
Vera Fischer∗ and Lukas Schembecker∗∗

REALIZING ARBITRARILY LARGE SPECTRA OF aT

Abstract. We improve the state-of-the-art proof techniques for real-
izing various spectra of aT in order to realize arbitrarily large spectra.
Thus, we make significant progress in addressing a question posed by
Brian in his work [4]. As a by-product, we obtain many complete
subforcings and an algebraic analysis of the automorphisms of the
forcing which adds a witness for the spectrum of aT of desired size.

Mathematics Subject Classification (2010): 03E17, 03E35 Primary:
03E17

Keywords: cardinal characteristics, spectrum, partitions into compact sets

∗Institute of Mathematics, University of Vienna, Austria
vera.fischer@univie.ac.at

∗∗Department of Mathematics, University of Hamburg, Germany
lukas.schembecker@uni-hamburg.de



Contents

1. Introduction 2
2. Preliminaries 6
3. Realizing arbitrarily large spectra of aT 8
4. Defining the iteration 10
5. Extending group actions through the iteration 12
6. A nice dense subset 16
7. Complete embeddings 21
8. Extending Isomorphisms through the iteration 31
9. Proof of the Main Theorem 37
10. Appendix 43
Acknowledgements 43
References 43

1. Introduction

Fundamentally, combinatorial set theory studies the possible sizes and relations
between special subsets of reals. Usually, these special subsets are defined by some
combinatorial property, e.g. mad families, independent families or partitions of
Baire space into compact sets. Classically, the corresponding cardinal characteris-
tics, i.e. the minimal sizes of such special subsets, and their relations are of main
interest. However, a more recent approach is the study of their corresponding spec-
tra, i.e. of all possible sizes of such special subsets at the same time. For some fixed
type of combinatorial family of reals its spectrum can be studied from the following
two angles.

On one hand, one may consider which properties of the spectrum are provable in
ZFC. On the other hand, given a set of cardinals Θ with some additional assump-
tions one may construct forcing extensions in which Θ is precisely realized as the
spectrum. Thus, the ultimate goal is to reduce the additional assumptions on Θ
until they agree with the provable properties of the spectrum in ZFC, so that we ob-
tain a complete classification of the possible spectra of some type of combinatorial
family of reals.

Usually, the spectrum of some type of family may be rather arbitrary, so that
there are not many provable properties in ZFC. However, recent progress suggests
that the following properties are shared between different spectra. First, usually by
some straightforward combinatorial argument the continuum c is in the spectrum
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(a notable exception is the tower number t). By König’s Theorem we obtain the
following necessary restriction on Θ:

(I) max(Θ) exists and has uncountable cofinality.

Secondly, there seems to be the following additional restriction on Θ:

(II) Θ is closed under singular limits.

For example, in [8] Hechler proved that spec(a) is closed under singular limits.
Similarly, recently Brian proved in [4] that also spec(aT) (cf. Definition 2.1) is
closed under singular limits. However, for most other types of families it is still not
known if this restriction is necessary, i.e.:

Question. Are spec(i), spec(ae) and spec(ag) closed under singular limits?

Finally, specifically for the spectrum of aT, Brian recently provided another
necessary assumption given by ZFC.

Theorem (Brian, 2022, [3]). Assume 0† does not exist. If θ has countable cofinality
and we have θ ∈ spec(aT), then also θ+ ∈ spec(aT).

In particular, a model in which θ ∈ spec(aT) and θ+ /∈ spec(aT) implies that 0†

exists, so that there exists an inner model with a measurable cardinal. Hence, such
a model cannot be constructed relative to ZFC. Note that this result is in stark
contrast to the situation for the spectrum of a. In this, case Shelah and Spinas
proved in [10] that consistently (relative to ZFC) ℵω ∈ spec(a), but ℵω+1 /∈ spec(a).
Hence, despite their similarities there are distinct discrepancies between the spectra
of different types of families.

On the other hand, the realization of various spectra with the means of forcing
was first studied for almost disjoint families. There, Hechler defined a forcing
adding a mad family of desired size, which we will here refer to as Hechler forcing,
to show that spectra may be arbitrarily large:

Theorem (Hechler, 1972, [8]). Let Θ be any set of uncountable cardinals. Then,
there is a c.c.c. forcing extension in which Θ ⊆ spec(a) holds.

In order to exclude values from the spectrum and precisely realize Θ as some
spectrum, one usually employs an isomorphism-of-names argument. For example,
Blass proved that under the following additional assumptions on the set Θ, in
Hechler’s model the set Θ is already precisely realized as the spectrum of mad
families:

Theorem (Blass, 1993, [1]). Assume GCH and let Θ be a set of uncountable car-
dinals such that

(I) max(Θ) exists and has uncountable cofinality,
(II) Θ is closed under singular limits,
(III) ℵ1 ∈ Θ,
(IV) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ.

Then, there is a c.c.c. forcing extension in which spec(a) = Θ holds.
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Employing a more sophisticated isomorphism-of-names argument, Shelah and
Spinas later improved this result by weakening assumption (III) and removing
assumption (IV):

Theorem (Shelah, Spinas, 2015, [10]). Assume GCH and let Θ be a set of uncount-
able cardinals such that

(I) max(Θ) exists and has uncountable cofinality,
(II) Θ is closed under singular limits,
(III) min(Θ) is regular.

Then, there is a c.c.c. forcing extension in which spec(a) = Θ holds.

By the previous discussion (I) and (II) are necessary assumptions. However, a
may be singular, so that (III) is definitely not necessary. In fact, Brendle proved
that a may be any uncountable singular cardinal, even of countable cofinality [2].
Thus, an answer to the following question would yield a complete classification of
all the possible spectra of a:

Question. Can assumption (III) be removed from the previous theorem?

Similar progress has been made for independent families by Fischer and Shelah
[6] and partitions of Baire space into compact sets by Brian [4], which is the main
focus of this paper:

Theorem (Brian, 2021, [4]). Assume GCH and let Θ be a set of uncountable car-
dinals such that

(I) max(Θ) exists and has uncountable cofinality,
(II) Θ is closed under singular limits,
(III) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ,
(IV) min(Θ) is regular,
(V) |Θ| < min(Θ).

Then, there is a c.c.c. forcing extension in which spec(aT) = Θ holds.

Again, by the previous discussion (I), (II) and (III) are necessary assumptions.
Assumption (IV) is not necessary as aT may be any singular cardinal of uncountable
cofinality. However, unlike a it is still open if aT may have countable cofinality.
Assumption (V) is also not necessary as we may force any set of uncountable
cardinals to be contained in spec(aT) similar to Hechler’s theorem for spec(a). In
other words, assumption (V) implies that once the minimum of Θ has been fixed,
only a bounded set of cardinals may be realized with the methods employed by
Brian. Thus, in [4] he asked if it is possible to remove assumption (V). Inspired by
the methods of Shelah and Spinas for spec(a) and towards obtaining a complete
classification of the possible spectra of aT, we prove the following Main Theorem 3.1
and give a partial answer to Brian’s question:

Main Theorem. Assume GCH and let Θ be a set of uncountable cardinals such
that

(I) max(Θ) exists and has uncountable cofinality,
(II) Θ is closed under singular limits,
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(III) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ,
(IV) ℵ1 ∈ Θ.

Then, there is a c.c.c. forcing extension in which spec(aT) = Θ holds.

Thus, we are indeed able to realize arbitrarily large spectra, however our current
proof methods require us to strengthen assumption (IV). In Section 3 we outline the
proof of Main Theorem 3.1 and discuss how to possibly avoid the strengthening of
(IV) in order to obtain a full answer to Brian’s question. Nevertheless, the following
summarizes how the proof of Main Theorem 3.1 extends the current proof methods
and techniques for realizing various spectra:

Generally, the forcing used to obtain our result is very similar to the forcing used
in Brian’s result above, but with a distinct modification in order to allow a more
sophisticated isomorphism-of-names argument. Inspired by Shelah’s and Spinas’
result for spec(a) the main feature of our argument is the restriction to isomorphic
complete subforcings of the entire forcing. In contrast, Brian’s argument only uses
automorphism of the entire forcing, which leads to his restriction (V).

The main difficulty of our proof is showing that we indeed have many complete
subforcings (see Theorem 7.1). In the situation for spec(a) there is a Suslin-c.c.c.
product-like forcing, which adds a maximal almost disjoint family of desired size.
Thus, the existence of complete subforcings is easy to prove in that case. In contrast,
for spec(aT) there is no known such Suslin-c.c.c. product-like forcing and instead
we have to use an iteration of c.c.c. forcings in order to obtain a witness for aT of
desired size. To establish the existence of complete subforcings, we introduce the
following novel advancements.

First, compared to Brian’s forcing in [4], our forcing (see Definition 4.6) has
a distinct modification, which allows for more automorphisms. In Section 5 we
provide a very algebraic framework of these automorphisms. Nevertheless, we strive
for a self-contained presentation. Secondly, since we do not have a Suslin forcing,
we cannot simply use the standard notion of a canonical projection of a nice name
of a real (cf. [7]). Instead, in Definition 7.2 we introduce the technical notion of a
nice name for a finite set of reals with respect to a sequence of names for trees. The
canonical projection of this technical nice name then has the desired properties in
our proof to obtain complete subforcings.

