NON-LINEAR ITERATIONS AND ALMOST DISJOINTNESS

OMER FARUK BAG AND VERA FISCHER

ABsTRACT. Let k be an infinite regular cardinal, let a,, b, 0. be the almost disjointness, bound-
ing, and dominating numbers at k, respectively, and let ¢, = 2. Using a system of parallel non-
linear iterations, we establish the consistency of b, = a, < 0, < ¢, where by, 0, ¢, are arbitrary
subject to the known ZFC restrictions.

1. INTRODUCTION

The cardinal characteristics of the continuum occupy a central place in the study of the set
theoretic properties of the real line, with many interesting research and survey articles, see [1], [9].
In the past decades, there has been an increased interest towards higher Baire spaces analogues
of many of those characteristics. In this article we further examine the bounding, dominating and
almost-disjointness numbers, denoted by, 0, a, respectively and show that subject to the known
ZFC restrictions between these characteristics, consistently k¥ < by = a, < 04 < ¢, holds for k = w
(which can be obtained also by other already existing methods) and more significantly for the
current work, for k arbitrary regular uncountable cardinal.

Our result builds upon the methods of non-linear iterations of Cummings and Shelah from [4]
and the method of matrix iterations as appearing in [2, 3]. Recall, that the method of matrix
iteration was introduced by A. Blass and S. Shelah in 1989 to prove the relative consistency of
u < 0, where u denotes the minimal size of a base for a non-principal ultrafilter on w. In [3| the
method was further developed and systematized to establish the consistency of b=a=x<s = A,
as well as u < b =k <a=s=)\ above a measurable cardinal p, where s denotes the splitting
number. Of particular importance for the current work is the method of forcing with restricted
Hechler posets along a matrix iteration introduced in the latter work. The method of non-linear
iteration was introduced in [4] in order to (among others) simultaneously control the values of the
generalized invariants by, 0, and ¢, at an arbitrary regular uncountable cardinal .

To obtain our main results, we merge the above techniques both in the countable and uncount-
able settings. The resulting forcing construction can be seen as a system of parallel non-linear
iterations, which can be compared to the system of parallel (linear) matrix iterations given in [5].
Our main theorem states the following:
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Theorem. Let x be an infinite regular cardinal. If 3,6, are infinite cardinals with k™ < 3 =
cof (B) < cof(d) <6 < p and cof (i) > k, then there is a cardinal preserving generic extension in
which

be=0,=08<0,=0<¢,=p.

In addition, we outline a standard (linear) matrix iteration construction which gives an alter-
native proof of our main result for the special case in which 0, is regular and « is an arbitrary
regular uncountable cardinal. To the best knowledge of the authors this is the first application of
the method of matrix iterations in the context of higher Baire spaces. A key feature of our forcing
construction is the fact that the iterands along relevant non-linear fragments are well-chosen, as
indeed we make use only of suitable restricted Hechler forcings.

The paper is structured as follows: In Section 2 we revisit some bagic notions and in Section 3,
we introduce and study the properties of a well-founded index poset which plays a crucial role in
our main forcing construction. In section 4 we, recursively along a suitable index poset, define the
above mentioned forcing notion, establish its properties. In section 5 we study the preservation of
a carefully chosen witness to a, = 8 along this forcing construction. In Section 6 we complete the
proof of the main theorem. In the final, Section 7, we give alternative proofs of the special case of
the above theorem in which x = w, as well as the special case in which « is regular uncountable and
0, is regular. We conclude the article, with some interesting remaining open questions, regarding
(among others) the global behaviour or a,, by, 0, and c,.

2. PRELIMINARIES

Throughout « is a regular infinite cardinal.

Definition 2.1. Let f and g be functions from & to k.

(1) Then g eventually dominates f, denoted by f <* g, if In <k Ym>n (f(m) < g(m)).
(2) A family F ¢ "k, is dominating if Vg e "x 3f € F (g <* f).

(3) A family F ¢ "k is unbounded if Vge"x 3f € F (f £" g).
(4)

4) b, and 0, denote the generalized bounding and dominating numbers respectively:

b, = min{|F|: F ¢ "k, F is unbounded},
0, = min{|F|: F ¢ "k, F is dominating}.
(5) Finally, ¢, = 2".

Definition 2.2. Let x,y € []".

(1) The sets x and y are almost disjoint if |z Ny| < k.

(2) A family A ¢ [k]" is k-almost disjoint if any two pairwise distinct elements in A4 are almost
disjoint. An almost disjoint family is xk-maximal almost disjoint (k-mad) if it is maximal
with respect to inclusion.

