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Abstract. We will consider four cardinal characteristics of the continuum, a, b, d, s and

discuss how their study has prompted the development of some of the most powerful forcing

techniques: creature forcing, coherent systems of iterations, Shelah’s method of template

iterations and the method of boolean ultrapowers.

1. Introduction

The emergence of the subject of set theory can be traced back to the late nineteenth

century, the advances of real analysis and the work of Georg Cantor on the trigonometric

series representation of a function. In 1871, Cantor proved that if two trigonometric series

converge to the same point except on finitely many points, then they converge to the same

point everywhere. He soon generalized his theorem to an infinite set of exceptional points.

However, this set of exceptional points was not arbitrary. It was subject to the requirement

that for some n ∈ N, its n-th derived set was finite. These developments were quickly

followed by Cantor’s proof that the set of natural numbers, N, can not be put in bijective

correspondence with the set of real numbers, R, and the continuum hypothesis, which is the

hypothesis that every infinite set of reals is either in bijective correspondence with R or with

N. The emerging necessity of comparing various sizes or infinities was soon answered by

the appearance of Cantor’s cardinal numbers and their cardinal arithmetic. The continuum

hypothesis, abbreviated CH, can now be formulated as the claim that the cardinality of the

real line is the first uncountable cardinal.

The cardinality of R, denoted c, is in fact the very first cardinal characteristic of the real

line. More generally, the cardinal characteristics of the real line are usually defined as the

minimal size of a set of reals, which is characterized by a certain property. For example,

consider the minimal cardinality of a family of meager sets, which covers the real line and

denote this minimal size by cov(M). We refer to this cardinal characteristics as the covering

number of the meager ideal. Since the countable union of meager sets is meager, by Baire

category theorem ℵ0 < cov(M). On the other hand, the family of all singletons clearly covers
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R and so cov(M) ≤ c. The problem of determining the cardinality of the real line was, and

maybe still is, one of the major driving forces behind the development of set theory. It took

almost a century to show that the usual axioms of set theory, i.e. the axiomatic system ZFC,

do not determine the value of c. Already in 1939, Kurt Gödel established the consistency

of CH with ZFC, by showing that it holds in his Constructible Universe (see [21]). It was

not before the appearance of Cohen’s method of forcing in 1962, that the consistency of

the negation of CH with ZFC was obtained (see [12], [13]). Thus, with Cohen’s result the

independence of CH from ZFC was established. The method of forcing is a general method

for obtaining relative consistency results, excellent expositions of which can be found in [25],

or [24]. Since its appearance, the method has found broad applications to the study of the

topological, measure theoretic and combinatorial properties the real line. Among others, it

was used to show the independence of the Suslin hypothesis, as well as the independence

of the Whitehead problem: while in the Constructible Universe every Whitehead group is

free, it is consistent that there exists a non-free Whitehead group. Regarding the covering

number of the meager ideal, the method of forcing can be used to show that each of the

following is relatively consistent with ZFC: ℵ0 < cov(M) < c, as well as ℵ1 < cov(M) = c.

In this article, we will focus on four combinatorial cardinal characteristics of the real line:

the bounding, the dominating, the almost disjointness and the splitting numbers, denoted by

b, d, a, ans s respectively. Apart from establishing their ZFC relations, we will make an

overview of those developments of the method of forcing, which were triggered by the study

of the independence of the characteristics in each of the pairs: {a, d}, {a, s}, {b, s}. Among

those are some of the most interesting and powerful forcing techniques: creature posets;

matrix iterations, and more generally coherent systems of iterations; Shelah’s method of

template iterations and its development from a method of iterating Suslin posets to a more

general method permitting the iteration of Mathias-Prikry posets. Finally, we will briefly

discuss the method of boolean ultrapowers and conclude with two open problems, which are

central to the current development of the area.

2. Four cardinal characteristics and their ZFC relations

The results in this section are well-known and can be found in any expository presentation

of the combinatorial cardinal characteristics of the real line, e.g. [4] or [23]. The following

two notions, the notions of eventual dominance and almost containment, will be of particular

importance for the upcoming discussion.