Finally, in Section 9 we prove the isomorphism-of-names argument needed for
our Main Theorem 3.1. However, again the situation is more complicated than for
the spectrum of a by Shelah and Spinas, because we are working with an iteration.
To this end, in Section 8 we provide a very algebraic/categorical framework for
the isomorphisms between the many complete subforcings just discussed. Lastly,
we use these isomorphisms to show that the corresponding isomorphism-of-names
argument can be carried out for the iteration. Thus, the main insight is that this
more sophisticated isomorphism-of-names argument can not only be applied in a
product-like context as for spec(a), but also in a more intricate iteration-like context
as for spec(aT).

Since the presented proofs are technical, for convenience of the reader we provide
an appendix with all relevant notions at the end of the paper.
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2. Preliminaries

In this section we introduce the cardinal characteristic aT and its associated
spectrum spec(aT). We will also define a c.c.c. forcing which forces the existence of
witnesses in spec(aT) of various sizes. In Definition 4.6 we define a slightly tweaked
version of this forcing in order to realize arbitrarily large spectra of aT in our Main
Theorem 3.1.

Definition 2.1. We define the spectrum

spec(aT) := {κ > ℵ0 | There is a partition of ω2 into κ-many closed sets}.
and define the cardinal characteristic aT := min(spec(aT)).

We arbitrarily fixed ω2 as our Polish space of choice here. However, Miller proved
that a witness for ℵ1 ∈ spec(aT) does not depend on the underlying Polish space:

Theorem 2.1 (Miller, 1980, [9]). There is a partition of ω2 into ℵ1-many closed
sets iff there is a partition of some Polish space into ℵ1-many closed sets iff every
Polish space has a partition into ℵ1-many closed sets.

More generally, Spinas proved in [11] that aT is independent of the underlying
Polish space and that d ⩽ aT. Brian extended this result in the following way:

Theorem 2.2 ([4]). Let κ be an uncountable cardinal. Then, all six statements
of the following form are equivalent: Some/Every uncountable Polish space can be
partitioned into κ compact/closed/ Fσ-sets.

Hence, neither the cardinal characteristic aT nor its spectrum spec(aT) depend
on the underlying Polish space, or if partitions into compact, closed or Fσ-sets
are considered. In order to force a desired constellation of spec(aT), we will add
partitions of ω2 into Fσ-sets. To this end, we will use the usual identification of
non-empty closed set of ω2 and branches of trees:

Definition 2.2. A tree T is a non-empty subset of <ω2 such that

(1) for all s ∈ <ω2 and t ∈ T with s⊴ t we have s ∈ T ,
(2) for all s ∈ T we have s⌢ 0 ∈ T or s⌢ 1 ∈ T (or both).

We denote with [T ] the set of branches of T :

[T ] := {f ∈ ω2 | for all n < ω we have f ↾n ∈ T}.
We call T nowhere dense if it additionally satisfies

(3) for all s ∈ T there is a t ∈ <ω2 with s⊴ t and t /∈ T .

Remark 2.1. Given a tree T , the set [T ] is a non-empty closed set of ω2. Con-
versely, given any non-empty closed set C the set

tree(C) := {s ∈ <ω2 | there is an f ∈ C with s⊴ f}
is a non-empty tree. Since, [tree(C)] = C and tree([T ]) = T we may identify
trees and non-empty closed sets of ω2 under these bijections. Furthermore, if T is
nowhere dense, then also [T ] is nowhere dense and conversely if C is nowhere dense,
then also tree(C) is nowhere dense. Hence, this identification restricts to nowhere
dense trees and nowhere dense closed subsets.
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Definition 2.3. Let S, T be trees. We call S and T almost disjoint iff S ∩ T is
finite.

Note that by König’s lemma two trees S and T are almost disjoint exactly iff
[S] ∩ [T ] = ∅. In order to force the existence of a witness for κ ∈ spec(aT), we will
add κ-many countable families {Tα | α < κ} of nowhere dense trees which satisfy

(1) for all α < β < κ and S ∈ Tα, T ∈ Tβ the trees S and T are almost disjoint,
(2) for all f ∈ ω2 there is an α < κ with f ∈

⋃
T∈Tα

[T ].

Notice that for α < κ and S ̸= T ∈ Tα we do not require that S and T are almost
disjoint. However, the two conditions above imply that {

⋃
T∈Cα

[T ] | α < κ} is a
partition of ω2 into κ-many Fσ-sets. Next, in order to approximate new nowhere
dense trees with finite conditions we fix the following notions.

Definition 2.4. Let n < ω. An n-tree T is a non-empty subset of ⩽n2 such that

(1) for all s ∈ ⩽n2 and t ∈ T with s⊴ t we have s ∈ T ,
(2) for all s ∈ T there is a t ∈ T ∩ n2 with s⊴ t.

We denote with [T ] the set of leaves T ∩ n2 of T . Given n ⩽ m, an n-tree S and
an m-tree T we write S⊴T iff T end-extends S, i.e. T ∩ ⩽n2 = S.

Definition 2.5. Let T be a family of nowhere dense trees. We define the forcing
T0(T ) to be the set of all pairs p = (Tp, Fp), where Tp is an np-tree for some
np < ω and Fp ⊆ ω2 is finite such that for all f ∈ Fp we have f /∈

⋃
T∈T [T ] and

f ↾np ∈ [Tp].
Given two conditions p, q ∈ T0(T ) we define q⩽ p iff np ⩽ nq, Fp ⊆ Fq and

Tp ⊴Tq. Further, we define T(T ) to be the finitely supported product of size ω

T(T ) :=
∏
ω

T0(T ).

We just summarize the crucial properties of T0(T ) and T(T ) as they follow from
standard density and forcing arguments. See [5] for more details for a very similar
forcing.

Remark 2.2. T0(T ) is σ-centered, so also T(T ) is σ-centered. Further, if G is
T0(T )-generic in V [G] the set

TG :=
⋃

{Tp | p ∈ G}

is a nowhere dense tree such that TG and T are almost disjoint for all T ∈ T .
Analogously, if G is T(T )-generic we denote with ⟨TG

n | n < ω⟩ the ω-many new
nowhere dense trees by T(T ). We have the following diagonalization properties:

(D1) For all n < ω the tree TG
n is almost disjoint from every T ∈ T .

(D2) For all f ∈ (ω2)V with f /∈
⋃

T∈T [T ] we have f ∈
⋃

n<ω[T
G
n ].

Note that in general TG
n and TG

m need not be almost disjoint for n ̸= m. The
diagonalization properties immediately yield the following lemma:

Lemma 2.1. Let κ be an uncountable cardinal. Then, there is a c.c.c. forcing
which forces the existence of a witness for κ ∈ spec(aT).



8 VERA FISCHER AND LUKAS SCHEMBECKER

Proof. Sketch. Consider the following iteration: Start with the finitely supported
product of Cohen forcing of size κ. In the generic extension, let T1 be the set
⟨Tα | α < κ⟩, where Tα is the nowhere dense tree with only branch the α-th Cohen
real. Then, force with T(T1) to obtain ω-many new nowhere dense trees ⟨Tn | n < ω⟩
with properties (D1) and (D2) in Remark 2.2. Extend T1 to T2 := T1∪{Tn | n < ω}
and continue iterating T(Tα) the same way ℵ1-many times with finite support. In
the end we obtain κ + ℵ1 = κ-many Fσ-sets which are disjoint by (D1) and cover
ω2 by (D2) and since ℵ1 has uncountable cofinality. □

In order to realize a whole spectrum of aT, in Definition 4.6 we define our forcing
as a product of a slightly tweaked version of this iteration. Iterating the forcing
of Lemma 2.1 of length κ over a model with c = λ yields a model with aT = κ
and c = λ for any regular κ and λ > κ of uncountable cofinality [5]. Further, since
d ⩽ aT, for κ of uncountable cofinality any model of d = κ = c satifies aT = κ.
However, this leaves open the following question:

Question 2.1. Can aT be singular of uncountable cofinality and aT < c?

In [2] Brendle constructed a model of a = ℵℵ0
. While we may use Lemma 2.1

to force the existence of a witness for ℵℵ0
∈ spec(aT) the following question is still

open:

Question 2.2. Can aT be of countable cofinality? In particular is aT = ℵℵ0

consistent?

Note that d < aT must hold in such a model as d can only have uncountable
cofinality.

3. Realizing arbitrarily large spectra of aT

The culmination of this paper is the following Main Theorem. In this section we
will describe the proof ingredients and summarize the role of each section towards
this goal.

Main Theorem 3.1. Assume GCH and let Θ be a set of uncountable cardinals
such that

(I) max(Θ) exists and has uncountable cofinality,
(II) Θ is closed under singular limits,
(III) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ,
(IV) ℵ1 ∈ Θ.