(3) The almost disjointness number a, is the minimal size of a k-maximal almost disjoint
family of cardinality at least x and is denoted a,.
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Some of the well-known relations between the above mentioned invariants are as follows: k¥ <
by = cof(by) < cof (0x) <0y < ¢k, by < ay, cof(¢,) > k. We will use the following notation: 1 = {@}
denotes the trivial forcing and for a forcing notion P, 1p is the largest element of P.

Definition 2.3. The Hechler forcing notion is defined as the set H = {(s, f) : s € K", f € "k}
with extension relation given by: (t,9) <m (s,f) iff s € ¢, Vn € k (g(n) > f(n)) and Vi €
dom(t)\dom(s) (t(i) > f(i)). If Ac”k, then H(A) ={(s,f):s€r", fe A} equipped with the

same extension relation is known as restricted Hechler forcing.

It is straightforward to check, that H(A) adjoins a k-real eventually dominating the elements
in A. The first coordinate s of a condition (s, f) €e H(A) is called a stem. The poset given below
is the generalization of what is known as the Hechler forcing for adjoining a mad family, see [6]:

Definition 2.4. Let A be an ordinal. Then H) consists of all partial functions p: Ax x — 2, with
dom(p) = F}, x ny, where F}, € [A]*", n, € k and extension relation is defined as follows: ¢ < p iff
pCSqand Vieng\n, ¢ nF, x {i}| < 1.

If G is a Hy-generic for an ordinal A, then the family Ay = {A, : @ < A}, where A, = {i:3p e
G p(a,i) = 1} is k-almost disjoint. Moreover, if A > k* then A) is k-maximal almost disjoint.
If a < (3 are two ordinals, then Hg decomposes as follows: Let G be a H,-generic. In V[G] let
Hq, ) consist of pairs (p, H), where p: (8\a) x & - 2 has domain dom(p) = Fj, x np,, H € [a]™"
with (p,H) < (¢, K) iff p<m, ¢, K ¢ H and for every j € F, k € ny\n, and i € K, if k € A;, then
p(j,k) = 0 holds. Then Hyg = Hq * Hi, 5)-

Definition 2.5. If (Q,<qg,1g) and (P,<p,1p) are forcing posets, then i : Q - P is called a
complete embedding, denoted Q <P, if the following properties hold:
(1) i(1g) = Lp,
(2) Va,q' € Qg <q ¢' ~ i(q) <pi(q")),
(3) Va,¢' € Qg Lo ¢’ < i(q) Lpi(¢')) and
(4) if AcQ is a maximal antichain in Q, then i(A) is a maximal antichain in P.

We will make use of the following, which is a slightly modified version of [3, Lemma 13].

Lemma 2.6. Let P and Q be forcing notions with P < Q. Suppose A (resp. IBS) is a P-name (resp.
Q-name) for a forcing poset, where in V@ there is an embedding i: A - B with

e i(1a) = 1,

o Vp,p e A (p<p' ~ilp) <i(p')),

o Vp,p' €A (p Lp <i(p) L i(p')) and

e for every maximal antichain A of A in V¥, i(A) is a maximal antichain of B in V<.
Then P+ A < Q * B.

Proof. Let j:P — Q be a witness for P < Q. Define the following embedding: k:IP A - Q=xB,
k(p,q) = (j(p),i(q)). Conditions (1), (2), (3) of Definition 2.5 are easily checked. We show
property (4) of Definition 2.5. For suppose not and let W = {(pa, ) : @ < £} be a maximal
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antichain of P+ A and (¢,b) € Q + B be incompatible with every condition in k(W). Let H be the
canonical P-name for a P-generic filter and let I be a P-name with I+ I = {o: po € H}.

We claim that I “{a, : a € I} is a maximal antichain of A”. Otherwise, we can find a P-name

a and p € P such that

() piFVa(ael - alag).
Since (p,a) € P+ A and W is maximal, we can find a < s and (p’, @) which is a common extension
of (p,a) and (pa,da). Then p’ IFa' <and' <aq and p'-ael. Hence p’ kFaeInd <and <ag
which is a contradiction to (x).

