PRESERVATION OF UNBOUNDEDNESS AND THE
CONSISTENCY OF b < s

VERA FISCHER

1. THE WEAKLY BOUNDING PROPERTY
Recall the following definitions:

Definition 1. Let f and g be functions in “w. We say that f is
dominated by g iff there is some natural number n such that f <, g, i.e.
(Vi > n)(f(i) < g(i)). Then <*= U <, is called the bounding relation
on “w. If F is a family of functions in “w we say that F is dominated
by the function g, and denote it by F <* ¢ iff (Vf € F)(f <* g). We
say that F is unbounded (also not dominated) iff there is no function
g €* w which dominates it.

Definition 2. A forcing notion P is called weakly bounding iff for every
(V,IP)-generic filter G, the ground model reals are unbounded in V[G].
That is for every f € V|G| N¥ w there is a ground model function g
such that {n : g(n) < f(n)} is infinite.

Theorem 1. If § is a limit, and (P; : i < §) is a countable support
iteration of proper forcing notions such that every initial stage of the
iteration PP; is weakly bounding, then Ps is weakly bounding.

Proof. The proof is by induction on 6. Let f be a P-name of a function,
and p an arbitrary condition in P. We will show that there is a ground
model function ¢ and an extension g of p such that ¢ -5 g £ f. Note
that this is equivalent to ¢ I- ¥n € w3k > n(f(k) < g(k)).

Consider a countable elementary submodel M of H(\), where A\ >
2l such that p, Ps and f are elements of M. Since MN“w is countable
there is a function g which dominates all functions in M. Similarly
to the proof of the Properness Extension Lemma fix an increasing,
unbounded sequence {v,}ne, in M N§. Inductively we will construct
two sequences (g, : n € w) of (M,P, )-generic conditions and (p, :
n € w) of P, -names for conditions in M N Ps such that:

(1) g is (M, P, )-generic, and g, [ V-1 = ¢n—1-
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(2) pn is a P, -name such that

G by (B € MOPs) A (Pt < D) A (B | Y € G )A

(n 15 Ik = n(f (k) < g(k)))

Begin with py the given condition p and ¢y any (M,P,)-generic
condition extending pg [ v,. Suppose ¢, and p, have been defined and
let G,, be any (V,P,, )-generic filter containing ¢,. Then there is a
condition p, in M N Ps such that p, = p,[G.,]. Let ro = p,.

In M|G.,, | we can construct inductively an increasing sequence (ry, :
n € w) of conditions in M N Ps such that r, [ v, € G, and

r; ks f(z) = k for some k .
Let f* be the function thus interpreted. Note that since the sequence
(rj : j € w) is increasing for every j € w we have ;b5 f [ j=f*17.
Since f* belongs to M[G,,] and P, is weakly bounding there is a
ground model function h € M N“ w such that
M[G,, ] E{i: f*(i) < h(i)} is infinite .

However h is a function from M and so is dominated by the function
g. Thus there is some natural number ky such that for every i > kg we
have h(i) < g(i). But then there is an ig > max{n + 1, kg} such that
f*(i9) < h(ig) < g(ig). However for j =iy + 1 we have

ry les fio) = f*(io) -
Let pp+1 be a P, -name for r;. Then

o P (Brpr € MNPS) A (B < Prga) A (Prsr [ € Goy )N
(Prsa ks 3k >+ 1(f(k) < g(k)))
However by the Properness Extension Lemma applied to V., Ynt1, Gn

and p,41 there is an (M, P, )-generic condition g, such that
Qo1 [ T =

and

n+1 “_’yn+1 pn+1 f’7n+1 € G'yn+1 .
With this inductive construction of the sequences (g, : n € w) and
(Pn, = n € w) is completed. But then just as in the Properness Extension
Lemma we obtain that ¢ = U,c.¢, is an extension of p such that

q s pn € Gs for every n € w .
So, if G is (V,Ps)-generic and ¢ € G, then

VIGI EVn € w3k > n(f(k) < g(k)),
ie. qlFsg £ f. O
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Remark. Note that in the previous theorem we required that each initial
stage P; of the iteration is weakly bounding, rather than each iterand.
The reason is that a finite iteration of weakly bounding posets is not
necessarily weakly bounding. For example if P is the forcing notion
for adding w; Cohen reals, and Q is a P-name for the Hechler forcing
associated to the collection of all ground model reals, then for any
(V,P%Q) generic filter G, the ground model reals are not unbounded in
VI[G], yet Q[GO] is weakly bounding in V|G| for Go = G NP. However
there is a stronger condition, the almost “w-bounding property which
will remedy this situation.