Then, there is a c.c.c. forcing extension in which spec(aT) = Θ holds.

Our proof strategy is inspired by Shelah’s and Spinas’ work on the spectrum
of mad families mentioned above. They realize a desired spectrum Θ with a large
product of Hechler’s forcing for adding a mad family. To exclude cardinalities, their
proof relies on the following fact:

Fact 3.1. Let HI be Hechler’s forcing for adding an almost disjoint family indexed
by I. If I ⊆ J then HI ⩽◦HJ , i.e. HI is a complete subforcing of HJ .
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Their isomorphism-of-names argument then uses this fact in this product-like
setting by reducing to countable subforcings of their whole forcing and using ap-
propriate isomorphisms between these countable subforcings. In contrast, the
isomorphism-of-names argument by Brian mentioned in his theorem above directly
employs automorphisms of the whole forcing, which is less flexible. In our proof
of our Main Theorem 3.1 we adapt the proof strategy of Shelah and Spinas for
the iteration-like situation of aT instead of the product-like situation of a. Conse-
quently, this paper is structured as follows:

In Section 4 we define the c.c.c. forcing (see Definition 4.6) which yields Main
Theorem 3.1. Similarly to Brian’s forcing in [4], our forcing adds a witness for
θ ∈ spec(aT) for every θ ∈ Θ. However, in contrast we define our forcing directly
as an iteration. Moreover, we fix a larger family of trees after adding many Cohen
reals in the first step of our iteration. Hence, the family of trees is closed under more
automorphisms of the initial Cohen forcing. In Section 5 we provide a very algebraic
framework, how to extend automorphisms of the Cohen forcing to automorphisms
of the entire forcing, which culminates in Corollary 5.1. Next, throughout the
paper we will need to work with nice conditions of our iteration, which describes
all the forcing information in a given condition. Hence, in Section 6 we inductively
define the notion of a nice condition (see Definition 6.2) and prove their density in
Lemma 6.1. We also define the hereditary support of a condition (see Definition 6.3)
and study the behaviour of nice conditions under the automorphisms described in
Section 5 (see Lemma 6.3 and Lemma 6.4).

Section 7 is the heart of the entire proof. We show that our forcing from Section 4
has enough complete subforcings to imitate the isomorphism-of-names argument by
Shelah and Spinas. However, we do not obtain a direct analogue to Fact 3.1 above,
but the slightly weaker Theorem 7.1:

Theorem. Let Φ ⊆ Ψ be a Θ-subindexing function and assume Φ is countable.
Then, PΦ

α ⩽◦PΨ
α for all α ⩽ ℵ1.

Hence, with our current methods we can only show that we have complete sub-
forcings if the index set is sufficiently small (countable in the sense of Definition 4.1)
and the iteration is at most of length ℵ1. This is precisely where we require the
strengthening of (IV) in our Main Theorem 3.1. In other words, if Theorem 7.1
can be proven for longer iterations, requirement (IV) can be again relaxed to the
requirement ‘min(Θ) is regular’, which would yield a full answer to Brian’s question.

Theorem 7.1 is proved in an elaborate inductive fashion. First, in order to show
that the embedding of some subforcing is well-defined we will need the additional
automorphisms our forcing possesses due to our modifications. Secondly, in order
to show that these embeddings are indeed complete, we introduce the technical
notion of a nice name for a finite set of reals with respect to a sequence of names
for trees (see Definition 7.2). Then, the canonical projection of such a nice name
(see Lemma 7.1) will have the desired properties in order to define a reduction of
a condition in our forcing (see Lemma 7.2).

Finally, in Section 8 we give an algebraic/categorical analysis of isomorphisms
between the complete subforcings given by Theorem 7.1. We then put everything
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together and provide the remaining isomorphism-of-names argument needed for
Main Theorem 3.1 in Section 9.

4. Defining the iteration

In this section we define the forcing used to prove Main Theorem 3.1. For the
remainder of this paper let Θ be fixed as in Main Theorem 3.1.

Definition 4.1. A Θ-indexing function is a partial function Φ : Θ → V . For two
Θ-indexing functions Φ,Ψ, we write Φ ⊆ Ψ iff Φ is a Θ-subindexing function of
Ψ, i.e. dom(Φ) ⊆ dom(Ψ) and for all θ ∈ dom(Φ) we have Φ(θ) ⊆ Ψ(θ). Finally,
we call a Θ-indexing function Φ countable iff dom(Φ) is countable and for every
θ ∈ dom(Φ) we have that Φ(θ) is countable.

Definition 4.2. Let Φ be a Θ-indexing function. Define CΦ to be the partial order
adding new Cohen reals indexed by pairs (θ, i) where θ ∈ dom(Θ) and i ∈ Φ(θ), i.e.

CΦ := {s :
⋃

θ∈dom(Φ)

({θ} × Φ(θ)) → C | supp(s) is finite}.

Further, we write ċΦ,θ
i for the canonical CΦ-name for the Cohen real indexed by

(θ, i) and ṪΦ,θ
i for the canonical CΦ-name for the tree with only branch ċΦ,θ

i .

Remark 4.1. Clearly, if Φ ⊆ Ψ we have that CΦ ⩽◦CΨ. In fact there is a strong
projection from CΨ onto CΦ, which just forgets all Cohen information outside of
Φ’s indexing. We denote this complete embedding by ιΦ,Ψ : CΦ → CΨ. Notice that
for θ ∈ dom(Φ) and i ∈ Φ(θ) we have

ιΦ,Ψ(ċΦ,θ
i ) = ċΨ,θ

i and ιΦ,Ψ(ṪΦ,θ
i ) = ṪΨ,θ

i .

CΦ will be the first step of our iteration. Note that CΦ has a vast amount of
automorphisms and we need to extend some of these automorphisms through our
iteration. In fact, we will need even more - we also need to preserve the group
structure of the automorphisms. Hence, it is very natural to use the language of
group actions and morphisms between group actions to express these properties.

Definition 4.3. Let Γ denote the group
⊕

ω Z/2 with group operation +. We
define a group action Γ↷C for γ ∈ Γ, s ∈ C by dom(γ.s) := dom(s) and for
n ∈ dom(s)

(γ.s)(n) :=

{
s(n) if γ(n) = 0,

1− s(n) otherwise.

Thus, an element γ ∈ Γ flips the Cohen information at place n precisely iff γ(n) = 1.

Remark 4.2. Note that the action Γ↷C preserves the order, that is γ.s ⩽ γ.t
for all s, t ∈ C with s⩽ t. In other words, the action Γ↷C is equivalent to a
group homomorphism from π : Γ → Aut(C). Further, as every element of Γ has
order at most 2, all automorphisms π(γ) of C given by the group action Γ↷C are
involutions, that is π(γ) ◦ π(γ) = id.
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Definition 4.4. Let Φ be a Θ-indexing function, θ ∈ dom(Φ) and i ∈ Φ(θ). Then,
we have an induced group action of Γ acting on the (θ, i)-th component of CΦ,
which we denote with Γ

θ,i
↷CΦ. In other words, we have that the inclusion map

ιΦ,θ
i : C → CΦ is a morphism of Γ-sets, i.e. the following diagram commutes for
every γ ∈ Γ:

C CΦ

C CΦ

ιΦ,θ
i

π(γ) πΦ,θ
i (γ)

ιΦ,θ
i

where πΦ,θ
i is the group homomorphism corresponding to Γ

θ,i
↷CΦ.

Remark 4.3. Here, as usual a Γ-set is just another notion for an action Γ on
some set. Since we now have various group actions of Γ↷CΦ, we will usually use

the corresponding group homomorphisms πΦ,θ
i : Γ → Aut(CΦ) to avoid confusion.

Also, note that more generally for any Θ-subindexing function Φ ⊆ Ψ, θ ∈ dom(Φ)
and i ∈ Φ(θ) we have that ιΦ,Ψ is a morphism of Γ-sets, i.e. the following diagram
commutes for every γ ∈ Γ:

CΦ CΨ

CΦ CΨ

ιΦ,Ψ

πΦ,θ
i (γ) πΨ,θ

i (γ)

ιΦ,Ψ

Definition 4.5. Let Φ be a Θ-indexing function, θ ∈ dom(Φ) and i ∈ Φ(θ). Denote

with Ṫ Φ,θ
i the canonical CΦ-name for the set

{πΦ,θ
i (γ)(ṪΦ,θ

i ) | γ ∈ Γ}.

Similarly, we let Ṫ Φ,θ denote the canonical CΦ-name for the set

{πΦ,θ
i (γ)(ṪΦ,θ

i ) | i ∈ Φ(θ) and γ ∈ Γ}.