Now let G be a Q-generic filter containing ¢q. As P < Q we can find a P-generic filter H with
V[H] < V[G] (see |7, p. 270]). Let b =b[G], aa = 4a[G] = aa[H] and I = [[G] = {a < k:pa € H}.
By the above {a, : @ € I} is a maximal antichain of A in V[H] ¢ V[G] and by assumption
{i(aq):a € I'} is a maximal antichain of B in V[G]. Thus Ja e I b [ i(as) and so 3¢ < q,5(pa)
such that ¢’ - e I AD 1 z(aa) This further means that there is a Q-name 7 with ¢’ I 7 < b, i(da),
hence (¢, 7) is a common extension of (¢,b) and (j(pa),i(aa)), which is a contradiction. O

3. THE INDEX SET
Bounding and dominating can be defined generally for arbitrary posets as follows:

Definition 3.1 ([4]). Let (P,<p) be a partial order.

(1) We call U ¢ P unbounded if Vpe P 3qe U (q £p p).

(2) b(P) =min{|U|:U c P is unbounded}.

(3) A subset D c P is dominating if Vpe P 3ge D (p <p q).
(4) 9(P) = min{|D|: D ¢ P is dominating}.

* is an equivalence relation on "k.

Note that <* is not antisymmetric. However the relation =
Let [f]- ={g € "k: f =* g} denote the equivalence class of f. The relation <_- on the equivalence
classes, given as [f] <+ [g] iff f <* g is well-defined and a partial order. So b, = b({[f]=+:f €

"R}, <o) and 0 = 0({[flor: f € K}, <o0).
Lemma 3.2 (|4]). For any poset P there is a well-founded and dominating subposet P’ of P.

Proof. Let T = (pq : & < A) be a maximal sequence such that Ya <A V5 <« (po £ pg). It is not
difficult to check that P’ is dominating, as if not for any p € P such that Ya < A(p £ pa), the
sequence (pq : o < A) contradicts the maximality of 7, where p) =p. Take P’ = {ps:a < \}. O

In the above Lemma P’ is clearly cofinal in P and so 9(P) =0(P’) and b(P) = b(P’).

For the purposes of the next lemma, let (R,<g) be a well-founded poset such that |R| = 9,
0(R) =6 and b(R) = S for some cardinals § and 0. Further, for each a € R, let (L4,<z,) be a well-
order of order type 6 and let L, = (lo 7y < 6) where Iy <p, lo iff ¥ <7'. Let Q be the disjoint
union Q = RuU{L,:a € R} and let <g be the partial order on @ defined as follows: <ol Rx R =<g,
VaeR (<ql Lo x Lq =<1,), Va€ R (a<g lap) and Va' #a€ R Vy€d (0’ <pa—ly~ <Q lay)-

Lemma 3.3. If (R,<r), {Ls,:a € R}, and (Q,<q) are given as above, then 2(Q) = 4,b(Q) = f,
|Q| =6, Q is well-founded and for each be @, [b1g | = 4.
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Proof. For any element ¢ € Q, define the trace ¢® of ¢ in R to be

R {a qe€Lg
q =
qg g€R

and for any subset A € Q, Af to be {af:a € A}. Let be Q. Then |b 1q | =0, as either b =a for an
a€Rorb=1,, for an a € R and v <¢. In either case [L,nb1q | > 4. Also |Q| =9, because |R| =4
and |Ly| = § for each a € R and 4 is an infinite cardinal. As @ is dominating and |@Q| = §, we have
(@) <.

(Q) > 4: Let Ac @ and |A| < 8. Then also |AT| < § and AT is not dominating in R. So
dbe R Vae AR (b g a). Then b is also unbounded in A.

6(Q) > B: Let Ac @Q and |A| < 3. Then also |A¥| < 8 and A® is not unbounded in R and so
Ide R Vae A" (a<p d). For an ordinal a < 8, let Hy = {lyo:a € R}. Let o =sup{yv: AnH, * @}.
By regularity of 3, o/ < 5. However § > 3> ' and any l4, where o’ <~ < ¢ domintaes A.

b(Q) < B: Let A € R be unbounded in R with respect to <g and let |[A| = 5. Consider an
arbitrary ¢ € Q. Note that if a € A is such that a £ ¢, then also a £9 ¢ Thus A is an
unbounded family of @) with respect to <q.

Finally, to show that @ is well-founded consider an arbitrary, non-empty Ac Q. If An R+ @,
then a minimal element of AnR is also a minimal element of A. Otherwise let m € R be a minimal
element of A%, Tet o' = min{y: An H, # @}. Then l,;, o is a minimal element of A. O

We will make use of the following notation: Whenever (X,<x) is a well-founded poset, then
for an arbitrary y in X, let Xy ={r e X 1o <x y} and y tx={r e X :y <x z}.