2. THE ALMOST BOUNDING PROPERTY

Definition 3. The partial order P is called almost “w-bounding if for
every P-name f, of a function in “w and every condition p € P there is
a ground model function ¢ in “w such that for every infinite subset A
of w there is an extension g4 of ¢ such that

galF-¥n3k >nst. ke Aand f(k) < g(k) .

Lemma 1. IfP is a weakly bounding forcing notion and Q is a P-name
of an almost bounding forcing notion, then P x Q) is weakly bounding.

Proof. Consider arbitrary P % Q-name of a real f and condition (p,q)
in Px Q. Let G be a (V,P * Q)-generic filter containing (p,q) and
Go = GNP. Then ¢[G] is a condition in Q[G] and furthermore
Q[Gy] is an almost bounding poset in V[Gy]. Recall from the proof of
Lemma 2 on the preservation of properness under CS iteration, that
there is a P-name f*, such that for every P-generic filter Hy, f*[H;] is a
Q[H;]-name of a real and furthermore for every Q[H;|generic filter H,
f[H, * Hy] = f*[H1][Hs]. Then in particular f*[Go] is a Q[Go]-name
for a function in “w and so by the definition of the almost bounding
property, there is a function g in V[Gy] such that for every A € [w]¥
there is an extension g4 of ¢[Gy] which forces that there are infinitely
many i € A for which g(i) < f*(i). However since g is a function in
V[Go] and P is weakly bounding there is a function h in V' such that
the set A = {i:¢g(i) < h(i)} is infinite. If the second generic extension
(G, contains ¢4, then

V[Go x G1] E 3% € A(f(1) < h(i))
and so P * ( is weakly bounding. U

Therefore by Theorem 1 we obtain



4 VERA FISCHER

Theorem 2. The countable support iteration of proper almost “w-
bounding posets is weakly bounding.

Other preservation theorems, which will be used in the consistency
result to be presented later are:

Theorem 3. Assume CH. Let (P; : i < ) where § < ws, be a
countable support iteration of proper forcing posets of size N;. Then
the C'H holds in V%5,

Theorem 4. Assume CH. Let (P; : i < §) where 6 < ws, be a
countable support iteration of proper forcing posets of size 8;. Then
Ps satisfies the Ny-chain condition.

Note that by the previous theorems if we assume the C'H in the
ground model and if (IP; : i < w,y) is a countable support iteration of
proper forcing notions of size Ny, then forcing with P, does not collapse
cardinals: wy is not collapsed since P, is proper, and cardinals greater
or equal ws are not collapsed by the Ny-chain condition.

We are ready to proceed with the consistency of the bounding num-
ber smaller than the splitting number.

3. THE PARTIAL ORDER ()
Recall the following definitions:

Definition 4. A family B C¥ w is said to be unbounded if for every
[ €% w there is a function g € B such that g £ f, i.e. there are
infinitely many ¢ such that f(i) < g(¢). Then

b =min{|B| : B C* w and B is unbounded}
is called the bounding number.

Definition 5. A family S C [w]* is called splitting if for any infinite
subset A of w there is a set B € S such that AN B and A N B¢ are
infinite. Then

s =min{|S|: S C [w]* and S is splitting}
is called the splitting number.
In the remaining sections we will establish the following result:

Theorem 5. Assume C'H. Then there is a generic extension in which
cardinals are not collapsed, 2% = Ry, b = w; and s = ws.

By the remarks from the previous section under the C'H, any count-
able support iteration of length wy of proper forcing notions of size Ny
does not collapse cardinals. Therefore if in addition we require the
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forcing posets to be almost “w-bounding, by Theorem 2 the resulting
iteration will be weakly bounding and so in every generic extension the
ground model reals will be an unbounded family of size w;. However
in order the splitting number to be wy we have to require something
more: that at each successor stage of the iteration we add an infinite
subset of w, which is not split by the ground model reals. Therefore it
is sufficient to obtain the following:

Theorem 6. Assume C'H. There is a proper, almost “w-bounding
poset @ of size Ny such that in every (V, )-generic extension there is
an infinite subset of w which is not split by any ground model real.

In order to define the partial order, which will demonstrate Theo-
rem 6 we need the notion of logarithmic measure.

Definition 6. Let S be a subset of w and h : P,(S) — w, where
P, (S) is the family of all finite subsets of w. The function & is called a
logarithmic measure, if for every A € P,,(S) and for every Ay, A; such
that A = AgU Ay if h(A) > [+ 1 for some [ > 1, then h(Ay) > [ or
h(Ay) > 1. If S is a finite set, then h(S) is called the level of S.