Remark 4.4. Since Γ is countable, also Ṫ Φ,θ
i is countable and Ṫ Φ,θ is of size |Φ(θ)|·

ℵ0, hence countable in case that Φ is countable. Further, using Remark 4.1 and 4.3
it is easy to verify the following properties for every Θ-subindexing function Φ ⊆ Ψ,
θ ∈ dom(Φ) and i ∈ Φ(θ):

• Ṫ Φ,θ is the canonical CΦ-name for
⋃

i∈Φ(θ) Ṫ
Φ,θ
i ,

• ιΦ,Ψ(Ṫ Φ,θ
i ) = Ṫ Ψ,θ

i ,

• CΦ ⊩
⋃

T∈Ṫ Φ,θ
i

[T ] = {f ∈ ω2 | f =∗ ċΦ,θ
i }.

Next, given a Θ-indexing function Φ we define the forcing iteration realizing
the desired spectrum of aT for Main Theorem 3.1. The forcing is a finite support
iteration of c.c.c. forcings of length ℵ1:

Definition 4.6. Let Φ be a Θ-indexing function. We will define a finite support
iteration ⟨PΦ

α , Q̇Φ
β | α ⩽ ℵ1, β < ℵ1⟩, PΦ

α+1-names ṪΦ,θ
α,n for nowhere dense trees for

θ ∈ dom(Φ), 0 < α < ℵ1 and n < ω, and PΦ
α -names Ṫ Φ,θ

α for families of nowhere
dense trees for θ ∈ dom(Φ) and 0 < α ⩽ ℵ1:
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• Let Q̇Φ
0 be the forcing CΦ. Then, we already defined the CΦ-names Ṫ Φ,θ

in Definition 4.5 for every θ ∈ dom(Φ). Then, let Ṫ Φ,θ
1 the corresponding

canonical PΦ
1 -names.

• For α > 0 let Q̇Φ
α be the canonical PΦ

α -name for the finitely supported
product ∏

θ∈dom(Φ)

T(T Φ,θ
α ).

Also, for every θ ∈ dom(Φ) let ṪΦ,θ
α,n be the canonical PΦ

α+1-names for the

ω-many new nowhere dense trees added by T(T Φ,θ
α ), where n < ω. Finally,

let Ṫ Φ,θ
α+1 be the canonical PΦ

α+1-name for Ṫ Φ,θ
α ∪ {ṪΦ,θ

α,n | n ∈ ω}.
• At limit α for every θ ∈ dom(Φ) let Ṫ Φ,θ

α be the canonical PΦ
α -name for⋃

β<α Ṫ Φ,θ
β .

Grouping together the ω-many new trees added at each successor step into one

Fσ-set, we have that for every θ ∈ dom(Φ) the family Ṫ Φ,θ
ℵ1

will be witness of a

partition of Cantor space into Fσ-sets of size |Φ(θ)| · ℵ1. Thus, if every Φ(θ) is a
set of size θ, then Θ ⊆ spec(aT) is forced by PΦ

ℵ1
as in Lemma 2.1. Thus, it only

remains to prove the reverse inclusion.

5. Extending group actions through the iteration

Since PΦ
1
∼= CΦ, in the last section we essentially considered group actions Γ

θ,i
↷PΦ

1 .
In this section, we will show that there is a canonical way to extend these group
actions through the iteration, i.e. to group actions Γ

θ,i
↷PΦ

α for 0 < α ⩽ ℵ1,. This
process leads to the notion of an induced sequence of group actions in Corollary 5.1.

We write ιΦ,Ψ
1 : PΦ

1 → PΨ
1 for the complete embedding corresponding to ιΦ,Ψ :

CΦ → CΨ and πΦ,θ
1,i : Γ → Aut(PΦ

1 ) for the group homomorphism corresponding to

πΦ,θ
i : Γ → Aut(CΦ).

Definition 5.1. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ) and ϵ ⩽ ℵ1.
We say that

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ⩽ ϵ⟩

is an increasing sequence of Γ-actions iff every πΦ,θ
α,i is a group homomorphism (i.e.

an action of Γ on PΦ
α), for all 0 < α ⩽ ϵ, η ∈ dom(Φ) and γ ∈ Γ we have that

πΦ,θ
α,i (γ)(Ṫ

Φ,η
α ) = Ṫ Φ,η

α

and for all 0 < α ⩽ β ⩽ ϵ the canonical embedding ιΦα,β : PΦ
α → PΦ

β is a morphism
of Γ-sets, i.e the following diagram commutes for every γ ∈ Γ:

PΦ
α PΦ

β

PΦ
α PΦ

β

πΦ,θ
α,i (γ)

ιΦα,β

πΦ,θ
β,i (γ)

ιΦα,β
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Our goal for this section is to provide a canonical extension of πΦ,θ
1,i as defined in

Definition 4.4 to an increasing sequence of Γ-actions of length ℵ1. Since the iterands
of the forcing in Definition 4.6 are definable from the parameters Ṫ Φ,θ

α , it is crucial
that the group action fixes these parameters, which allows for an extension through
the iteration. Before we consider the successor step,we show that for limit steps
by the universal property of the direct limit there is a unique way to extend an
increasing sequence of Γ-actions:

Lemma 5.1. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ) and let ϵ ⩽ ℵ1

be a limit. Assume

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α < ϵ⟩

is an increasing sequence of Γ-actions. Then there is a unique group homomorphism

πΦ,θ
ϵ,i so that

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ⩽ ϵ⟩

is an increasing sequences of Γ-actions.

Proof. By definition of an increasing sequence of Γ-actions (cf. Definition 5.1) we
have a directed system of maps

⟨ιΦα,ϵ ◦ (π
Φ,θ
α,i (γ)) : P

Φ
α → PΦ

ϵ | 0 < α < ϵ⟩

Since PΦ
ϵ is a direct limit there is a unique map πΦ,θ

ϵ,i (γ) : PΦ
ϵ → PΦ

ϵ , so that the
following diagram commutes for every 0 < α ⩽ ϵ and γ ∈ Γ:

PΦ
α PΦ

ϵ

PΦ
α PΦ

ϵ

πΦ,θ
α,i (γ)

ιΦα,ϵ

πΦ,θ
ϵ,i (γ)

ιΦα,ϵ

Next, fix γ, δ ∈ Γ. We need to verify that πΦ,θ
ϵ,i (γ) ◦ πΦ,θ

ϵ,i (δ) = πΦ,θ
ϵ,i (γ + δ), so let

p ∈ PΦ,θ
ϵ . Choose α < ϵ such that ιΦα,ϵ(p ↾α) = p. Then, we compute

πΦ,θ
ϵ,i (γ)(πΦ,θ

ϵ,i (δ)(p)) = πΦ,θ
ϵ,i (γ)(πΦ,θ

ϵ,i (δ)(ιΦα,ϵ(p ↾α))) (choice of α)

= πΦ,θ
ϵ,i (γ)(ιΦα,ϵ(π

Φ,θ
α,i (δ)(p ↾α))) (choice of πΦ,θ

ϵ,i (γ))

= ιΦα,ϵ(π
Φ,θ
α,i (γ)(π

Φ,θ
α,i (δ)(p ↾α))) (choice of πΦ,θ

ϵ,i (γ))

= ιΦα,ϵ(π
Φ,θ
α,i (γ + δ)(p ↾α)) (πΦ,θ

α,i is group homomorphism)

= πΦ,θ
ϵ,i (γ + δ)(ιΦα,ϵ(p ↾α)) (choice of πΦ,θ

ϵ,i (γ))

= πΦ,θ
ϵ,i (γ + δ)(p) (choice of α).

Thus, πΦ,θ
ϵ,i : Γ → Aut(PΦ

ϵ ) is a group homomorphism. Finally, by Definition 4.6

Ṫ Φ,η
ϵ is the canonical name for

⋃
α<ϵ ι

Φ
α,ϵ(Ṫ Φ,η

α ). Thus, for any γ ∈ Γ and any
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η ∈ dom(Φ) we compute

πΦ,θ
ϵ,i (γ)(Ṫ Φ,η

ϵ ) = πΦ,θ
ϵ,i (γ)(

⋃
α<ϵ

ιΦα,ϵ(Ṫ Φ,η
α )) (Definition 4.6)

=
⋃
α<ϵ

πΦ,θ
ϵ,i (γ)(ιΦα,ϵ(Ṫ Φ,η

α )) (canonical name)

=
⋃
α<ϵ

ιΦα,ϵ(π
Φ,θ
α,i (γ)(Ṫ

Φ,η
α )) (choice of πΦ,θ

ϵ,i (γ))

=
⋃
α<ϵ

ιΦα,ϵ(Ṫ Φ,η
α ) (Definition 5.1)

= Ṫ Φ,η
α (Definition 4.6). □

Next, we consider the successor case. In this case, there is no unique extension
of the increasing sequence of Γ-actions. However, we prove that there is a canonical
one in the following sense:

Definition 5.2. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ) and ϵ < ℵ1.
Assume

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ⩽ ϵ⟩
is an increasing sequence of Γ-actions. For every γ ∈ Γ define an automorphism

πΦ,θ
ϵ+1,i(γ) : PΦ

ϵ+1 → PΦ
ϵ+1 by

πΦ,θ
ϵ+1,i(γ)(p) := πΦ,θ

ϵ,i (γ)(p ↾ ϵ)⌢ πΦ,θ
ϵ,i (γ)(p(ϵ)).

