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1. Partitioning Pairs of Countable Ordinals

Before we proceed with the main results to be discussed we review
some well known properties of stationary subsets on ω1 (see [1] section
II.6)

Lemma 1. There are ω1 disjoint stationary subsets of ω1.

Proof. Let Cub(ω1) = {X ⊆ ω1 : ∃C ⊆ X(C is club on ω1)}. Then
Cub(ω1) is countably complete filter. Its dual ideal Cub∗(ω1) = {X ⊆
ω1 : ∃X ′ ∈ Cub(ω1)(X = ω1\X ′)} is countably complete and contains
all singletons and so all countable subsets of ω1. Recall also that X ⊆
ω1 is stationary if and only if X /∈ Cub∗(ω1).

For every ρ < ω1 let fρ : ρ → ω be an injective mapping. Then
∀α < ω1 ∀n ∈ ω let

Xn
α = {ρ < ω1 : α < ρ and fρ(α) = n}.

Note that if α 6= β then for every n ∈ ω we have Xn
α ∩ Xn

β = ∅
(otherwise ∃ρ < κ greater than α, β such that fρ(α) = fρ(β) = n
which is a contradiction to fρ being injective). Also for every α < ω1

∪n∈ωXn
α = {ρ < ω1 : α < ρ} ∈ Cub(ω1).

Since Cub∗(ω1) is countably complete ideal ∀α ∈ ω1∃h(α) ∈ ω such

that X
h(α)
α /∈ Cub∗(ω1) and so in particular X

h(α)
α is stationary. But

h : ω1 → ω and so there is n ∈ ω such that |h−1(n)| = ω1. Therefore
{Xn

α : h(α) = n} is an uncountable family of disjoint stationary subsets
of ω1. �

Corollary 1. There is a mapping g : ω1 → ω1 such that ∀α ∈ ω1,
g−1({α}) is stationary.

Proof. Let {Xα : α ∈ ω1} be a family of disjoint stationary subsets of
ω1. Then ∀α < ω1 define g � Xα = α and g � [ω1\(∪α<ω1Xα)] = 0. �

Recall the following definitions:

Date: January 29, 2007.
1



2 VERA FISCHER

Definition 1. We say that

ω1 → [ω1]
2
ω1

iff for every f : [ω1]
2 → ω1 there is A ∈ [ω1]

ω1 s.t. f”[A]2 6= ω1.

Remark. Thus
ω1 9 [ω1]

2
ω1

iff there is a f : [ω1]
2 → ω1 such that ∀A ∈ [ω1]

ω1 , f”[A]2 = ω1.

The following result is due to S. Todorcevic (see [3]).

Theorem 1. ω1 9 [ω1]
2
ω1

.

Proof. We will find a function f ′ : [ω1]
2 → ω1 such that for every

uncountable A ⊆ ω1, f”[A]2 = ω1. In fact we will find a function
f : [ω1]

2 → ω1 such that for every uncountable set A, f”[A]2 contains
a closed unbounded set. By Corollary 1 there is a function g : ω1 → ω1

such that g−1({α}) is stationary for every α ∈ ω1. Then f ′ = g ◦ f is
a witness to ω1 9 [ω1]

2
ω1

.
Let {rα : α ∈ ω1} be a family of ℵ1 distinct functions in ω2 and

for every α ∈ ω1 fix an injective mapping eα : α → ω. Then for all
α, β ∈ ω1 let

σ(α, β) = σ(rα, rβ) = min{n : rα(n) 6= rβ(n)}
and let

∆α,β = {δ : α ≤ δ < β and eβ(δ) ≤ σ(α, β)}.
Then for all {α, β} ∈ [ω1]

2 define f(α, β) = min ∆α,β if ∆α,β is non-
empty and 0 otherwise.

Consider any uncountable subset A of ω1 and for every function g in
<ω2 = ∪{n2 : n ∈ ω} define Bg = {α ∈ A : g ⊆ rα}. Let

C = {δ < ω1 : ∀g ∈<ω 2 either Bg ⊆ δ or |Bg| = ω1 and δ ∈ B′
g}

where B′
g denotes the set of all limit points of Bg.