Corollary 1. If h is a logarithmic measure and h(AgU- - -UA,_1) > [+1
then for some j, 0 < j <n—1h(A;)>1—j.

Furthermore we will work with logarithmic measures induced by pos-
itive sets, which will be essential in order to obtain the almost bounding
property (see section 6).

Definition 7. Let P C [w]<“ be an upwards closed family. Then P
induces a logarithmic measure h on [w]<“ defined inductively on |s| for
s € [w]<¥ in the following way:
(1) h(e) > 0 for every e € [w]<¥
(2) h(e) >0iffec P
(3) for I > 1, h(e) > I+ 1 iff |e] > 1 and whenever ey, e; C e are
such that e = eg U ey, then h(eg) > 1 or h(e;) > L.
Then h(e) = [ iff [ is the maximal natural number for which these hold.

Corollary 2. If h is a logarithmic measure induced by positive sets
and h(e) > 1, then for every a such that e C a, h(a) > 1.

Example 1. Let P be the family of all sets containing at least two
points and h the logarithmic measure induced by P on [w]*. Then for
every « € P, h(z) = i where i is the minimal natural number such that
lz| < 20

Now we can define the partial order (), which satisfies Theorem 6.
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Definition 8. Let @) be the set of all pairs (u,T") where u is a finite
subset of w and 7' = (t; : i € w) (here t; = (s;, h;), s; = int(¢;) is a finite
subsets of w and h; is a given logarithmic measure on s;) is a sequence
of logarithmic measures such that

(1) max(u) < min s

(2) max s; < min s;4q

(3) hi(si) < hiza(sita)-
The finite part u is called the stem of the condition p = (u,T'), and
T = (t; : i € w) the pure part of p. Also int(T) = U{s; : s € w}. In case
that u = () we say that (0, 7) is a pure condition and usually denote it
simply by T

We say that (uy,Ty) is extended by (ug, T3), where T; = (t! : i € W)

for [ = 1,2, and denote it by

(u1,Th) < (ug,T3)

iff the following conditions hold:

(1) us is an end-extension of u; and us\u; C int(7})

(2) int(73) C int(77) and furthermore there is an infinite sequence
(B; : i € w) of finite subsets of w such that maxu, < minint(¢,)
for j = min By, max(B;) < min(B;;;) and s? C U{sjl- :J € B}

(3) for every h? positive subset e of s? there is some j € B; such
that e N s} is hj-positive.

In case that u; = uy we say the (ug, T3) is a pure extension of (uq, T1).

4. THE SPLITTING NUMBER

The reason that in every generic extension via () there is a real which
is not split by the ground model subsets of w is the same as for Mathias
forcing. We will need the following lemma.

Lemma 2. Suppose T is a pure condition and A is an infinite subset of
w. Then there is a pure extension T' of T such that int(T") is contained
in A or in A°.

Proof. Let T = (t; : i € w) where t; = (s;,h;). For every ¢ define
ri = (siNAh; [ ssNA)orr; = (s;NAh; | s; N AS) depending on
whether h;(s; N A) > h;(s;) — 1 or h;(s; N A°) > h;(s;) — 1. Then there
is an infinite index set I such that Vi € I int(r;) C A or alternatively
Vi € I int(r;) C A°. Then the pure condition 7" = (r; : i € I) is well
defined (i.e. the measures r; are strictly increasing), extends 7' and
int(7”) is contained in A or in A°. O



THE CONSISTENCY OF b < s 7

Lemma 3. Let G be a QQ-generic filter. Then the real
U= J{u:3T(u,T) € G}
1s not split by any ground model subset of w.

Proof. Suppose by way of contradiction that there is a ground model
subset A of w such that Us N A and Ug N A€ are infinite. Let Dy =
{(w,T) € Q : int(T) C (A) or int(T) C A°}. Then by Lemma 2 the
set D, is a dense subset of () and so G N D4 is nonempty. However
if (ug, To) belongs to this intersection then by the definition of D4
int(7p) is contained in A or in A°. But (ug,Tp) also belongs to G. It
is not difficult to see from the definition of the extension relation on ()
that Ug C* int(7') for every condition p = (u,T’) which belongs to G.
Therefore Ug C* int(7}) and so Ug is almost contained in A or in A°.
This is a contradiction since it implies that the intersection of Ug with
A€ or A respectively, is finite. O

Lemma 4. If (P; : i <) is a countable support iteration of length 0,
where c¢f(0) > w, then any real is added at some initial stage &y of the
iteration such that oy < 6.