Then, we call πΦ,θ
ϵ+1,i the canonical extension of ⟨πΦ,θ

α,i : Γ → Aut(PΦ
α) | 0 < α ⩽ ϵ⟩.

Lemma 5.2. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ) and ϵ < ℵ1.
Assume

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ⩽ ϵ⟩

is an increasing sequence of Γ-actions and let πΦ,θ
ϵ+1,i be the canonical extension.

Then

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ⩽ ϵ+ 1⟩
is an increasing sequence of Γ-actions.

Proof. First, by definition of an increasing sequence of Γ-actions (cf. Definition 5.1)
for every η ∈ dom(Φ) and γ ∈ Γ we have

πΦ,θ
ϵ,i (γ)(Ṫ Φ,η

ϵ ) = Ṫ Φ,η
ϵ .

By Definition 4.6 Q̇Φ
ϵ is the canonical PΦ

ϵ -name for
∏

η∈dom(Φ) T(T Φ,η
ϵ ). Thus, we

obtain

πΦ,θ
ϵ,i (γ)(Q̇Φ

ϵ ) = Q̇Φ
ϵ ,

as both
∏

η∈dom(Φ) T(T Φ,η
ϵ ) as well as the order ⩽ are definable from the parameters

T Φ,η
ϵ . Thus, we get πΦ,θ

ϵ+1,i ∈ Aut(PΦ
ϵ+1). Next, we verify that for every γ ∈ Γ the

following diagram commutes:
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PΦ
ϵ PΦ

ϵ+1

PΦ
ϵ PΦ

ϵ+1

πΦ,θ
ϵ,i (γ)

ιΦϵ,ϵ+1

πΦ,θ
ϵ+1,i(γ)

ιΦϵ,ϵ+1

Let γ ∈ Γ and p ∈ PΦ
ϵ . Then, we compute

πΦ,θ
ϵ+1,i(γ)(ι

Φ
ϵ,ϵ+1(p))

= πΦ,θ
ϵ,i (γ)(ιΦϵ,ϵ+1(p) ↾ ϵ)

⌢ πΦ,θ
ϵ,i (γ)(ιΦϵ,ϵ+1(p)(ϵ)) (Definition 5.2)

= πΦ,θ
ϵ,i (γ)(p)⌢ πΦ,θ

ϵ,i (γ)(1) (definition of ιΦϵ,ϵ+1)

= πΦ,θ
ϵ,i (γ)(p)⌢ 1 (πΦ,θ

ϵ,i (γ) ∈ Aut(PΦ
ϵ ))

= ιΦϵ,ϵ+1(π
Φ,θ
ϵ,i (γ)(p)) (definition of ιΦϵ,ϵ+1).

Now, let γ, δ ∈ Γ. We need to verify that πΦ,θ
ϵ+1,i(γ) ◦ π

Φ,θ
ϵ+1,i(δ) = πΦ,θ

ϵ+1,i(γ + δ),

so let p ∈ PΦ,θ
ϵ+1. Then, we compute

πΦ,θ
ϵ+1,i(γ)(π

Φ,θ
ϵ+1,i(δ)(p))

= πΦ,θ
ϵ+1,i(γ)(π

Φ,θ
ϵ,i (δ)(p ↾ ϵ)⌢ πΦ,θ

ϵ,i (δ)(p(ϵ))) (Definition 5.2)

= πΦ,θ
ϵ,i (γ)(πΦ,θ

ϵ,i (δ)(p ↾ ϵ))⌢ πΦ,θ
ϵ,i (γ)(πΦ,θ

ϵ,i (δ)(p(ϵ))) (Definition 5.2)

= πΦ,θ
ϵ,i (γ + δ)(p ↾ ϵ)⌢ πΦ,θ

ϵ,i (γ + δ)(p(ϵ)) (πΦ,θ
ϵ,i is gr.hom.)

= πΦ,θ
ϵ+1,i(γ + δ)(p) (Definition 5.2).

Thus, πΦ,θ
ϵ+1,i : Γ → Aut(PΦ

ϵ ) is a group homomorphism. Finally, let η ∈ dom(Φ)

and γ ∈ Γ. Note, the by Definition 4.6 we have that Ṫ Φ,η
ϵ+1 is the canonical name

for ιΦϵ,ϵ+1(Ṫ Φ,η
ϵ ) ∪ {ṪΦ,η

ϵ,n | n ∈ ω}. Since

πΦ,θ
ϵ+1,i(γ)(ι

Φ
ϵ,ϵ+1(Ṫ Φ,η

ϵ )) = ιΦϵ,ϵ+1(π
Φ,θ
ϵ,i (γ)(Ṫ Φ,η

ϵ )) (by commutativity above)

= ιΦϵ,ϵ+1(Ṫ Φ,η
ϵ ) (by Definition 5.1),

it suffices to verify that for all n < ω we have

πΦ,θ
ϵ+1,i(γ)(Ṫ

Φ,η
ϵ,n ) = ṪΦ,η

ϵ,n .

But this follows since ṪΦ,η
ϵ,n is the canonical PΦ

ϵ+1-name for the n-th new nowhere

dense trees added by T(T Φ,θ
ϵ ) and check-names are fixed by any automorphism;

remember that ṪΦ,η
ϵ,n is just canonical name the union of the finite approximations

in the generic filter. □

Lemma 5.3. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ). Then, for

every η ∈ dom(Φ) and γ ∈ Γ we have πΦ,θ
1,i (γ)(Ṫ

Φ,η
1 ) = Ṫ Φ,η

1 , where πΦ,θ
1,i is defined

as in Definition 4.4. In other words

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ⩽ 1⟩
is an increasing sequence of Γ-actions (of length 1).
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Proof. Let η ∈ dom(Φ) and γ ∈ Γ. By definition 4.5 Ṫ Φ,η
1 is the canonical CΦ-name

for the set ⋃
j∈Φ(θ)

Ṫ Φ,η
1,j ,

so it suffices to check that for all j ∈ Φ(η) we have πΦ,θ
1,i (γ)(Ṫ

Φ,η
1,j ) = Ṫ Φ,η

1,j , so fix

some j ∈ Φ(η). By Definition 4.5 Ṫ Φ,η
1,j is the canonical CΦ-name for the set

{πΦ,η
j (δ)(ṪΦ,η

j ) | δ ∈ Γ}.

Thus, in case that (θ, i) = (η, j) we compute

πΦ,θ
1,i (γ)(Ṫ

Φ,θ
1,i ) = πΦ,θ

1,i (γ)({π
Φ,θ
i (δ)(ṪΦ,θ

i ) | δ ∈ Γ}) (Definition 4.5)

= {πΦ,θ
1,i (γ)(π

Φ,θ
i (δ)(ṪΦ,θ

i )) | δ ∈ Γ} (canonical name)

= {πΦ,θ
1,i (γ + δ)(ṪΦ,θ

i ) | δ ∈ Γ} (πΦ,θ
1,i is gr.hom.)

= {πΦ,θ
1,i (δ)(Ṫ

Φ,θ
i ) | δ ∈ Γ} (Γ is a group)

= Ṫ Φ,θ
1,j (Definition 4.5).

Otherwise, πΦ,η
j (δ)(ṪΦ,η

j ) has no information in the (θ, i)-th coordinate for every
δ ∈ Γ, so that

πΦ,θ
1,i (γ)(Ṫ

Φ,η
1,j ) = πΦ,θ

1,i (γ)({π
Φ,η
j (δ)(ṪΦ,η

j ) | δ ∈ Γ}) (Definition 4.5)

= {πΦ,θ
1,i (γ)(π

Φ,η
j (δ)(ṪΦ,η

j )) | δ ∈ Γ} (canonical name)

= {πΦ,η
1,j (δ)(Ṫ

Φ,η
j ) | δ ∈ Γ} ((θ, i) ̸= (η, j))

= Ṫ Φ,η
1,j (Definition 4.5). □

Corollary 5.1. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ). Then,
there is an increasing sequence of Γ-actions

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ⩽ ℵ1⟩

such that πΦ,θ
ϵ+1,i the canonical extension of ⟨πΦ,θ

α,i : Γ → Aut(PΦ
α) | 0 < α ⩽ ϵ⟩ for

every ϵ < ℵ1. We call this sequence the induced sequence of group actions of πΦ,θ
1,i

and will reserve the notions ⟨πΦ,θ
α,i | 0 < α ⩽ ℵ1⟩ for it.

Proof. We iteratively construct the desired sequence. By Lemma 5.3 we may start

with πΦ,θ
1,i as in Definition 4.4, use Lemma 5.2 for the successor step and Lemma 5.1

for the limit step. □

6. A nice dense subset

In the following sections we will need to work with a nice dense subset DΦ
α of PΦ

α .
A condition p ∈ PΦ

α has finite support, where p(0) ∈ CΦ and for α ∈ supp(p)∖ {0}
we have

p ↾α ⊩ p(α) ∈ Q̇Φ
α =

∏
θ∈dom(Φ)

T(Ṫ Φ,θ
α ).
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We will define DΦ
α , so that as many parameters for p(α) as possible are decided as

ground model objects. First, we will need the following definition of a nice name
for a real.