• For any two elements f, g in ωω, we say that f is eventually dominated by g, denoted

f <∗ g, if there is n ∈ ω such that for all k ≥ n, f(k) < g(k).

• For A,B ∈ [ω]ω, we say that A is almost contained in B, denoted A ⊆∗ B if A\B is

a finite set.

Now, we can define two of the cardinal characteristics, which we will be of interested for

our discussion:
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• The bounding number , denoted b, is defined as the minimal size of an unbounded,

with respect to the eventual dominance order, family in ωω. More precisely, B ⊆ ωω is

said to be unbounded, if for every f ∈ ωω there is g ∈ B such that g is not dominated

by f . That is, ∃∞n ∈ ω(f(n) ≤ g(n)). Thus b = min{|B| : B is unbounded}.
• The dominating number , denoted d, is defined as the minimal size of a dominating,

with respect to the eventual dominance order, family in ωω. More precisely, D ⊆ ωω

is said to be dominating, if for every f ∈ ωω there is g ∈ D such that f <∗ g. Thus

d = min{|D| : D is dominating}.
One of the first uses of the bounding number can be found in [29] (see also [32]). For a set

X ⊆ Rn Rothberger defines X to have property λ, if each of its countable subsets is relative

Gδ. Furthermore, he defines for a set X to have property λ′, if X∪Y has property λ for each

countable subset Y of Rn. Then, he goes on to give a characterization of the sets with the

property λ′, which in contemporary terminology can be formulate as follows: A set X ⊆ Rn

has property λ′ if and only if |X| < b.

Lemma 2.1. ω1 ≤ b ≤ d ≤ c

Proof. Let F = {fn}n∈ω be a countable family in ωω. Consider the function g, which

diagonalizes F , i.e. the function g defined by g(k) = maxi≤k fi(k) + 1 for all k. Then g

eventually dominates every member of F and so the minimal size of an unbounded family is

strictly above ℵ0. The fact that b ≤ d follows from the observation that every dominating

family is unbounded. Furthermore, since the collection of all functions in ωω is dominating,

we clearly have d ≤ c. �

The other two characteristics which will be for importance for our discussion are the almost

disjointness and the splitting numbers.

Definition 2.2.

• A family A ⊆ [ω]ω is said to be almost disjoint if for all a, b ∈ A such that a 6= b, the

intersection a ∩ b is finite. An infinite almost disjoint family is said to be a maximal

almost disjoint family, abbreviated m.a.d. family, if it is almost disjoint and maximal

under inclusion. The minimal size of a maximal almost disjoint family is denoted a

and is referred to as the almost disjointness number .

• A family S ⊆ [ω]ω is said to be splitting if for every a ∈ [ω]ω there is s ∈ S such that

both a ∩ s and a ∩ (ω\s) = a\s are infinite. The minimal cardinality of a splitting

family is denoted s and is referred to as the splitting number .

The existence of maximal almost disjoint families is an easy application of the Axiom

of Choice, or equivalently Zorn’s Lemma. It is also not difficult to construct a maximal

almost disjoint family of size c (see for example [4] or [23]). An interesting observation is

the fact that the splitting number originally appeared as an algebraic characterization of

sequential compactness. In [10], Booth shows that for every regular uncountable cardinal
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λ, the space 2λ is sequentially compact if and only if for every sequence 〈aα : α ∈ λ〉 of

infinite subsets of ω, there is b ∈ [ω]ω with the property that for every α ∈ λ, b ⊆∗ aα or

b ⊆∗ ω\aα. In contemporary notation, Booth’s result can be reformulated as the claim that

2λ is sequentially compact if and only if λ < s.

Lemma 2.3. b ≤ a

Proof. Consider an arbitrary maximal almost disjoint family A = {xξ}ξ∈κ. By finitely

modifying the first ω members of the family, we can assume that they form a partition

of ω. More precisely, take x∗ := ω\(
⋃
ξ∈κ xξ), x

′
0 := x0 ∪ {0} ∪ x∗ and for each n ≥ 1,

x′n := (xn ∪ {n})\(
⋃
k∈n x

′
k). Then, since the elements of A are pairwise almost disjoint,

each x′n is infinite and clearly {x′n}n∈ω forms a partition of ω. It is also straightforward that

A\{xξ}ξ∈ω ∪ {x′ξ}ξ∈ω is a m.a.d. family.