Proof. Let f be a Ps-name of a real and p an arbitrary condition in P.
We can assume that

f=U{(dy).p) :p € Asyi € w,j € w}
where for each 7, A; is a maximal antichain in P. Consider any count-
able elementary submodel M of H (M), Ais sufficiently large, such that
P, f, p, A; for every i belong to M. If g is an (M, P)-generic condition

extending p and G a (V,P)-generic filter containing ¢, then for every i
we have A, NG = MnN A, NG. That is for

M f=J{E 50, p) ipe MN A i €w,j € w}

and i € w we have ¢ k5 f(i) = (M N f)(i). Since M is a countable
model, the intersection MNA,; is also countable and so if o; = sup{ay, :
p € MNA;} where for every p € M N A; we define o, = sup suppt(p),
then 6y = sup{a; : i € w} is an ordinal of countable cofinality which
is smaller than 4. Then every condition p in A; N M has support in
dp. Therefore we can consider M N f as a Ps,-name of a real such that

qlh;f:Mﬂf. O

Theorem 7. If (P; : i < ws) is a countable support iteration of proper
forcing notions, then any set of reals of cardinality w; is added at some
proper initial stage if the iteration.
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Proof. Let A be an arbitrary family of size X, of reals in V¥«2. Consider
any (V,P)-generic filter G. Then for every f € A there is an ordinal a ¥
of countable cofinality such that f[G] = f[Ga ;- But then A C V[G,]
where o = sup{a; : f € A}. Since A is of size Xy, cf(a) < w.
Therefore o < wy and A C V[G,]| where G, = G NP,. O

Note that by the previous theorem if we iterate the forcing notion
() wo-times with countable support, than any family A of w;-reals in
the generic extension is not splitting. Really if G is IP,,-generic, where
(P; : i < wsq) is the iteration of @, then by Theorem 7 there is some
dp < wy, such that A C V[Gs,] where G5, = Ps, N G. By Lemma 3 in
V[Gs,41] there is a real which is not split by A.

5. AxioM A IMPLIES PROPERNESS

Definition 9. A forcing poset P = (P, <) is said to satisfy Axiom A,
iff the following conditions hold:

(1) There is a sequence of separative preorders on P {<,}new,
where <g=<, such that <,,C<,, for every m < n. That is,
whenever m < n and p, ¢ are conditions in P such that p <,, ¢,
then p <, q.

(2) If {pn}new is a sequence of conditions in P such that p, <,.;
Pni1 for every n, then there is a condition p such that p, <, p
for every n. The sequence {p,}nec. is called a fusion sequence
and p is called the fusion of the sequence.

(3) For every D C P which is dense, and every condition p, for
every n € w there is a condition p’ such that p <,, p’ and a
countable subset Dy of D which is predense above p'.

Lemma 5. If the forcing notion P satisfies axiom A, then P is proper.

Proof. Let D be the family of all dense subsets of P, and D’ the family
of all countable subsets of P. Since the partial order PP satisfies Axiom
A, there is a function

c:wXPxD—->PxD

such that o(n,p, D) = (p/, D) iff p <,, p’ and D' is a countable subset
of D which is predense above p'.

Let M be a countable elementary submodel of H(\), A sufficiently
large, such that P, o belong to M. We will show that every condition
in PN M has an (M, P)-generic extension. Fix an enumeration (D, :
n € w) of the dense subsets of P which belong to M and let p = pg
be a given condition in M N P. Since o is an element of M, also
o(1,po, D1) = (p1, D7) belongs to M. But then p;, and D] are elements
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of M themselves. Proceed inductively to define a fusion sequence (p,, :
n € w) of conditions in MNP and a sequence (D!, : n € w) of countable
subsets of P, such that for every n € w D), € M, D) C D,, and D, is
predense above p,,. Let ¢ be the fusion of {p, }nen and D an arbitrary
dense subset of P which belongs to M. Then D = D,, for some m.
Since p,, <., ¢ , and D! is predense above p,,, D! is also predense
above q. But D! is countable, and since it belongs to M it is a subset
of M. Therefore D;, € M N D,, = MN D, which implies that M ND
is predense above q. 0

In the remainder of this and next section we will show that the forcing
notion ) satisfies Axiom A. For this consider the following preorders
defined on @: Let <; be just the order of Q.

For any two conditions (uy, 7)) and (ug, T) we say that

(ul,Tl) Sl ('LLQ,TQ) iff Up = Ug and(ul,Tl) So ('LLQ,TQ) .

Furthermore for every i > 1, if T} = (t! : i € w) for | = 1,2 we say
that
(u1, Th) <igr (up, To) iff ] =5 V5 =0,...,i—1.