Definition 6.1. Let P be a forcing and p ∈ P. A nice P-name for a real below p is
a sequence ⟨(An, fn) | n < ω⟩ such that

• for all n < ω the set An is a maximal antichain below p and fn : An → 2>n,
• for all n < m the antichain Am refines An, i.e. every b ∈ Am there is a ∈ An

with b⩽ a,
• for all n < m, a ∈ An and b ∈ Am with b⩽ a we have fn(a) ⊴ fm(b).

We write name(⟨(An, fn) | n < ω⟩) for the canonical P-name of ⟨(An, fn) | n < ω⟩,
i.e.

name(⟨(An, fn) | n < ω⟩) := {(a, (n, fn(a)(n))) | n < ω and a ∈ An}.

Remark 6.1. Remember, that for every p ∈ P and P-name ġ for a real below p
we may inductively define a nice P-name ⟨(An, fn) | n < ω⟩ for a real below p such
that

p ⊩ ḟ = name(⟨(An, fn) | n < ω⟩).
Further, if P is c.c.c., then for any p ∈ P there are at most |P|ℵ0 many nice names
for reals below p. We also have that nice names and their canonical names behave
nicely under automorphisms in the following sense:

Remark 6.2. If π ∈ Aut(P) and ⟨(An, fn) | n < ω⟩ is a nice P-name for a real
below p, then π(⟨(An, fn) | n < ω⟩) := ⟨(Bn, gn) | n < ω⟩, where Bn = π[An] and

gn(π(a)) := fn(a),

is a nice P-name for a real below π(p) with

π(name(⟨(An, fn) | n < ω⟩)) = name(⟨(Bn, gn) | n < ω⟩).

Definition 6.2. Let Φ be a Θ-indexing function and 0 < α ⩽ ℵ1. D
Φ
α is the set of

all nice conditions in PΦ
α , where inductively p ∈ PΦ

α is a nice condition

• for α = 1: iff p(0) = cp for some cp ∈ CΦ,
• for α+ 1 > 1: iff p ↾α ∈ DΦ

α and
◦ there is a finite set Θp

α ⊆ dom(Φ),
◦ for every θ ∈ Θp

α there is a finite set Ipα,θ ⊆ ω,

◦ for every i ∈ Ipα,θ there is np
α,θ,i < ω and an np

α,θ,i-tree spα,θ,i and a

finite set F p
α,θ,i of D

Φ
α -names, where every ḟ ∈ F p

α,θ,i is the canonical

DΦ
α -name of some nice DΦ

α -name for a real below some q ∈ DΦ
α with

p ↾α⩽ q,
◦ such that p(α) is the canonical name for the condition in the forcing

Q̇Φ
α =

∏
θ∈dom(Φ) T(Ṫ Φ,θ

α ) with supp(p(α)) = Θp
α and for every θ ∈ Θp

α

with supp(p(α)(θ)) = Ipα,θ and for every i ∈ Ipα,θ we have p(α)(θ)(i) =

(spα,θ,i, F
p
α,θ,i),

• for limit α: iff p ↾β ∈ DΦ
β for all β < α.
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Remark 6.3. Note that for any p ∈ DΦ
α the parameter cp and, for every β < α

the parameters Θp
β , Ipβ,θ, np

β,θ,i, spβ,θ,i and F p
β,θ,i are uniquely determined by p.

Conversely, we may reconstruct p from these parameters. Further, by definition of
Q̇Φ

α , for every ḟ ∈ F p
α,θ,i as above, we have that

p ↾α ⊩ ḟ ↾np
α,θ,i ∈ spα,θ,i and ḟ /∈

⋃
T∈Ṫ Φ,θ

α

[T ].

Conversely, if ġ is the canonical DΦ
α -name of some nice DΦ

α -name for a real below
some q ∈ DΦ

α with p ↾α⩽ q and for some η ∈ Θp
α and j ∈ Ipα,η we have

p ↾α ⊩ ḟ ↾np
α,η,j ∈ spα,η,j and ḟ /∈

⋃
T∈Ṫ Φ,η

α

[T ],

then we may extend p ∈ DΦ
α to a condition r ∈ DΦ

α by stipulating r ↾α := p ↾α and

• Θr
α := Θp

α,
• Irα,θ := Ipα,θ for every θ ∈ Θr

α,

• nr
α,θ,i := np

α,θ,i, s
r
α,θ,i := spα,θ,i and

F r
α,θ,i :=

{
F p
α,θ,i ∪ {ġ} if (θ, i) = (η, j),

F p
α,θ,i otherwise.

for every θ ∈ Θr
α and i ∈ Irα,θ.

Remark 6.4. For 0 < β ⩽ α ⩽ ℵ1 we have ιΦβ,α(D
Φ
β ) ⊆ DΦ

α and for limit α ⩽ ℵ1

we have

DΦ
α =

⋃
β<α

ιΦβ,α(D
Φ
β ).

Lemma 6.1. Let Φ be a Θ-indexing function and 0 < α ⩽ ℵ1. Then, DΦ
α is dense

in PΦ
α .

Proof. By induction. Case α = 1 follows from PΦ
1
∼= CΦ. For limit α let p ∈ PΦ

α .
Choose β < α and such that ιΦβ,α(p ↾β) = p. By induction choose q ∈ DΦ

β with

q⩽ p ↾β. By Remark 6.4 we have ιΦα,β(q) ∈ DΦ
α and ιΦβ,α(q) ⩽ ιΦβ,α(p ↾β) = p.

Finally, for α+ 1 let p ∈ PΦ
α+1. Then

p ↾α ⊩ p(α) ∈ Q̇Φ
α =

∏
θ∈dom(Φ)

T(Ṫ Φ,θ
α )

and by induction DΦ
α is dense in PΦ

α we may choose q ∈ DΦ
α which decides all

necessary parameters of an element in
∏

θ∈dom(Φ) T(Ṫ Φ,θ
α ). By Remark 6.1 there

a nice DΦ
α -names for all DΦ

α -names for reals below q which occur in some F p
α,θ,i.

Then, the canonical name q̇α for p(α) as defined in Definition 6.2 satisfies

q ⊩ p(α) = q̇α.

Hence, q ⌢ q̇α ∈ DΦ
α+1 and q ⌢ q̇α ⩽ p. □
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Definition 6.3. Let Φ be a Θ-indexing function, 0 < α ⩽ ℵ1 and p ∈ DΦ
α . We

will inductively define countable subsets hsuppΘ(p) ⊆ dom(Φ) and hsupp(p) ⊆⋃
θ∈hsuppΘ(p)({θ} × Φ(θ)) called the hereditary support of p.

Once we have chosen this definition, we define for the canonical DΦ
α -name ḟ of

a nice DΦ
α name ⟨(An, fn) | n < ω⟩ for a real below p the countable sets

hsuppΘ(ḟ) :=
⋃

n<ω,a∈An

hsuppΘ(a)

hsupp(ḟ) :=
⋃

n<ω,a∈An

hsupp(a)

For α = 1, we define hsupp(p) := supp(p(0)) and let hsuppΘ(p) be the pro-
jection of hsupp(p) onto the first component. Next, for limit α we may choose
β < α with ιΦβ,α(p ↾β) = p and define hsuppΘ(p) := hsuppΘ(p ↾β) and hsupp(p) :=

hsupp(p ↾β). Finally, for α+ 1 > 1 we define

hsuppΘ(p) := hsuppΘ(p ↾α) ∪Θp
α ∪

⋃
{hsuppΘ(ḟ) | θ ∈ Θp

α, i ∈ Ipα,θ, ḟ ∈ F p
α,θ,i},

hsupp(p) := hsupp(p ↾α) ∪
⋃

{hsupp(ḟ) | θ ∈ Θp
α, i ∈ Ipα,θ and ḟ ∈ F p

α,θ,i}.

Lemma 6.2. Assume CH and let Φ be a Θ-indexing function, 0 < α ⩽ ℵ1 and
assume that both Θ0 ⊆ Θ and I0 ⊆

⋃
θ∈Θ0

({θ} × Φ(θ)) are countable. Then, there

are at most ℵ1-many p ∈ DΦ
α with hsuppΘ(p) ⊆ Θ0 and hsupp(p) ⊆ I0. Thus, for

any p ∈ DΦ
α there are at most ℵ1-many canonical DΦ

α -names ḟ of nice DΦ
α -names

for reals below p with hsuppΘ(ḟ) ⊆ Θ0 and hsupp(ḟ) ⊆ I0.