Corollary 3.4. (GCH) Let x be a regular infinite cardinal and let 3,6 be cardinals such that
kT < B = cof(B) < cof(d). There is a well-founded (index) partial order (W, <y ) of cardinality
0, which has a least and largest elements, denoted ¢ and m respectively and such that for @ =
W\{m, c}, <g= Q x Qn <y the following holds

b(Q) =8,0(Q) =0, and Vb e Q ([b1q |2 9).

Proof. Let (Q,<g) be a well-founded suborder of ([§]<%,<) having the same generalized bounding
and dominating numbers as ([6]%#, <) such that Yb e Q (b tg | > §). By Lemmas 3.2 and 3.3,
such a (Q,<q) exists. Now, let W = {c} U Q U{m} be a disjoint union and let <y be defined as
follows:

(1) for each a € Q, c<w a
(2) <WFQXQ:<Q7

(3) for each a € {c} U Q, a <y m.
Then (W, <y ) is a well-founded poset with the desired properties. O

4. THE ITERATION AND ITS PROPERTIES

Now we are ready to construct our iteration, which is a slight modification of the non-linear
iteration of Hechler forcing for adjoining a dominating real D(w,@) from [4]. From now on
assume GCH in the ground model V and we fix s a regular cardinal, /3,4 infinite cardinals with
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k' < B =cof(B) < cof(d). Let (W,<w) and (Q,<g) be the well-founded index posets defined in
Corollary 3.4. Moreover, let Q" = Qu {m}, <g= Q' x Q'n <yy.
Fix a surjective book-keeping function F : Q — B such that for all a € 8, F71(a) is cofinal
in Q. That is Va < 8 Vb e Q (b tg nF'(a) # @). Such a F exists, since |Q| = § > 8 and
Vbe @ (\b 102 (5). In addition, for each v < 3, let JY = {a € Q: F(a) > ~}.
In the following, we consider (8 + 1) x W with the inherited lexicographic order <., and the
product order < where (g, ag) < (a1,a1) iff ap € g and ag <w a1, or ap = a1 and ag <y a;.
Definition 4.1. For each (a,a) in (8 + 1) x W we will define recursively on <., a forcing notion
P, . and take V, 4 = VFPaa For each a < B let P,.=H,. Let (ov,a) € (8+1) x Q" and suppose:
(1) for each (7,b) <jer (a,a) the poset Py has been defined;
(2) in case b # ¢, also a P, -~name T for a forcing notion is given so that P, = P, . * T b3
(3) whenever (ap,ap) < (a1,a1) < (a a), ¢ #ag then I-p, . Too.ao < Ty -

Then, in particular, for each (ag,a0) < (o1,a1) < (o, a), Pagag € Paya; (see Lemma 4.3).

We proceed to define P, ,. Since for each b e Q,\J, F(b) <« and so (F(b),b) < (a,b), in Vo
we can fix a T, j-name Hbo‘ for VEF®)b A5y Now, in V, . let T,, o be the poset of all functions p
such that dom(p) = Q/, and

(1) for each be @, nJ*, p(b) is a T, p-name for an element in the trivial poset;

(2) for each be Q/\J?, 1, , P(b) € H(Hl?);

(3) for supp(p) ={be Q. \J*: T, p(b) # ]IH(H;;)} we have |supp(p)| < &
The extension relation of Ti, , is defined as follows: p < ¢ iff supp(¢) S supp(p) and for each
b e supp(q), if b € Q;\J then p | b1, , p(b) <IHI(H“) q(b), where p | b abbreviates p | Q;. For
beQy\J* wlo.g. we assume that p(b) = (s}, fb) where the stem s} is in the ground model and
fb is a nice T, ;-name for a s-real in VEPF®b 0 g Let P.o= ac*Taa

Lemma 4.2. For any a <o’ <fand a€ Q', Vo £ To 0 € To g

Proof. Consider in Vi . the mapping i:T, , - To 4 where supp(i(p)) = supp(p) and for each
b € supp(i(p)), IF1,,, i(p)(b) = (sé(p),f;(p)), where sz(p) = s} and flf(p) is a T, p-name for the
k-real named by ff . The mapping ¢ witnesses that T,, , < Ti o in Vi ., by making crucial use
of J ¢ J* 1If b e supp(p) € Q.\J*, then (by J* ¢ J*) b e supp(i(p)) € Q,\J*. In this case,
F(b) <wand Hg‘ is a Ty, p-name for VEPr®) b 0"k, But F(b) < o' holds also and Hg‘, is a Ty p-name
for VEF®.b 0%k as well. As the second coordinates refer to the same set of k-reals, compatibility
and incompatibility depends on the stems at supp(p). O

Lemma 4.3. Vbe W Va<a' < (Pyp < Pyrp).