That is the stem and the first ¢ logarithmic measures are not changed
in the extension.

Then if {pn}new = {(v, Tn) fnew where T, = (t7 : j € w), the condi-
tion p = (u,T) where T'= (t; : j € w) for t; = t;“ is a fusion of this
sequence. Thus in order to verify Axiom A we still have to show that
part (3) is satisfied. For this we will need the notion of a preprocessed
condition which is considered in the next section.

6. PREPROCESSED CONDITIONS

Definition 10. Suppose D is a dense open set. We say that the con-
dition p = (u,T) where T' = (t; : i € w), is preprocessed for D and i if
for every subset of ¢ which end-extends u the condition (v, (t; : j > 7))
has a pure extension in D if and only if (v, (¢; : j > 7)) belongs to D.

Lemma 6. If D is a dense open set and i € w if (u,T) is preprocessed
for D and i, then any extension of (u,T) is also preprocessed for D
and i.

Proof. Suppose (w, R) extends (u,T") and let v C ¢ such that (v, (r; :
j > 1)) has a pure extension in D. Since R extends T', by definition of
the extension relation on ) we obtain that (r; : j > i)) is an extension
of (t; : j > 4). Therefore (v, (t; : j > 7) has a pure extension in D and
since (u,T) is preprocessed for D and i the condition (v, (t; : j > )
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belongs to D. But D is open and since (v, (r; : j > 1)) > (v, (t; : j > 1))
we obtain that (v, (r; : j > @)) belongs to D itself. O

Lemma 7. Every condition (u,T) has an <;.1 extension which is pre-
processed for D and 1.

Proof. Let T = (t; : j € w). Fix an enumeration of all subsets of
it v1,...,v. Consider (vy,(t; : j > i)). If (vy,(t; : j > i) has a
pure extension in D, denote it (vy, (tj : j > 7)). If there is no such
pure extension, let tjl- = t; for every j > 4. In the next step consider
similarly (vy, (t; : j > 4)). If it has a pure extension in D, denote it
(va, (t5 : j > 1). If there is no such pure extension, then for every j > i
let t2 = t}. At the k-th step we will obtain a condition (v, (t} : j > 1)).
Then (u, (t¥ : j € w)) where for every j < i, t§ = t; is an <;;; extension
of (u,T) which is preprocessed for D and i.

Really suppose (v, (t¥ : j > i)) has a pure extension in D where
v C 1. Then v = v, for some m, 1 < m < k. Then at step m, we must
have had that (v, (7"~ : j > 4) has a pure extension in D, and so we
have fixed such a pure extension (v, (t7* : j > 4)) € D. However since
m — 1 < k, we have

(g =) < (th:j>4).
But D is open and so (v, (5 : j > i)) is an element of D itself. O

Lemma 8. Let D be a dense open set. Then any condition has a pure
extension which is preprocessed for D and every natural number 1.

Proof. Let p = (u,T) be an arbitrary condition. Then be Lemma 7 we
can construct inductively a fusion sequence {p;}ic., such that py = p
and p;1 is an <;;; extension of p; which is preprocessed for D and
1. Then if ¢ is the fusion of the sequence for every i € w we have
that p;+1 <;11 ¢. This implies that p;.; < ¢ and so by Lemma 6 ¢ is
preprocessed for D and i. O

Remark. Whenever p is a condition which is preprocessed for a given
dense open set and every natural number n, we will simply say that p
is preprocessed for D.

We are ready to show that the forcing notion @) satisfies Axiom A,
part (3). Let D be a dense open set and p an arbitrary condition. By
Lemma 8 there is a pure extension ¢ = (u,T) for T' = (t; : j € w)
which is preprocessed for D and every natural number. Recall that ¢
is obtained as a fusion of a sequence and so in particular p <,, ¢ for
every n. Furthermore the set

Dy ={(v,(t; :j>1)) € D:v Ci,i € w,vend-extends u}



THE CONSISTENCY OF b < s 11

is a countable subset of D which is predense above ¢. Really let (w, R)
be an arbitrary extension of g. Then since D is dense (w, R) has an
extension (w Uw', R') in D. However R' > R > (t; : j > k), where
ky, = min{j : maxw < minint¢;}. Therefore (wUw’, (t; : j > k,)) has
a pure extension in D and since ¢ is preprocessed for D the condition
(wuw',(t; : j > ky)) belongs to D. Thus in particular (w U w’, (¢; :
j > ky)) belongs to Dy and is compatible with (w, R) (with common
extension (w U w', R')).

