserving a witness for aκ

Recall [3] �2 (Adding a mad family).

De�nition 5.1. ([3]) Let M ⊆ N be models of ZFC, B = {Bα}α<γ ⊆M ∩ [κ]κ and A ∈ N ∩ [κ]κ.
Then we say☆(M,N,B,A) is true, if for every h ∈M ∩κ×[γ]<κκ and m ∈ κ we can �nd n ≥m, F ∈
[γ]<κ satisfying [n,h(n,F ))/⋃α∈F Bα ⊆ A.

Lemma 5.2. ([3]) Suppose☆(M,N,B,A) is true and let I(B) be the κ-complete ideal generated

by B and the sets of size less than κ. Then for B ∈M ∩ [κ]κ, B /∈ I(B) we have ∣A ∩B∣ = κ.

Proof. For suppose not and let A∩B ⊆ n ∈ κ. Let m′ ≥ n, F ′ ∈ [γ]<κ. Since Y ⊆∗ X ∈ I(B) implies

Y ∈ I(B) and ⋃α∈F ′ Bα ∈ I(B) and B /∈ I(B), we must have B /⊆∗ ⋃α∈F ′ Bα. So there is kF
′

m′ such

that m′ < kF ′m′ ∈ B/⋃α∈F ′ Bα. Now for all m ≥ n and F ∈ [γ]<κ we de�ne h(m,F ) = kFm + 1 and

h(m,F ) = 0 ifm < n. As h is de�ned inM and [m,h(m,F ))/⋃α∈F Bα /⊆ A for allm ≥ n,F ∈ [γ]<κ,
we contradict ☆(M,N,B,A). �

The family Aγ added by Hγ (De�nition 2.4) satis�es the ☆-property in the following sense.

Lemma 5.3. ([3]) If Gγ+1 is Hγ+1-generic, Gγ = Gγ+1 ∩Hγ and Aγ = {Aα}α<γ where as above

Aα = {i ∶ ∃p ∈ Gγ+1 p(α, i) = 1} for each α ≤ γ, then we have ☆(V [Gγ], V [Gγ+1],Aγ ,Aγ).

Proof. Let h ∈ V [Gγ] ∩ κ×[γ]<κκ, (p,H) ∈ H[γ,γ+1) and m ∈ κ be arbitrary. By the de�nition of

H[γ,γ+1) we have dom(p) = {γ}×np for some np ∈ κ. Now we de�ne the following extension (q,K)
of (p,H). Let n ∈ κ be above np and m, and let nq = h(n,H). De�ne dom(q) to be {γ} ×nq. Let
K =H and

q(γ, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(γ, i) if i < np
0 if i ∈ [np, n)
1 if i ∈ [n,nq) ∧ i /∈ ⋃α∈H Aα
0 if i ∈ [n,nq) ∧ i ∈ ⋃α∈H Aα

Then (q,K) extends (p,H) and (q,K) ⊩ [n,h(n,H))/⋃α∈H Aα ⊆ Aγ and we are done. �

Lemma 5.4. ([3]) Let M ⊆ N be models of ZFC, P ∈M a forcing poset such that P ⊆M , G a

P -generic �lter over N (hence also P -generic overM). Then the following holds: If B = {Bα}α<γ ⊆
M ∩ [κ]κ and A ∈ N ∩ [κ]κ and ☆(M,N,B,A) holds, then ☆(M[G],N[G],B,A).

Proof. For suppose not and let h ∈M[G]∩κ×[γ]<κκ, m ∈ κ be such that ∀n ≥m ∀F ∈ [γ]<κ N[G] ⊧
[n,h(n,F ))/⋃α∈F Bα /⊆ A. Then there are p ∈ G, a P -name ḣ ∈ M for h and m ∈ κ with

p ⊩N ∀n ≥m ∀F ∈ [γ]<κ [n,h(n,F ))/⋃α∈F Bα /⊆ A.
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Now in M , for ḣ let pFn ∈ G be a condition extending p and deciding the value of h at point

(n,F ), i.e. pFn ⊩ ḣ(n,F ) = kFn . Then pFn ⊩N [n, kFn ))/⋃α∈F Bα /⊆ A, so N ⊧ [n, kFn ))/⋃α∈F Bα /⊆
A. However, the function

h′(n,F ) =
⎧⎪⎪⎨⎪⎪⎩

0 if n <m
kFn else

is in M and contradicts ☆(M,N,B,A). �

Lemma 5.5. ∀b ∈W ∀α < β (☆(Vα,b, Vα+1,b,Aα,Aα)).