Claim: There is a bijection h : ω → ω × ω such that h−1({n} × ω) = x′n for each n.

Proof: For each n, let gn be the enumerating function of x′n. Since {x′n}n∈ω forms a

partition of ω, we can define

h(m) = (n, k) iff m ∈ x′n and gn(k) = m.

Clearly, h is as desired. �
For each ξ ∈ κ and k ∈ ω, define fξ(k) := max{l : (k, l) ∈ h[xξ] ∩ h[x′k]}. Note that

fξ(k) = max{l : (k, l) ∈ h[xξ]} and also, that since xξ ∩ x′k is finite, the function fξ(k) is

well defined. However, the cardinality of B = {fξ}ξ∈κ is smaller than b and so there is a

function f dominating all elements of B. But, then h−1[{(n, f(n))}n∈ω] is a set, which is

almost disjoint from every element of A. �

It is not hard to see that the minimal size of a splitting family is strictly above ℵ0 and

that there is always a splitting family of size c (see for examples [4]). Furthermore, we have

the following:

Lemma 2.4. s ≤ d

Proof. Note that if f is a strictly increasing function in ωω with f(0) > 0, then f determines

an interval partition of ω, given by {[fn(0), fn+1(0))}n∈ω, where f 0(0) = 0 and for each n,

fn+1(0) = f(fn(0)). Then, for a strictly increasing function f the sets

σef =
⋃
{[f 2n(0), f 2n+1(0)) : n ∈ ω} and σof =

⋃
{[f 2n+1(0), f 2n+3(0)) : n ∈ ω}

form a partition of ω into two infinite sets.

Equipped with the above partitions, we will show that every dominating family D ⊆ ωω

gives in a natural way rise to a splitting family of the same cardinality. Fix an arbitrary

dominating family D. Without loss of generality, the elements of D are strictly increasing

and for each f ∈ D, f(0) > 0. Let SD := {σf : f ∈ D}.
Claim: The family SD is splitting.
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Proof: For each x ∈ [ω]ω, let fx denote its enumerating function. Since D is dominating,

for each x ∈ [ω]ω, there is f ∈ D such that fx <
∗ f , i.e. there is n0 such that for each k ≥ n0,

fx(k) < f(k), and so in particular for each k ≥ n0, k ≤ fx(k) < f(k). Observe also that

since both f and fx are strictly increasing, k ≤ fk(0) and k ≤ fx(k) for all k.

Now, for k ≥ n0 we have

fk(0) ≤ fx(f
k(0)) < f(fk(0)) = fk+1(0).

Therefore for all k, fx(f
k(0)) ∈ [fk(0), fk+1(0)), which implies that both x∩σef and x∩σof

are infinite. Clearly σof = ω\σef and so σof splits x. �

3. Creature posets, coherent Systems and template iterations

Our understanding of many of the combinatorial properties of the real line, which are not

provable from ZFC, is often heavily dependent on our richness, or lack thereof, of forcing

techniques. In this context, the four cardinal characteristics, we have chosen to consider, play

an interesting and important role. Apart from the inequalities proved in Lemmas 2.1, 2.3, 2.4

and the fact that each of them takes values between ℵ1 and c, and of course the fact that

ℵ1 ≤ c, there are no other ZFC-provable inequalities between any two distinct elements of

{ℵ1, c, b, a, d, s}. To establish the lack of such further dependencies, we rely on the method

of forcing. For example, to show that there is no ZFC proof of say b ≤ s, we show that the

negation of this statement, i.e. the strict inequality s < b, is relatively consistent with ZFC.

In general, the task of establishing the independence between the cardinal characteristics in

each of the pairs {a, d}, {a, s} and {b, s} is highly non-trivial and has brought the devel-

opment of some of the most interesting forcing techniques, techniques which have already

found applications far beyond the problems they were initially introduced for.