7. LOGARITHMIC MEASURES INDUCED BY POSITIVE SETS

Lemma 9. Let P be an upwards closed family of finite subsets of w
and h the induced logarithmic measure. Let | > 1. Then for every
subset A of w if A does not contain a set of measure > 1+ 1, then there
are Ag, Ay such that A = Ay U Ay and none of Ag, A1 contain a set of
measure greater or equal [.

Proof. Note that if A is a finite set, then the given condition is exactly
part 3 of Definition 7. Thus assume A is infinite. For every natural
number k, let Ay = ANk and let T be the family of all functions
fim — Up<pem Ax X Ag, where m € w, such that for every k,

f(k) (ao,al) € Ak X Ak

where af Uaf = Ay, h(a§) # 1, h(af) £ 1 and for every k: 1 <k <m,
alg’l - a’g, a’f’l - a’f.

Then T together with the end-extension relation is a tree. Further-
more for every m € w, the m-th level of T' is nonempty. Really consider
an arbitrary natural number m. Then ANm = A,, is a finite set which
is not of measure greater or equal [+ 1. By Definition 7, part (3), there
are sets af', a* such that A, = aJ' U a* and h(ad') }fl h(a") # 1.
Let af' = A, Nal and ai" ' = A,, Na™. Then by Corollary 2
the measure of each of aj'~ 1, aT_l is not greater or equal to [ and
Apr = AN (m —1) = al ' Ual"'. Therefore in m steps we can
define finite sequences (ao 0<k< m> {(a¥ : 0 < k < m) such that
foreveryk Ak agUak, h(af) 21, h(ay) 2 land Vk: 0 <k <m—1

b C ab™, ak C a¥™'. Therefore f:m — Uo<k<m Ak X Ay defined by
f(k;) (af, a’f) is a function in the m’th level of T

Therefore by Konig’s Lemma there is an infinite branch through 7.
Let f:w — Upew Ax X Ay where f(k) = (ak,a¥), af Ual = Ay, etc.,
be such an infinite branch. Then if Ay = Upe,, ab, A1 = Upe, ab we
have that A = Ay U A; and none of the sets Ay, A; contain a set of
measure greater or equal [. Consider arbitrary finite subset x of Ay.
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Then x C af for some k € w. But h(a§) # [ and so h(x) # I. The same
argument applies to A;. U

Lemma 10 (Sufficient Condition for High Values). Let P be an up-
wards closed family of finite subsets of w and h the logarithmic measure
induced by P. Then if for every n € w and every partition of w into
n-sets w = AgU---UA,_y there is some j < n—1 such that A; contains
a positive set, then for every natural number k, for every n € w and
partition of w into n-sets w = AgU---U A, _1 there is some j <n — 1
such that A; contains a set of measure greater or equal k.

Proof. The proof proceeds by induction on k. If £ = 1 this is just the
assumption of the Lemma. So suppose we have proved the claim for
k = [ and furthermore that it is false for £k = [+ 1. Then there is some
n € w and partition of w into n-sets w = AgU --- U A,,_; such that
none of Ag,...,A,_1 contain a set of measure greater or equal [ + 1.
By Lemma 9 for each j < n — 1 there are sets A?, Ajl- none of which
contains a set of measure greater or equal [ and such that A; = A?UA}.
Then
w=AJUA;---UAY JUAL

is a partition of w into 2n sets, none of which contains a set of measure
> 1. This contradicts the inductive hypothesis for k = [. 0

8. THE BOUNDING NUMBER

Lemma 11. Let D be a dense open set, T = (t; : j € w) a pure
condition which is preprocessed for D. Let v € [w]<“. Then the family
P, (T') which consists of all finite subsets x of w such that

(1) 3l € w s.t. x Nant(t;) is t; positive

(2) 3w Cz st (vUw,T)ED.
induces a logarithmic measure h = h,(T) which takes arbitrary high
values.

Proof. The family P,(T) is nonempty and upwards closed. Consider
the condition (v, T"). Since D is dense there is an extension (vUw, R) of
(v, T') which belongs to D. By definition of the extension relation w C
int(7") and so for some | € w we have w C U{int(¢;) : 7 =0,...,{ —1}.
However (v U w, R) is a pure extension of (v Uw,(t; : 7 > 1)) and
since T is preprocessed for D (and every natural number) the condition
(vUw, (t; : j > 1)) belongs to D. Then z = U{int(¢;) : j =0,...,[—1}
is an element of P,(T).