Proof. In order to see the second part of the statement, let ḟ be the canonical
DΦ

α -name of a nice DΦ
α -name ⟨(An, fn) | n < ω⟩ for a real below p ∈ DΦ

α with

hsuppΘ(ḟ) ⊆ Θ0 and hsupp(ḟ) ⊆ I0. Then, for any n < ω and a ∈ An we also
have hsupp(a) ⊆ I0 and hsuppΘ(a) ⊆ Θ0. But by the first part of the statement∣∣{p ∈ DΦ

α | hsupp(p) ⊆ I0 and hsuppΘ(p) ⊆ Θ0}
∣∣ ⩽ ℵ1,

so that Remark 6.1 using CH and the fact that PΦ
α is c.c.c., we may compute the

number of nice DΦ
α -names for reals below p as at most

ℵℵ0
1 = (ℵℵ0

0 )ℵ0 = ℵℵ0·ℵ0
0 = ℵℵ0

0 = ℵ1.

We prove the first part of the statement by induction. For α = 1, as |C| = ℵ0

and I0 is countable there are at most ℵℵ0
0 = ℵ1-many conditions in PΦ

1
∼= CΦ with

hsupp(p) ⊆ I0. For limit α, note that by Remark 6.4 we have

{p ∈ DΦ
α | hsupp(p) ⊆ I0 and hsuppΘ(p) ⊆ Θ0}

=
⋃
β<α

{ιΦβ,α(p) | p ∈ DΦ
β ,hsupp(p) ⊆ I0 and hsuppΘ(p) ⊆ Θ0}

Thus, by induction we compute∣∣{p ∈ DΦ
α | hsupp(p) ⊆ I0 and hsuppΘ(p) ⊆ Θ0}

∣∣ ⩽ |α| · ℵ1 = ℵ1.
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Finally, for α + 1 > 1 and p ∈ DΦ
α+1 we have p ↾α ∈ DΦ

α and hsuppΘ(p ↾α) ⊆
hsuppΘ(p) ⊆ Θ0 and hsupp(p ↾α) ⊆ hsupp(p) ⊆ I0, so by induction there are
at most ℵ1-many choices for p ↾α. Also, Θp

α ⊆ hsuppΘ(p) ⊆ Θ0, so there are
at most countably many choices for Θp

α. Further, for any of the finitely many
θ ∈ Θp

α there are at most countably many choices Ipα,θ and for any of the finitely

many i ∈ Ipα,θ there are at most countably many choices for np
α,θ,i and spα,θ,i.

Finally, for any ḟ ∈ F p
α,θ,i choose q ∈ DΦ

α such that ḟ is the canonical DΦ
α -name of

some nice DΦ
α -name for a real below q with p ↾α⩽ q. Then, we have hsuppΘ(q) ⊆

hsuppΘ(p ↾α) ⊆ hsuppΘ(p) ⊆ Θ0 and hsupp(q) ⊆ hsupp(p ↾α) ⊆ hsupp(p) ⊆ I0,
so by induction assumption there at most ℵ1-many choices for q. Analogously,
hsuppΘ(ḟ) ⊆ hsuppΘ(p) ⊆ Θ0 and hsupp(ḟ) ⊆ hsupp(p) ⊆ I0, so by induction

assumption there are at most ℵ1-many choices for ḟ . Hence, there are at most
ℵ1-many choices for F p

α,θ,i. By Remark 6.3 p(α) is uniquely determined by these
parameters, so that there are at most ℵ1-many choices for p. □

Next, we prove that the action of Γ on PΦ
α restricts to actions on our nice dense

set DΦ
α .

Lemma 6.3. Let Φ be an Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ), γ ∈ Γ and

0 < α ⩽ ℵ1. Then, πΦ,θ
α,i (γ)(D

Φ
α ) = DΦ

α .

Proof. It suffices to verify that πΦ,θ
α,i (γ)(D

Φ
α ) ⊆ DΦ

α , which we prove by induction.

For α = 1, let p ∈ DΦ
1 . Then, we compute

πΦ,θ
1,i (γ)(p)(0) = πΦ,θ

1,i (γ)(p(0)) = πΦ,θ
1,i (γ)(c

p) ∈ CΦ,

so that πΦ,θ
1,i (γ)(p) ∈ DΦ

1 . For limit α, let p ∈ DΦ
α and choose β < α such that

ιΦβ,α(p ↾β) = p. By induction assumption πΦ,θ
β,i (γ)(p ↾β) ∈ DΦ

β . By Remark 6.4 we

have ιΦβ,α(π
Φ,θ
β,i (γ)(p ↾β)) ∈ DΦ

α . Hence, by Definition 5.1 we compute

πΦ,θ
α,i (γ)(p) = πΦ,θ

α,i (γ)(ι
Φ
β,α(p ↾β)) = ιΦβ,α(π

Φ,θ
β,i (γ)(p ↾β)) ∈ DΦ

α .

Finally, for α+ 1 > 1 let p ∈ DΦ
α+1. Then, p ↾α ∈ DΦ

α and by Definition 5.2

πΦ,θ
α+1,i(γ)(p) = πΦ,θ

α,i (γ)(p ↾α)
⌢ πΦ,θ

α,i (γ)(p(α)).

By induction assumption we obtain πΦ,θ
α,i (γ)(p ↾α) ∈ DΦ

α . Note that by Remark 6.2

πΦ,θ
α,i (γ)(p(α)) is the canonical name for the condition in Q̇Φ

α =
∏

θ∈dom(Φ) T(Ṫ Φ,θ
α )

with supp(πΦ,θ
α,i (γ)(p(α))) = Θp

α and for every θ ∈ Θp
α with supp(πΦ,θ

α,i (γ)(p(α))(θ)) =

Ipα,θ and for every i ∈ Ipα,θ we have πΦ,θ
α,i (γ)(p(α))(θ)(i) = (spα,θ,i, π

Φ,θ
α,i (γ)(F

p
α,θ,i)).

Hence, πΦ,θ
α+1,i(γ)(p) ∈ DΦ

α+1. □

Lemma 6.4. Let Φ be an Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ), γ ∈ Γ and

p ∈ DΦ
α for some 0 < α ⩽ ℵ1 such that πΦ,θ

1,i (γ)(p ↾ 1) = p ↾ 1. Then, there is q ⩽ p

in DΦ
α with q(0) = p(0) and πΦ,θ

α,i (γ)(q) = q.
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Proof. By induction. The case α = 1 is exactly the assumption given on γ. For
limit α choose β < α with ιΦβ,α(p ↾β) = p. By induction assumption choose q ⩽ p ↾β

in DΦ
β such that q(0) = p(0) and πΦ,θ

β,i (γ)(q) = q. Then, ιΦβ,α(q)(0) = q(0) = p(0),

by Remark 6.4 ιΦβ,α ∈ DΦ
α and by Definition 5.1 we compute

πΦ,θ
α,i (γ)(ι

Φ
β,α(q)) = ιΦβ,α(π

Φ,θ
β,i (γ)(q)) = ιΦβ,α(q).

Finally, for α+1 > 1 let p ∈ DΦ
α+1. Then, by induction assumption we may choose

q ⩽ p ↾α in DΦ
α with q(0) = p(0) and πΦ,θ

α,i (γ)(q) = q. We define

• Θq
α := Θp

α,
• Iqα,θ := Ipα,θ for every θ ∈ Θq

α,

• nq
α,θ,i := np

α,θ,i and sqα,θ,i := spα,θ,i for every θ ∈ Θq
α and i ∈ Iqα,θ,

• F q
α,θ,i := F p

α,θ,i ∪ πΦ,θ
α,i (γ)(F

p
α,θ,i).

Let q̇α be the canonical name for the condition in Q̇Φ
α =

∏
θ∈dom(Φ) T(Ṫ Φ,θ

α ) with

supp(q̇α) = Θq
α, for every θ ∈ Θq

α with supp(q̇α(θ)) = Iqα,θ and for every i ∈ Iqα,θ
we have q̇α(θ)(i) = (sqα,θ,i, F

q
α,θ,i). We claim that q ⌢ q̇α is as desired. To obtain

q ⌢ q̇α ∈ DΦ
α+1 by Remark 6.3 it suffices to verify that for every θ ∈ Θp

α, i ∈ Ipα,θ
and ḟ ∈ F p

α,θ,i we have

q ⊩ πΦ,θ
α,i (γ)(ḟ) ↾n

p
α,θ,i ∈ spα,θ,i and πΦ,θ

α,i (γ)(ḟ) /∈
⋃

T∈Ṫ Φ,θ
α

[T ].

To this end, notice that p ∈ DΦ
α+1 implies

p ↾α ⊩ ḟ ↾np
α,θ,i ∈ spα,θ,i and ḟ /∈

⋃
T∈Ṫ Φ,θ

α

[T ],

so also q ⩽ p ↾α forces this. Further, πΦ,θ
α,i (γ)(q) = q and πΦ,θ

α,i (γ)(Ṫ Φ,θ
α ) = Ṫ Φ,θ

α , so
applying the automorphism theorem to the previous statement yields the desired

conclusion. Next, we have πΦ,θ
α,i (γ)(F

q
α,θ,i) = F q

α,θ,i since πΦ,θ
α,i (γ) is an involution.

This implies

πΦ,θ
α+1,i(γ)(q

⌢ q̇α) = πΦ,θ
α,i (γ)(q)

⌢ πΦ,θ
α,i (γ)(q̇α) = q ⌢ q̇α.