Claim. C is closed unbounded subset of ω1.

Proof. Let I = {g ∈ <ω2 : |Bg| < ω1}. Then for every g ∈ I
there is αg ∈ ω1 such that Bg ⊆ αg. Let α = supg∈I αg. Then
C = (∩g∈<ω2\IB

′
g)\α is closed unbounded subset of ω1. �

Let δ ∈ C. Since A is unbounded there is β ∈ A such that δ < β. Let
n = eβ(δ) and g = rβ � n. Then β ∈ Bg and so by definition of C, Bg is
uncountable. For every γ ∈ Bg such that γ > β let mγ = σ(β, γ) and
hγ = rγ � mγ +1. Since Bg is uncountable there is m ∈ ω, h : m+1 → 2
such that for uncountably many γ ∈ Bg, m = mγ, h = hγ. Then Bh is
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an uncountable subset of Bg such that for every γ ∈ Bh the distance
σ(β, γ) = m ≥ n. We will find α ∈ Bh such that f(α, β) = δ.

Let F = {γ < δ : eβ(γ) ≤ m}. Since eβ is injective F is a finite
subset of δ. By definition of C, δ is a limit point of Bh and so there
is α ∈ Bh ∩ δ such that F ⊆ α. Suppose γ is an ordinal such that
α ≤ γ < β and eβ(γ) ≤ σ(α, β) = m. Then γ /∈ F and so δ ≤ γ.
Therefore δ = min ∆α,β and so δ = f(α, β). �

2. Partitioning Pairs of Countable Sets of Ordinals

Definition 2. Let λ be an uncountable cardinal and let Pω1(λ) be the
family of all countable subsets of λ. Then

[Pω1(λ)]2⊂ = {(x, y) ∈ [Pω1(λ)]2 : x ⊆ y}.

Definition 3. Let λ be an uncountable cardinal. We say that

Pω1(λ) → [unbdd]2λ

iff for every coloring f : [Pω1(λ)]2⊂ → λ there is an unbounded set A ⊆
Pω1(λ) such that f”[A]2⊂ 6= λ.

Remark. Thus
Pω1(λ) 9 [unbdd]2λ

iff for every coloring f : [Pω1(λ)]2⊂ → λ for every unbounded set A ⊆
Pω1(λ) we have f”[A]2⊂ = λ.

In 1990 D. Velleman obtained a generalization of Theorem 1 (see [4])
to pairs of countable sets of ordinals.

Theorem 2. Let λ be an uncountable cardinal. Suppose that there
is a stationary subset S of Pω1(λ) of cardinality λ. Then Pω1(λ) 9
[unbdd]2λ.

Remark. If GCH holds, then for every uncountable cardinal λ the
cardinality of Pω1(λ) is λω = λ and so the hypothesis of Theorem 2
holds. Thus GCH implies Pω1(λ) 9 [unbdd]2λ for every uncountable
cardinal λ.

Proof. We will show that there is f ′ : [Pω1(λ)]2⊂ → λ such that for
every unbounded A ⊆ Pω1(λ), f”[A]2⊂ = λ. In fact we will find a
function f : [Pω1(λ)]2⊂ → Pω1(λ) such that for every unbounded set
A ⊆ Pω1(λ) there is a closed unbounded set C = CA on Pω1(λ) such
that S ∩ C ⊆ f”[A]2⊂. Matsubara has shown (see [2]) that (under the
hypothesis of the theorem) there is a function g : S → λ such that
(∀α ∈ λ)g−1({α}) is stationary. Then f ′ = g ◦ f : [Pω1(λ)]2⊂ → λ is the
desired coloring.