To show that h takes arbitrarily high values it is enough to show
that for every n and partition of w into n-sets w = AgU... A, _1, there
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is kK < n — 1 such that A, contains a positive set. Thus fix a natural
number n and a partition of w. Forevery k: 0 <k <n—1and j €w
let s;‘? = s; N A where t; = (s;,h;). Suppose that for every k there
is a constant M, such that h;(sh) < My, i.e. the constant M bounds
the measures of s; N A;. Then let M = maxy<, 1 M. Since T is a
pure condition the measures h;(s;) take arbitrarily high values and so in
particular there is an ¢ € w such that h;(s;) > M+n+1. By Corollary 1
thereisa k : 0 < k < n—1such that h;(s¥) > (M+n)—k > M+1 > M,
(notice that s; = sYU. .. s ') which is a contradiction to the definition
of My. Therefore there is some k such that the measures h;(s?) take
arbitrarily high values and so there is a pure extension R = (r; : j € w)
of T such that int(R) C Aj. Since D is dense, there is an extension
(vUw, R') of (v, R) which belongs to D. By definition of the extension
relation on @, w C U{int(r;) : j = 0,...,l} for some | € w. However
(vUw, R") > (vUw, T') and since T is preprocessed for D, (vUw,T') € D.
Therefore

v =|J{int(t;) : j=0,...,1—1}
is a positive set contained in Ay. O

Corollary 3. Let D be a dense open set and T = (t; : j € w) a
pure condition which is preprocessed for D. Let v € [w]<“. Then
there is a pure extension R = (r; : j € w) such that for everyl € w
and every s C int(r;) which is r-positive, there is w C s such that
(vUw,(tj:j>1+1)) eD.

Proof. Let h be the logarithmic measure induced by P, (7). Consider
the following inductive construction. Let xg be any positive set. Then
thereis By € [w]<¥ such that zo C U{int(¢;) : j € Bo}. Let ro = (xo, h |
zo + 1). Furthermore let Ay = max{int(¢;) : j = max(By)} + 1, 4; =
w\Ap and H; = max{h(z) : © C Ap}. Then by the sufficient condition
for arbitrarily high values there is 1 C A; such that h(xy) > H; + 1.
Furthermore there is a finite set By such that max By < min B; and
such that 1 C U{int(¢;) : j € By}. Let 11 = (21,h [ 21 + 1).Proceed
inductively. Suppose (rq,...,rx_1), (Bo, ..., Br_1) have been defined
so that

(1) T = (Ij,h rl'j + ].), Z; - U{lnt(tz) NS BJ}

(2) h(z;) < h(z;+1) and max B; < min Bj;;.

To obtain ry, let Ay = max{int(¢;) : j = max(By_1)}+1, A1 = w\ Ay,
Hj = max{h(z) : © C Ap}. Then by the sufficient condition for high
values there is 2 C Ay such that h(xy) > Hy + 1. Furthermore there
is a finite set By such that max Bj_; < min By, and x;, C U{int(¢;) :
j c Bk} Let T = (l‘k,h rZEk—i‘l)
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Let R = (r; : j € w) be the so constructed condition. Suppose
e Cint(r;) = x; is r;-positive. That is h(e) > 0 and so x € P,(T"). But
then by part (2) of the Definition of P,(T’) there is an [ € B; such that
e Nint(t;) is t;-positive. This implies that R is an extension of T

Furthermore, consider any [ € w and s C int(r;) which is r-positive.
Then s € P,(T) and so there is w C s such that (v Uw,T) € D. But
(vUw,(r; : j > 14+ 1)) extends (v U w,T') and since D is open the
condition (vUw, (r; : j > [+ 1)) belongs to D itself. O

Remark. Whenever R is a pure condition which satisfies Corollary 3
for some given dense open set D, and finite subset v of w we will say
that ¢(v, R, D) holds. Note also that any further pure extension of R
preserves this property.

Corollary 4. Let D be a dense open set, T' a pure condition which is
preprocessed for D and k € w. Then there is a pure extension R of T,
R = (rj : j € w) such that Yv C kVIVs C int(r;) which is r-positive,
there is w, C s such that (vUw,(r;: 5 >1+1)) € D.

Proof. Let vy,...,v, be an enumeration of all (proper) subsets of k.
By Corollary 3 for each j = 1,...,n there is a pure extension 7} of
Tj_1 (where Tj is the given condition T') such that ¢(v;, Tj, D). Then
R =T, has the required property. 0
Remark. Whenever R is a pure condition which satisfies the property
of the above statement for some natural number k and dense open set
D we will say that ¢(k, R, D) holds.