The relative consistency of s < b was obtained by Baumgartner and Dordal, [3], in their

study of what is now known as the Hechler model. Since b ≤ a, in the same model s <

a. Their consistency proof gives one of the first uses of a rank argument and presents an

innovative for its time method of showing that a splitting family from the ground model

remains splitting in the final generic extension. The consistencies of b = ℵ1 < s = ℵ2
and b = ℵ1 < a = ℵ2 are due to Shelah (see [30]). To obtain the desired inequalities, he

introduced a powerful forcing technique, known as creature forcing. His construction comes

with a single drawback: the original creature posets are proper and so they can not be used

to provide models in which c > ℵ2.
It took more than a decade to overcome this difficulty and establish the consistency of

b = κ < a = κ+ (see [6]) for κ arbitrary regular uncountable cardinal. Almost another decade

was necessary before the consistency of b = κ < s = κ+ for κ arbitrary regular, uncountable

cardinal, was obtained (see [18]). For the forcing specialist, it might be interesting to know,

that each of those last two result was only possible, because of the existence of a a ccc poset,

which has all crucial properties of a proper, non-ccc counterpart from [30]. Furthermore,

the results involve the construction of a special (ultra)filter: given an unbounded, directed
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family H in ωω with |H| = c, there is an (ultra)filter U such that the associated Mathis-

Prikry poset, M(U) preserves the unboundedness of H. These special filters are clearly a

special form of what is now know as Canjar filters (see [11] and [22]).1

The task of obtaining a larger spread between b and s proved to be quite difficult. The

main challenge, being the problem of generically adjoining an unslit real, while preserving

the unboundedness of a family H from the ground model, whose cardinality is much smaller

than the size of the continuum. The consistency of b = a = κ < s = λ for κ < λ arbitrary

regular uncountable cardinals was obtained in [9]. Furthermore, the presented proof is one

of the few places in the literature, where a solution to the above problem can be found.2

The generic extension in which the above constellation is realized is obtained via a matrix

iteration. Recall that a matrix iteration is a system of κ-many finite support iterations of

ccc posets, 〈Pα,β : β ≤ λ〉, here α ∈ κ, with the following property: if V is the ground

model and Vγ,δ is the generic extension of V obtained via Pγ,δ, then whenever γ1 ≤ γ2 and

δ1 ≤ δ2, the poset Pγ1,δ1 is a complete suborder of Pγ2,δ2 and so Vγ2,δ2 is a generic extension

of Vγ1,δ1 . Such two-dimensional systems of generic extensions allow a much finer analysis

of the interplay between unboundedness and splitting. Indeed, assume in addition that the

ground model V (= V0,0) satisfies the Generalized Continuum Hypothesis (GCH) and that

Vκ,0 is obtained by adjoining a family C of κ-many Cohen reals over V . Inductively along a

column of the intended matrix, say β for κ < |β| ≤ λ, one can construct an ultrafiler Uκ,β in

Vκ,β such that forcing with the Mathias-Prikry poset M(Uκ,β) over Vκ,β preserves the family

C unbounded. Note that for β sufficiently large, Vκ,β � |C| = κ < c. Thus in particular, the

Mathias-Prikry poset M(Uκ,β) solves the above problem and the ultrafilter Uκ,β and can be

viewed as a strongly Canjar filter.

The paper [9] provides the second appearance in the literature of the idea of a matrix

iteration (the first being the original appearance of this idea in [5]). Among others, the

consistency proof of b = a = κ < s = λ offers a new method of preserving a maximal almost

disjoint family along a matrix iteration. Since then, matrix iterations have been applied to

the study of the characteristics of measure and category [26] and [16].3 The technique has

been recently generalized not only to three dimensional systems of finite support iterations,

but even more generally to arbitrary coherent systems of iterations as defined in [16]. Fur-

thermore, matrix iterations have been used to answer one of the long standing open questions

in the area, namely to show that the splitting number can be singular (see [14]).