Proof. Proceed inductively on W . If b = c and α ≤ β, then the statement ☆(Vα,c, Vα+1,c,Aα,Aα)
holds by Lemma 5.3. Suppose next that b ∈ Q′. Note that ☆(Vα,c, Vα+1,c,Aα,Aα) holds, Tα,b ∈
Vα,c ⊆ Vα′,c and Vα′,c ⊧ Tα,b t Tα′,b (Lemma 4.2). So any Vα′,c-generic subset of Tα′,b is also

Vα′,c-generic subset of Tα,b. Consequently, by Lemma 5.4, ☆(Vα,b, Vα+1,b,Aα,Aα). �

6. The result

The next theorem gives us the consistency result.

Theorem 6.1. Vβ,m ⊧ bκ = aκ = β ≤ dκ = δ.

Proof. aκ ≤ β: The family Aβ = {Aα∶α < β} added in the �rst column is a κ-mad family in the

model Vβ,m. If this was not the case, then ∃x ∈ Vβ,m ∩ [κ]κ ∀Aα ∈ Aβ (∣x ∩Aα∣ < κ). By Lemma

4.8, we have ∃α < β (x ∈ Vα,m ∩ [κ]κ). However by Lemma 5.4, ☆(Vα,m, Vα+1,m,Aα,Aα) holds

and so ∣Aα ∩ x∣ = κ by Lemma 5.2.

bκ ≥ β: Let B ⊆ Vβ,m ∩ κκ be such that ∣B∣ < β. By b(Q) = β and by Lemma 4.8, we have

∃b ∈ Q ∃α < β (B ⊆ Vα,b ∩ κκ). As ∀γ < β ∀c ∈ Q (c ↑Q ∩F−1(γ) /= ∅) we can �nd an element

b′ ∈ Q with b < b′ and F (b′) = α. Then the poset Pα+1,b′ adds, among other things, a dominating

κ-real over Vα,b′ ∩ κκ ⊇ Vα,b ∩ κκ, hence B is not unbounded.

By the previous paragraphs we have Vβ,m ⊧ bκ = aκ = β, as bκ ≤ aκ is provable in ZFC.

δ ≥ dκ: Let ḟ be a Pβ,m-name for a κ-real. By the previous Lemma 4.8, the property b(Q) =
β ≥ κ+ and the regularity of β, there is a b ∈ Q and an α < β such that f ∈ Vα,b ∩ κκ. Let D ⊆ Q
be a dominating family of size δ and let d ∈ D be such that b <Q d. As ∀γ < β ∀c ∈ Q (c ↑Q
∩F−1(γ) /= ∅), we can �nd an element dα,b ∈ Q with dα,b > d and F (dα,b) = α. Then Pα+1,dα,b adds
a dominating real over the model Vα,dα,b ⊇ Vα,b, call it gdα,b . Hence the arbitrary f is dominated

by the set {gdα,b ∶ d ∈D,α ∈ β} which is of size δ ⋅ β = δ.
Now, for each a ∈ Q and Pβ,m-generic �lter G, let faG = ⋃{ta ∶ ∃p ∈ G (p(a) = (ta, ḟa))} and let

ḟaG be a Pβ,m-name for faG.

Claim 6.2. If g ∈ VF (a),a and b /<Q a, then Vβ,m ⊧ f bG /<∗ g.

Proof. Let p be an arbitrary condition in Tβ,m (in Vβ,c), n ∈ κ and let ġ be a Tβ,a-name for g.