Lemma 12. Let [ be a Q-name for a function in “w and p arbitrary
condition in Q. Then there is a pure extension q = (u, R) of p, where
R = (r; 1 i € wla such that ¥YiVv C i¥s C int(r;) which is r;-positive,
there is w, C s such that (v Uw,, (r; - j <i+1))IF f(i) =k for some
kew.

Proof. Consider the following inductive construction. Let p = (u,T)
where T' = (t; : i € w). For every n € w denote by D,, the dense open
set of all conditions in Q which decide the value of f(n). Let kg =
minint(tg). Then by Lemma 8 we can assume that the pure condition
T is preprocessed for Dy and so by Corollary 4 there is a pure extension
Ty = (t} :i € w) of T such that ¢(ko, Ty, Do). Then if p; = (u,T;) we
have pg <; p1. To define p, consider k; = maxint(¢})+1. Again we can
assume that (¢! : i > 1) is preprocessed for D; (otherwise by Lemma 8
pass to such an extension). Then there is a pure extension Ty = (¢ :
i > 1) of (t! :i > 1) such that ¢(ki, T, D1). Let py = (u, {t? : i € w))
where 3 = t}, ko = maxint(¢?) + 1.
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Proceed inductively. Suppose py, ..., p, have been defined so that
p; <ji1 D41 forevery j =1,...,n—1, where p; = (u, (t] : i € w)) and
o(k;, (1" i > §),D;). Let k, = maxint(t? ;) + 1. We can assume
that (t? : ¢ > n) is preprocessed for D,. Then by Corollary 4 there
is a pure extension T},,; = (t!*! .7 > n) of (¢t} : i > n) such that
Gk, Tri1, D). Let poyy = (u, (71 i € w)) where t77! = ¢! for
every 1 =0,...,n— 1. Then p, <,41 pni1-

Let ¢ = (u,(r; : j € w)) be the fusion of the sequence. Let i € w,
v C i and s C int(r;) which is r-positive. However r; = ™ and so
s C int (1) is tit-positive. Also ¢(k;, Tj11, D;) holds and so there is
w, C s such that (v Uw,, ({5 : j > i+ 1)) € D;. It remains to notice
that (r; : j > i+ 1) is extends (t™' : j > i+ 1) and since D; is open,
(vUwy, (rj: j >i+1)) € D;. By definition of D; that is

(WU wy, (rj:j >i+ 1) I fi) =k
for some natural number k. D
Theorem 8. The forcing notion @ is almost “w-bounding.

Proof. Let f be arbitrary ()-name of a function and p a condition in Q).
Let ¢ = (u,T), where T' = (t; : i € w) be a pure extension of p which
satisfies the Main Lemma. Then for every ¢ € w define

g(i) = max{k : v Ci,w Cint(t;), (v Uw, {t;:j>i+1)) I f(i) =k} .
Consider any A € [w]<“ and let g4 = (u, (t; : i € A)). We claim that
qalFVn3k(k>nAke AN f(k) < g(k)) .

Fix any ng € w. Let (v, R) be an arbitrary extension of g4. Then
there is ig € A such that iy < ng, v C ip and s = int(R) Nint(t;,) is
t;,-positive. Note that ig < k;, = maxint(t;,—1)+1 and so v C k;,. But
then by Lemma 12 there is w C s such that (vUw, (¢;: j > ig+ 1)) IF
f(ig) = k and so in particular

(vUw,(t;: > i+ 1)) IF f(io) < g(io) -
However (vUw, R) extends (vUw, (t; : j > ip+1)) and so (vUw, R) IF
f(ig) < g(ip). Note also that (v U w, R) extends (v, R). Then, since
(v, R) was an arbitrary extension of ga, the set of conditions which
force ”3Jip s.t. i > ng Aig € AN f(ip) < g(ig)” is dense above ga.
Therefore

galF (k> no Ak € AN F(k) < g(k)) .

The natural number ny was arbitrary and this completes the proof of
the theorem. O



16 VERA FISCHER

REFERENCES

[1] U. Abraham Proper Forcing, for the Handbook of Set-Theory.

[2] M. Godstern Tools for your forcing constructions, In Set Theory of the Reals,
vol.6 of Israel Mathematical Conference Proceedings, 305-360

[3] S. Shelah Proper and Improper Forcing, Second Edition. Springer, 1998.

[4] S. Shelah On cardinal invariants of the continuum/207] In (J.E. Baumgartner,
D.A. Martin, S. Shelah eds.) Contemporary Mathematics (The Boulder 1983 con-
ference) Vol. 31, Amer. Math. Soc. (1984), 184-207.

E-mail address: viischer@mathstat.yorku.ca