4 VERA FISCHER

Just as in Theorem 1 fix a family {rα : α < ω1} of ℵ1 distinct
functions in ω2. For any two x, y countable subsets of λ let

σ(x, y) = σ(rtype(x), rtype(y))

if type(x) 6= type(y) and let σ(x, y) = 0 otherwise. Let c : S → λ be a
bijection. For every y ∈ Pω1(λ) let Qy = {x ∈ S : x ⊆ y and c(x) ∈ y}.
Then |Qy| = ω (since y is countable and c is injective) and so we can
fix an injective mapping ey : Qy → ω. For any pair x, y of countable
subsets of λ let

∆x,y = {d ∈ Qy : x ⊆ d and ey(x) ≤ σ(x, y)}.
Then for every (x, y) ∈ [Pω1(λ)]2⊂ let f(x, y) = min⊂ ∆x,y if there is
such a minimum (i.e. a smallest under inclusion element of ∆x,y) and
let f(x, y) = ∅ otherwise. We claim that f is the desired coloring.

Consider any unbounded subset A of Pω1(λ) and for every g in <ω2
let Bg = {x ∈ A : g ⊆ rx}. Let C be the set of all d ∈ Pω1(λ) such
that for every g in <ω2 the following holds: either there is no x ∈ Bg

such that d ⊆ x or Bg is unbounded and for every finite subset w of d
there is x ∈ Bg such that w ⊆ x ⊆ d.

Claim. C is a closed unbounded subset of Pω1(λ).

Proof. Let I = {g ∈<ω 2 : Bg is not unbounded}. Then for every g ∈ I
there is a countable subset xg of λ such that for no x ∈ Bg(xg ⊆ x).
Let x0 = ∪g∈Ixg.

Consider any d ∈ Pω1(λ) and let d0 = d ∪ x0. Let d1 be a common
limit point of 〈Bg : g ∈ <ω2\I〉 above d0, i.e. d0 ⊆ d1 and for all
g ∈ <ω2\I there is an increasing sequence 〈xn

g : n ∈ ω〉 ⊆ Bg such that
d1 = ∪n∈ωxn

g . To see that d1 is an element of C consider any g ∈ <ω2. If
Bg is bounded then there is no x in Bg covering d1 since xg ⊆ x0 ⊆ d1.
If Bg is unbounded and w is a finite subset of d1 then there is some
m ∈ ω such that w ⊆ xm

g ⊆ d1.
To show that C is closed consider any increasing sequence 〈dn : n ∈

ω〉 of elements of C and let d = ∪n∈ωdn. Let g ∈ <ω2. If g ∈ I then
since d0 ∈ C there is no x ∈ Bg which covers d0 and so there is no
x ∈ Bg which covers d. Otherwise Bg is unbounded. But then if w is a
finite subset of d, there is some dn such that w ⊆ dn and since dn ∈ C
there is an element x ∈ Bg for which w ⊆ x ⊆ dn ⊆ d. �

Let d ∈ S ∩ C. Since A is unbounded there is y ∈ A such that
d ∪ {c(d)} ⊆ y. But then d ∈ Qy and so n = ey(d) is defined. Let
g = ry � n. Since y ∈ Bg covers d, by definition of C we obtain that Bg

is unbounded. Then for every z ∈ Bg such that y ⊆ z and type(y) 6=
type(z) let mz = σ(y, z) and let hz = rz � mz + 1. Again since Bg is
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unbounded there is m ∈ ω and h : m+1 → 2 such that for unboundedly
many z ∈ Bh, mz = m and hz = h. Then Bh is an unbounded subset
of Bg and for every z ∈ Bh the distance σ(z, y) = m ≥ n. We will find
a set x ∈ Bh such that f(x, y) = d.

Let F = {q ∈ Qy : ey(q) ≤ m and d * q}. Since ey is injective, F is
finite. For every q ∈ F let αq ∈ d\q. Then w = {αq : q ∈ F} is a finite
subset of d and since Bh is unbounded and d ∈ C, there is x ∈ Bh such
that w ⊆ x ⊆ d. We claim that f(x, y) = d. Consider any z ∈ Qy such
that x ⊆ z and ey(z) ≤ m. Then z /∈ F and so d ⊆ z. Therefore d is
the minimum (under inclusion) of ∆x,y and so f(x, y) = d. �
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