Proof. Proceed inductively on W. If b = ¢ and « < 3, then the Lemma holds by the product-like
property of the forcing in Definition 2.4. For b € Q' the claim holds by Lemmas 4.2 and 2.6. [

Remark 4.4. All together we have Va,a' < Va,be W (a <o’ Aa<w b— Pao < Pyyp).

Remark 4.5. Note that J° = @, so at the bottom “plane” we iterate with trivial forcing only.
Also J? = &, so at the top “plane” we have no trivial forcings, but only restricted Hechlers.
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Example 4.6. Working in V,, . observe the following: Let p,q € T, 4 for some a € Q" be such
that for each b € supp(q) nsupp(p), s, € s{ v sy 2 s{. Then p,q are compatible, with a common
extension r € T, , defined as follows: supp(r) = supp(p) usupp(q) and

* IFr,, 7(b) = p(b) if b € supp(p)\supp(q)

* Ikr,, 7(b) = q(b) if b € supp(q)\ supp(p)

o i1, , 7(b) = (s, fg) if b e supp(p) Nnsupp(q), where sj = sy U s{ and fg is a T, p-name for
the pointwise maximum of fg and fg’ )

Lemma 4.7. For any o < and a € W, the forcing P, 4 is k*-c.c. and is k-closed.

Proof. If a = ¢, then P, , equals H, which has the x*-c.c. and is k-closed.

If a # ¢, then Py, = Py * Ta,a. Since P, . = H, has the x*-c.c., it is sufficient to show that
for any H,-generic G, V[G] E “T, has the k*-c.c.”. In V[G], consider any S = {pa:a < k*}
a family of conditions in T, , of size k™. We will show that S is not an antichain. Since the
support of each condition is of size less than x, and <% = k, we can apply the A-System-Lemma
to {supp(pa):a < K"} to get a Y ¢ [S]"+ such that {supp(pa):pa € Y} forms a A-System with
root R. Again since k" = k, |Y| = k" and |R| < K, we can assume that if b € R and p, € Y then
Pa(b) = (tb,ff“) where t;, is the same stem for each p, € Y. Now, for p,,pg € Y one can define
a common extension ¢ as follows: supp(q) = supp(pa) U supp(pg); if b € R then ¢(b) = (tb,fb)
where f, is the pointwise maximum of {fg, fbﬁ} If b e supp(pa)\supp(pg) then q(b) = pa(b) and
if b € supp(pg)\supp(pa) then q(b) = pg(b).

Again as P, . = H, is s-closed, it is sufficient to show that for any H,-generic G, V[G] E “Tqy. 4
is k-closed”. Consider in V[G] a decreasing sequence (po:a < ) of conditions, where v < k.
We will define a common extension p, by using the fact that the forcing in Definition 2.3 is
r-closed. Proceed as follows. Let supp(p) = Ua<y Supp(po). Then [supp(p)| < & by regularity
of k. If for any a < v and b € supp(pa) we have pa(b) = (ta(b), fa(b)), then let p(b) = (¢, f)
where ¢ = U{tq(b) : b € supp(pa)} and f is a Ty, j-name for the pointwise supremum of the second
coordinates {fo(b) : b € supp(pa)}. Then p is as desired. O

The next Lemma is analogous to Lemma 15 in [3].

Lemma 4.8. Suppose b e W, then the following two properties hold:
(a) Any condition p € Pgy is already in P, for some o < f3.
(b) If f is a Pgp-name for a s-real then it is a P, j-name for some o < f3.

Proof. We show (a) and (b) simultaneously by transfinite induction on b € W, the well-founded
poset. Because Pg, has the x*-c.c. property and 3 is such that cof(3) > k, we can easily see that
(a) implies (b) if we pass over to a nice name of the k-real at hand.

Now we begin the induction by letting b = ¢: Properties (a) and (b) for b = ¢ are both true as
{3 is regular, above x and the domain of a condition in Hg is of size less than . Hence this stage
does not add new rk-reals.