The independence of a and d marked the appearance of one of the most interesting and

intricate forcing methods. The consistency of a < d is not difficult to obtain: in a model of

CH one can inductively construct a maximal almost disjoint family, which remains maximal

in the Cohen extension of the same model (for a proof see for example [25]). It remains

1For the case b < s, see also [15].
2Alternative construction, though restricted to cardinalities ℵ1 for the unbounded family and cardinality

ℵ2 for the continuum, can be found in [19].
3An excellent exposition of the characteristics of measure and category can be found in [1] and [2].
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to observe that the Cohen real is unbounded, which easily gives the desired inequality.

However, the consistency of d < a required a completely new idea. The result was obtained

only after the appearance of Shelah’s method of iterations along a template (see [31] and for

more axiomatic approach [7]). Shelah’s template model is a ccc generic extension in which

s = ℵ1 < b = d = κ < a = λ. The requirement that b = d > ℵ1 is necessary. These original

technique allows the iteration of nicely definable, in fact Suslin, posets along a template.

The fact that s = ℵ1 in Shelah’s extension is almost accidental: the preservation properties

of the construction imply that a family of ℵ1 Cohen reals, which are generically adjoined

along the forcing construction, remains splitting in the final generic extension. Obtaining the

same constellation with the additional requirement that s is arbitrarily large required major

developments in Shelah’s template iteration techniques. On one hand is the appearance of a

technique permitting the iteration of Mathias-Prikry posets along a template (see [27]) and

on the other, the realization that a template can be characterized not only by its length,

but also by a notion of a width (see [17]). In particular, equipped with the new notion of a

width, we could mimic the original isomorphism-of-names argument typical for the template

constructions from [31] to posets, which are defined as template iterations involving non-

definable iterands and so, establish the relative consistency of ℵ1 < s < b < d, which is the

main result of [17].

Apart from the above advances in Shelah’s technique of template iterations, there is one

more direction which should be mentioned. In [8], Brendle modifies the original construction

to completely embed into the template poset a forcing notion which generically adjoins a

maximal almost disjoint family of arbitrary cardinality. The technique produced the first

model in which the almost disjointness number is of countable cofinality. The modified

construction of Brendle was axiomatized and further developed by Fischer and Törnquist

in [20], who showed that the minimal size of a maximal cofinitary group can be of countable

cofinality (see [20]).

4. Boolean Ultrapowers and beyond

There are many possible constellations of {a, b, d, s} whose consistency remain open and

for which our current methods of obtaining relative consistency results seem to be inadequate

or simply, of little help. Concerning the characteristics a, b and s there are two other ZFC-

admissible constellations in which all three of those take distinct values, in addition to

s < b < a which was discussed in section 3. These are: b < s < a and b < a < s.

Using the technique of boolean ultrapowers Raghavan and Shelah obtain the consistency

of b < s < a, however at the expense of assuming the existence of super compact cardinals

(see [28]). The technique of boolean ultrapowers is comparatively new to the study of the

cardinal characteristics of the continuum, nevertheless it can be fully expected to produce

many interesting new result, as well as bring new insights into the area.

The consistency of b < a < s it still open. One possible approach could be the further

development of the theory of coherent systems of iterations, with the aim of introducing the
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iteration of appropriate Mathias-Prikry posets along a three dimensional coherent system.

Note that, the existing three dimensional constructions (see [16]) allow the iteration only of

nicely definable posets. Thus, the suggested approach reminds greatly the development of

Shelah’s template iteration theory: originally the constructions allowed only the iteration of

nicely definable posets ( [30]), while later the theory was successfully generalized to include

non-definable (in fact for now, only Mathias-Prikry) iterands (see [27, 17]).

Another well-known admissible constellation, which seems to evade our existing methods,

is the well-known Roitman’s Problem: Is it a ZFC theorem that d = ℵ1 implies a = ℵ1?
We could either hope to obtain a ZFC proof of this implication, or if not, then obtain the

relative consistency of d = ℵ1 < a. The problem remains one of the most interesting open

questions in the field.
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