We will �nd an extension of p which forces ḟ bG(k) ≥ ġ(k) for some k ≥ n. Let p(a) = (t, ġ′) and

p(b) = (s, ḣ). Let ḟ be a Tβ,a-name for the pointwise maximum of ġ′ and ġ. Now de�ne the

condition p0 as follows: supp(p0) = supp(p) and p0(e) = p(e) for each e /= a, and p0(a) = (t, ḟ).
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Clearly p0 ≤ p. Now let k ∈ κ be large enough such that {dom(t),dom(s), n} ⊂ k. Next let q ∈ Tβ,a
extend p0 ↾ a and q decide the value of ḟ up to k. Now de�ne the extension p1 of p0 by setting

p1(e) = p0(e) for each e /<Q a and p1(e) = q(e) for each e <Q a. So p1 is an extension of p0
carrying the information on the values of ḟ up to k; and now we do the same for b and p1, so

we let r ∈ Tβ,b with r ≤ p1 ↾ b and r decides the values of ḣ up to k. We de�ne the extension

p2 as p2(e) = p1(e) for each e /<Q b and p2(e) = r(e) for each e <Q b. Now p ≥ p0 ≥ p1 ≥ p2 and

p2(a) = p0(a) and p2(b) = p(b). Now we extend p2 as desired: First �nd an end-extension t′ ⊇ t
such that dom(t′) = k + 1 and for dom(t) ≤ i < dom(t′), t′(i) > ḟ(i). Then �nd an end-extension

s′ ⊇ s such that dom(s′) = k + 1 and for dom(s) ≤ i < k + 1 (s′(i) > max{ḣ(i), t′(i)}). Then any

further extension p′2 of p2 satisfying s
p′2
b = s′ forces ḟ bG(k) > ḟ(k) which gives the claim. �

δ ≤ dκ: Let F ⊆ Vβ,m ∩ κκ be a family of size less than δ. As in the previous paragraph we can

�nd for every single f ∈ F a stage af ∈ Q such that f ∈ VF (af ),af ∩ κκ. Now ∣{af ∶ f ∈ F}∣ < δ, so
{af ∶ f ∈ F} is not dominating in Q. Hence ∃u ∈ Q ∀f ∈ F (u /<Q af). Then by Claim 6.2 we have

∀f ∈ F (fuG /<∗ f). Hence F is not dominating. �

Theorem 6.3. If β, δ, µ are in�nite cardinals with κ+ ≤ β = cof(β) ≤ cof(δ) ≤ δ ≤ µ and cof(µ) > κ,
then there is a κ+-c.c. and κ-closed generic extension in which bκ = aκ = β, dκ = δ and cκ = µ.

Proof. In the above construction replace the underlying poset (Q,<Q) by the following poset

(R,<R): R consists of pairs (p, i) such that either i = 0∧ p ∈ µ or i = 1∧ p ∈ Q. The order relation
is de�ned as (p, i) <R (q, j) i� i = 0 ∧ j = 1 or i = j = 1 ∧ p <Q q or i = j = 0 ∧ p < q in µ. Then

b(R) = b(Q) = β and d(R) = d(Q) = δ as the map i ∶ Q → R de�ned as b ↦ (1, b) is a co�nal

embedding from Q into R. The bottom part (µ, ∈) of R ensures that in the �nal model cκ ≥ µ
holds. By a standard argument of counting nice names cκ ≤ µ in Vβ,m. �

7. Further Remarks

We also want to point out that the model in [3, �4] is an alternative witness for the constellation

we showed here in the case of κ = ω, namely b = a < d < c. Recall the construction in [3] forcing

b = a = κ < s = λ: Let κ < λ be �xed regular uncountable cardinals. First introduce a surjective

book-keeping function f ∶ {ν < λ ∶ ν ≡ 1 mod 2} → κ where ∀α < κ (f−1(α) is co�nal in λ). The

matrix is de�ned recursively and consists of �nite support iterations ⟨⟨Pα,ξ ∶ α ≤ κ, ξ ≤ λ⟩, ⟨Q̇α,ξ ∶
α ≤ κ, ξ ≤ λ⟩⟩ where:

(1) If ξ = 0, then for each α ≤ κ, Pα,0 is Hechler's poset from De�nition 2.4 which adds an

almost disjoint family Aα = {Aβ}β<α which is m.a.d. in Vα,0 if α ≥ ω1.