Let b # c and let p € Pgy = Pg * Tﬂ,b- Then p is of the form (pg,p1), where py € Pg,. and
I-ps. D1 € Tg,b. For py € Pg . the induction hypothesis on (a) holds. So there is a ap < 8 such
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that po € Pag,c. Since I, , [supp(p1)] < K, p1 involves less than k-many names for x-reals (the
second coordinate of the restricted Hechler forcing). This gives an object of size at most «, and
we can use the induction hypothesis on (b) in order to find an aq < 8 such that p; is a Py, c-name.
Then p = (po,p1) belongs to P,p, where a = max{ag,a1}. So (a) is true for stages with b # ¢
and implies (b) for stages with b # ¢, because a nice name for a k-real involves at most k-many
conditions and cof(8) = 8 > k. O

5. PRESERVING A WITNESS FOR a,
Recall [3] §2 (Adding a mad family).

Definition 5.1. ([3]) Let M < N be models of ZFC, B = {By}a<y € M n[k]" and Ae N n[k]".
Then we say Yy (M, N, B, A) is true, if for every h € M7k and m € k we can find n > m, F ¢
[v]" satistying [n, h(n, F))\ Uaer Ba € A.

Lemma 5.2. ([3]|) Suppose Y5 (M, N, B, A) is true and let I(B) be the k-complete ideal generated
by B and the sets of size less than . Then for B e M n[k]", B¢ I(B) we have |[An B| = k.

Proof. For suppose not and let AnB cn e k. Let m’ >n, F' e [y]*". Since Y ¢* X € I(B) implies
Y € I(B) and Ugerr Bo € I(B) and B ¢ I(B), we must have B ¢* Upepr Ba. So there is kf;’, such
that m’ < k¥ € B\Uaepr Bo- Now for all m > n and F € [y]<* we define h(m, F) = k& + 1 and
h(m,F)=0ifm <n. As his defined in M and [m, h(m, F))\Uaer Ba ¢ A for all m > n, F € [y]<",
we contradict Y (M, N, B, A). O

The family A, added by H., (Definition 2.4) satisfies the Y¢-property in the following sense.

Lemma 5.3. ([3]) If G41 is H,i-generic, Gy = G411 nHy and A, = {A,}a<y where as above
Ao ={i:3peGyi1 p(a,i) =1} for each a <+, then we have Y¢(V[G4],V[Gy41], Ay, Ay).

Proof. Let h e V[G4] n <O (p, H) € H, ,+1) and m € & be arbitrary. By the definition of
H, 4+1) we have dom(p) = {7} xn,, for some n), € k. Now we define the following extension (g, K')
of (p, H). Let n € k be above ny, and m, and let ny = h(n, H). Define dom(q) to be {y} xny. Let
K =H and

p(vy,4) if i<ny

, 0 if ie[ny,n)
q(v,4) = o .
1 if ie[n,ng)Ai¢Unerr Ao
0 if ie[n,ng)AieUner Aa

Then (¢, K) extends (p, H) and (¢, K) I+ [n,h(n, H))\User Aa € Ay and we are done. O

Lemma 5.4. ([3]) Let M ¢ N be models of ZFC, P € M a forcing poset such that P< M, G a
P-generic filter over N (hence also P-generic over M). Then the following holds: If B = {Bq }a<y S
Mn[k]® and Ae Nn[k]® and Y¢ (M, N, B, A) holds, then Y (M[G],N[G],B, A).

Proof. For suppose not and let h e M[G]n"™*1]™ k., m € k be such that Vn > m VF € [y]* N[G] &
[n,h(n, F))\Uaer Ba ¢ A. Then there are p € G, a P-name h € M for h and m € k with
plEny VYn>m VE € [v]<F [n,h(n, F))\Uacr Ba ¢ A.
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Now in M, for h let pY € G be a condition extending p and deciding the value of h at point
(n,F), i.e. pfi- h(n,F) = kY. Then pE iy [1n,kX))\Uacr Ba ¢ 4, 50 N & [0, k5)\Uner Ba ¢
A. However, the function
0 if n<m

EE else

h(n,F)= {

is in M and contradicts Y (M, N, B, A). O
Lemma 5.5. Vbe W Va < 8 (Y (Vap, Vas1.p, Aa, Aa))-

Proof. Proceed inductively on W. If b= ¢ and « < 3, then the statement ¥¢(Va.c, Vasies Aas Aa)
holds by Lemma 5.3. Suppose next that b € Q". Note that ¥¢(Va.c, Vati,e, Aa, Aq) holds, T, p €
Ve € Vare and Viy o B Top < Ty p (Lemma 4.2). So any Vi .-generic subset of Tip is also
Vi e-generic subset of T, 5. Consequently, by Lemma 5.4, ¥¢(Vap, Va1, Aa, Aa)- O

6. THE RESULT
The next theorem gives us the consistency result.
Theorem 6.1. Vg, E b, =a,=05<0,=0.

Proof. a,, < B: The family Ag = {A,:a < B} added in the first column is a k-mad family in the
model V3. If this was not the case, then 3z € Vz,,, n [k]" YA, € Ag (]t n Ay < k). By Lemma
4.8, we have Ja < B (z € Vo N [K]%). However by Lemma 5.4, ¢ (Va,m, Vas1,m,Aa, Aa) holds
and so |Ay Nx| = k by Lemma 5.2.

b, > B: Let B ¢ V3, n"k be such that |B| < 8. By b(Q) = 8 and by Lemma 4.8, we have
WBeQ Ia<B (BCVypn®k). AsVy< B VeeQ (ctg nF () # @) we can find an element
b e @ with b <" and F(b') = a. Then the poset P,.1 adds, among other things, a dominating
k-real over V, Nk 2V, N "k, hence B is not unbounded.

By the previous paragraphs we have V3, E b, = a, = 3, as b, < a, is provable in ZFC.

§>0,: Let f bea P3 m-name for a x-real. By the previous Lemma 4.8, the property b(Q) =
f > k" and the regularity of 3, there is a b € @ and an a < 8 such that f eV, n"k. Let D c @
be a dominating family of size § and let d € D be such that b <g d. As Vy < Vee @ (c 1o
NF~1(y) # @), we can find an element d, € Q with dap > d and F(dap) = a. Then Pyyq 4, , adds
a dominating real over the model Vi, 4, , 2 Vap, call it gt. Hence the arbitrary f is dominated
by the set {g%® :de D, € §} which is of size §- 3 = 6.

Now, for each a € Q and Pg ,-generic filter G, let f& = U{t,: Ip € G (p(a) = (ta, fa))} and let
fé be a Pg,,-name for f&.

Claim 6.2. If g € V(o) o and b £g a, then Vg, &4 g.

Proof. Let p be an arbitrary condition in Tj3,, (in V3.), n € x and let ¢ be a Tp o-name for g.
We will find an extension of p which forces f&(k) > g(k) for some k > n. Let p(a) = (t,¢') and
p(b) = (s,h). Let f be a Ts,-name for the pointwise maximum of ¢’ and g. Now define the
condition pg as follows: supp(po) = supp(p) and po(e) = p(e) for each e # a, and po(a) = (¢, f).
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Clearly po < p. Now let k € x be large enough such that {dom(t),dom(s),n} c k. Next let g€ Tg,
extend po | @ and ¢ decide the value of f up to k. Now define the extension p; of pg by setting
p1(e) = po(e) for each e £ a and pi(e) = g(e) for each e <g a. So p; is an extension of pg
carrying the information on the values of f up to k; and now we do the same for b and p1, so
we let 7 € Ty, with v < p; | b and r decides the values of h up to k. We define the extension
p2 as pa(e) = p1(e) for each e £g b and pa(e) = r(e) for each e <g b. Now p > py > p1 > p2 and
p2(a) = po(a) and pa(b) = p(b). Now we extend po as desired: First find an end-extension ¢’ 2 ¢
such that dom(#') = k + 1 and for dom(¢) <4 < dom(t'), t'(i) > f(i). Then find an end-extension
s’ 2 s such that dom(s’) = k +1 and for dom(s) <i < k+1 (s'(i) > max{h(i),#(i)}). Then any
further extension p/, of po satisfying s]gé = ' forces f%(k) > f(k) which gives the claim, O

0 <0, Let F ¢ Vg, Nk be a family of size less than 6. As in the previous paragraph we can
find for every single f € F' a stage ay € Q such that f € Vp(y,) 4, 0"k Now {ay: feF}| <4, s0
{as: f € F} is not dominating in Q. Hence Jue Q Vf e F (u £ ay). Then by Claim 6.2 we have
VfeF (f& ¢ f). Hence F is not dominating. O

Theorem 6.3. If 3,0, u are infinite cardinals with k* < = cof () < cof(d) <6 < p and cof (u) > &,
then there is a k' -c.c. and k-closed generic extension in which b, =a, =8, 0, =0 and ¢, = i