(2) If ξ = µ+ 1 ≡ 1 mod 2, then for each α ≤ κ, ⊩Pα,µ Q̇α,µ =M(U̇α,µ) while U̇α,µ is a Pα,µ-name

for an ultra�lter with the property that for α < β ≤ κ, ⊩Pβ,µ U̇α,µ ⊆ U̇β,µ. This helps to evaluate

the splitting number in the �nal model.

(3) If ξ = µ + 1 and ξ ≡ 0 mod 2, then for each α ≤ f(µ) Q̇α,µ is a Pα,µ-name with ⊩Pα,µ “Q̇α,µ
is the trivial forcing�; and if α > f(µ) then Q̇α,µ is the Pα,µ-name for adding a dominating real

over the model Vf(µ),µ.
(4) If ξ is a limit ordinal, then for each α ≤ κ, Pα,ξ is the direct limit of the previous Pα,µ.
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For suitable cardinals κ,λ,µ in the �nal model Vκ,λ one can witness a = b = κ < λ = d(= s) < c = µ:
Proceed with a �nite support iteration of Cohen forcings of length µ in order to get an intermediate

stage (model V0) where c = µ holds. Over V0 perform the above described construction. It is not

di�cult to check that in the resulting model a = b = κ < λ = s. Next, we show that in the model

also d = λ:
d ≤ λ: Let f ∈ Vκ,λ ∩ ωω be an arbitrary real. By Lemma [3, Lemma 15] and the regularity of λ

we have ∃α < κ, ξ < λ (x ∈ Vα,ξ ∩ωω) such that ξ = η+1 ≡ 1 mod 2. As {γ∶ f(γ) = α} is co�nal in λ

we can �nd a ξ < ξ′ ≡ 0 mod 2 with f(ξ′) = α. Then the poset Pα+1,ξ′+1 adds a Hechler real over

the model Vα,ξ′ ∩ ωω ⊇ Vα,ξ ∩ ωω, and the λ-many (restricted) Hechler reals in the construction

build a dominating family.

d ≥ λ: Let B ⊆ Vκ,λ ∩ ωω be such that ∣B∣ < λ. By the regularity of λ we have ∃ξ < λ (x ∈
Vκ,ξ ∩ ωω). As the remaining part is a �nite support iteration of non-trivial forcings, limit stages

with countable co�nality add a Cohen real which is unbounded. Hence B is not dominating.

We further point out that the consistency of κ+ ≤ bκ = aκ = β ≤ dκ = cκ = δ can be shown by a

(linear) matrix iteration: Assume in the construction of Section 4 additionally that δ is regular

and replace Q by the well-order (δ, ∈). The �nal model of this matrix, which is of height β and

width δ, satis�es κ+ ≤ bκ = aκ = β ≤ dκ = cκ = δ. If we additionally want to separate dκ and cκ, e.g.

to force cκ = µ, we can add µ-many Cohen κ-reals before the above described iteration. However,

by arguing with a (linear) matrix iteration, we have to require that δ is regular, leaving the case

dκ singular unsettled. To force κ+ ≤ bκ = aκ = β ≤ dκ = δ ≤ cκ = µ for a singular δ one has to take

the more general approach given in Section 4.

Question 7.1. It is open whether four cardinal characteristics (among other natural candidates),

namely a, s, r and u, can be controlled strictly between b and d. Is either of the following constel-

lations consistent: b < a < d < c, b < s < d < c, b < r < d < c, b < u < d < c?

Since bκ = κ+ implies that aκ = κ+ for κ regular uncountable (see [8]), the main result of [4]

implies that for a given suitable set C of regular uncountable cardinals, it is consistent that

bλ = aλ = λ+ < dλ = cλ holds simultaneously for all λ ∈ C. This naturally leads to the following:

Question 7.2. Given a set C of regular uncountable cardinals is it consistent that

λ+ < bλ = aλ < dλ < cλ

for all λ ∈ C simultaneously?
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