Proof. In the above construction replace the underlying poset (Q,<q) by the following poset
(R,<Rr): R consists of pairs (p,7) such that either i=0Ape pori=1Ape Q. The order relation
is defined as (p,i) <p (¢,j) iff i=0Aj=1ori=j=1Ap<gqori=j=0Ap<qin p Then
b(R) = b(Q) = S and 2(R) = 9(Q) = ¢ as the map i : Q - R defined as b —~ (1,b) is a cofinal
embedding from @ into R. The bottom part (u,€) of R ensures that in the final model ¢, > p
holds. By a standard argument of counting nice names ¢, < p in Vg p,. g

7. FURTHER REMARKS

We also want to point out that the model in |3, §4] is an alternative witness for the constellation
we showed here in the case of kK = w, namely b = a <d < ¢. Recall the construction in [3] forcing
b=a=kr<s=A Let kK <A be fixed regular uncountable cardinals. First introduce a surjective
book-keeping function f:{rv < A:v =1 mod 2} - k where Va < k (f‘l(a) is cofinal in A). The
matrix is defined recursively and consists of finite support iterations ((Pa¢: a < k,& <), (Qa{ :
a < k,& <\)) where:

(1) If £ = 0, then for each a < k, P, is Hechler’s poset from Definition 2.4 which adds an
almost disjoint family A, = {Ag}g<q which is m.a.d. in Vo if o> w;.

(2) f £ = p+1=1mod 2, then for each a <k, I-p, , Qa# = M(an) while UOW is a Py y-name
for an ultrafilter with the property that for a < 3 <k, I-p, , UOW c Uﬁ,w This helps to evaluate
the splitting number in the final model.

(3) If €= p+1and € =0 mod 2, then for each a < f(1t) Qa, is @ Py y-name with Py, “Qap
is the trivial forcing”; and if a > f(u) then Qa’u is the P, ,-name for adding a dominating real
over the model V() .

(4) If £ is a limit ordinal, then for each o <k, P, ¢ is the direct limit of the previous P, .
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For suitable cardinals &, A, p in the final model Vj; y one can witnessa=b=r <A =0(=5) <c=pu
Proceed with a finite support iteration of Cohen forcings of length y in order to get an intermediate
stage (model Vp) where ¢ = o holds. Over V perform the above described construction. It is not
difficult to check that in the resulting model a = b = k < XA = 5. Next, we show that in the model
also 0 = A

0 < A: Let f eV, xn“w be an arbitrary real. By Lemma [3, Lemma 15| and the regularity of A
we have Ja < k, £ <A (2 € Ve n®w) such that € =n+1=1mod 2. As {7: f(7) = a} is cofinal in A
we can find a § <& =0 mod 2 with f(§') = a. Then the poset Py, ¢4+ adds a Hechler real over
the model V, & n®w 2V, ¢ n“w, and the A-many (restricted) Hechler reals in the construction
build a dominating family.

0> A Let B ¢V, xn“w be such that |B| < . By the regularity of A we have 3§ < X (z €
Ve N“w). As the remaining part is a finite support iteration of non-trivial forcings, limit stages
with countable cofinality add a Cohen real which is unbounded. Hence B is not dominating.

We further point out that the consistency of k* < b, = a, = 8 <0, = ¢, = can be shown by a
(linear) matrix iteration: Assume in the construction of Section 4 additionally that ¢ is regular
and replace @ by the well-order (J,€). The final model of this matrix, which is of height 5 and
width ¢, satisfies K™ < b, = a, = 8 <0, = ¢, = d. If we additionally want to separate 0, and ¢, e.g.
to force ¢, = 1, we can add p-many Cohen k-reals before the above described iteration. However,
by arguing with a (linear) matrix iteration, we have to require that ¢ is regular, leaving the case
0, singular unsettled. To force k¥ < b, =a, = <0, =0 < ¢, = p for a singular § one has to take
the more general approach given in Section 4.

Question 7.1. It is open whether four cardinal characteristics (among other natural candidates),
namely a,s,v and u, can be controlled strictly between b and d. Is either of the following constel-
lations consistent: b<a<d<c¢, b<s<d<c, b<t<d<e, b<u<o<c?

Since by, = k™ implies that a, = k¥ for k regular uncountable (see [8]), the main result of [4]
implies that for a given suitable set C' of regular uncountable cardinals, it is consistent that
by =ay = A" <0y = ¢, holds simultaneously for all A € C. This naturally leads to the following:

Question 7.2. Given a set C' of regular uncountable cardinals is it consistent that
AT <by=ay <0y <y

for all A € C' simultaneously?
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