Finally, by definition we have q ⌢ q̇α ⩽ p and (q ⌢ q̇α)(0) = q(0) = p(0). □

7. Complete embeddings

In this section we combine the results of the previous sections in order to prove
that our forcing in Definition 4.6 has enough complete subforcings to carry out
our isomorphism-of-names argument for Main Theorem 3.1. The whole section will
be devoted towards the proof of the following Theorem 7.1 as it is an elaborate
inductive construction of complete embeddings.

Theorem 7.1. Let Φ ⊆ Ψ be a Θ-subindexing function and assume Φ is countable.
Then, PΦ

α ⩽◦PΨ
α for all α ⩽ ℵ1.
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By induction over α ⩽ ℵ1 we define embeddings ιΦ,Ψ
α : PΦ

α → PΨ
α and prove that

they admit reductions from PΨ
α to PΦ

α . Thus, ιΦ,Ψ
α will be a complete embedding.

Additionally, we will verify the following properties along our iteration:

(A) For all β ⩽ α the following diagram commutes:

PΦ
β PΨ

β

PΦ
α PΨ

α

ιΦβ,α

ιΦ,Ψ
β

ιΨβ,α

ιΦ,Ψ
α

(B) For all θ ∈ dom(Φ) and i ∈ Φ(θ) the embedding ιΦ,Ψ
α : PΦ

α → PΨ
α is a

morphism of Γ-sets, i.e. the following diagram commutes for every γ ∈ Γ:

PΦ
α PΨ

α

PΦ
α PΨ

α

πΦ,θ
α,i (γ)

ιΦ,Ψ
α

πΨ,θ
α,i (γ)

ιΦ,Ψ
α

(C) For all θ ∈ dom(Φ) and i ∈ Φ(θ) we have

ιΦ,Ψ
1 (ċΦ,θ

i ) = ċΨ,θ
i and thus ιΦ,Ψ

1 (ṪΦ,θ
i ) = ṪΨ,θ

i .

(D) For all α = β + 1 > 1, θ ∈ dom(Φ) and n < ω we have

ιΦ,Ψ
β (ṪΦ,θ

β,n ) = ṪΨ,θ
β,n .

(E) If α > 0, then for all θ ∈ dom(Φ), the name Ṫ Ψ,θ
α is the canonical PΨ

α -name
for

ιΦ,Ψ
α (Ṫ Φ,θ

α ) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

ιΨ1,α(T
Ψ,θ
i ).

(F) For all θ ∈ dom(Φ), i ∈ Ψ(θ) ∖ Φ(θ), γ ∈ Γ we have that πΨ,θ
α,i (γ) acts

trivially on ιΦ,Ψ
α (PΦ

α).

(G) For all θ ∈ dom(Φ), i ∈ Ψ(θ)∖ Φ(θ), γ ∈ Γ and PΦ
α -name ḟ for a real

PΨ
α ⊩ ιΦ,Ψ

α (ḟ) ̸= ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i )).

First, we prove that (G) follows from (F), so that we only need to verify (A) to (F)
inductively:

Proof. Let p ∈ PΨ
α . By Lemma 6.1, we may assume p ∈ DΨ

α . Choose a natural
number N /∈ dom(p(0)(θ, i)). Let δ ∈ Γ be defined by δ(N) = 1 and 0 otherwise.

Then, πΨ,θ
1,i (δ)(p ↾ 1) = p ↾ 1, so by the Lemma 6.4 we may choose q ⩽ p in DΨ

α such

that q(0) = p(0) and πΨ,θ
α,i (δ)(q) = q. Thus, N /∈ dom(q(0)(θ, i)) and we may define

qk ⩽ q which replaces p(0)(θ, i) by p(0)(θ, i) ∪ ⟨N, j⟩ for j ∈ 2. Then, we have

πΨ,θ
α,i (δ)(qj) = q1−j for j ∈ 2 and there is a k ∈ 2 with

q0 ⊩ ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N) = k.
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Further, using (δ + γ)(N) = 1− γ(N) we compute

πΨ,θ
α,i (δ)(ι

Ψ
1,α(π

Ψ,θ
1,i (γ)(ċ

Ψ,θ
i )))(N) = ιΨ1,α(π

Ψ,θ
1,i (δ)(π

Ψ,θ
1,i (γ)(ċ

Ψ,θ
i )))(N)

= ιΨ1,α(π
Ψ,θ
1,i (δ + γ)(ċΨ,θ

i ))(N)

= 1− ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N).

Thus, by the automorphism theorem we obtain

q1 ⊩ ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N) = 1− k.

Choose r0 ⩽ q0 such that r0 ⊩ ιΦ,Ψ
α (ḟ)(N) = l for some l ∈ 2. Since ḟ is a PΦ

α -

name by (F) we have πΨ,θ
α,i (δ)(ι

Φ,Ψ
α (ḟ)) = ιΦ,Ψ

α (ḟ). Thus, the automorphism theorem
yields

πΨ,θ
α,i (δ)(r0) ⊩ ιΦ,Ψ

α (ḟ)(N) = l.

But then either r0 ⩽ q0 ⩽ q ⩽ p and

r0 ⊩ ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N) = k ̸= l = ιΦ,Ψ

α (ḟ)(N)

or πΨ,θ
α,i (δ)(r0) ⩽ πΨ,θ

α,i (δ)(q0) = q1 ⩽ q ⩽ p and

πΨ,θ
α,i (δ)(r0) ⊩ ιΨ1,α(π

Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N) = 1− k ̸= l = ιΦ,Ψ

α (ḟ)(N). □

Next, we inductively define ιΦ,Ψ
α and verify properties (A) to (F), so consider

α = 1 first. In this case we already defined ιΦ,Ψ
i : PΦ

1 → PΨ
1 as the complete

embedding corresponding to ιΦ,Ψ : CΦ → CΨ.

(A) There is nothing to show.
(B) Follows immediately from Remark 4.3.

(C) By definition of ċΦ,θ
i , ċΨ,θ

i and ιΦ,Ψ
1 .

(D) There is nothing to show.
(E) Let θ ∈ dom(Φ). Then, we compute

Ṫ Ψ,θ
1 =

⋃
i∈Ψ(θ)

Ṫ Ψ,θ
i (Remark 4.4)

=
⋃

i∈Φ(θ)

Ṫ Ψ,θ
i ∪

⋃
i∈Ψ(θ)∖Φ(θ)

Ṫ Ψ,θ
i

=
⋃

i∈Φ(θ)

ιΦ,Ψ
1 (Ṫ Φ,θ

i ) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

Ṫ Ψ,θ
i (Remark 4.4)

= ιΦ,Ψ
1 (

⋃
i∈Φ(θ)

Ṫ Φ,θ
i ) ∪

⋃
i∈Ψ(θ)∖Φ(θ)

Ṫ Ψ,θ
i (canonical name)

= ιΦ,Ψ
1 (Ṫ Φ,θ

1 ) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

Ṫ Ψ,θ
i (Remark 4.4).

(F) Follows immediately from the fact that πΨ,θ
α,i (γ) only acts on Cohen infor-

mation outside of the indexing of Φ.

Next, we consider limit α. Then, by (A) for every β′ ⩽ β < α the following diagram
commutes:



24 VERA FISCHER AND LUKAS SCHEMBECKER

PΦ
β′ PΨ

β′

PΦ
β PΨ

β

ιΦ
β′,β

ιΦ,Ψ

β′

ιΨ
β′,β

ιΦ,Ψ
β

By the universal property of the direct limit there is a unique ιΦ,Ψ
α : PΦ

α → PΨ
α

such that for every β ⩽ α the diagram in (A) commutes. Further, as a direct limit
of complete embeddings, also ιΦ,Ψ

α is a complete embedding. Note that (C) and
(D) are vacuous at limits.

(A) Follows from the universal property of the direct limit.
(B) Let θ ∈ dom(Φ), i ∈ Φ(θ), γ ∈ Γ and p ∈ PΦ

α . Choose β < α such that
ιΦβ,α(p ↾β) = p. Then, we compute

πΨ,θ
α,i (γ)(ι

Φ,Ψ
α (p)) = πΨ,θ

α,i (γ)(ι
Φ,Ψ
α (ιΦβ,α(p ↾β))) (choice of β)

= πΨ,θ
α,i (γ)(ι

Ψ
β,α(ι

Φ,Ψ
β (p ↾β))) (A)

= ιΨβ,α(π
Ψ,θ
β,i (γ)(ι

Φ,Ψ
β (p ↾β))) (Definition 5.1)

= ιΨβ,α(ι
Φ,Ψ
β (πΦ,θ

β,i (γ)(p ↾β))) ((B) inductively)

= ιΦ,Ψ
α (ιΦβ,α(π

Φ,θ
β,i (γ)(p ↾β))) (A)

= ιΦ,Ψ
α (πΦ,θ

α,i (γ)(ι
Φ
β,α(p ↾β))) (Definition 5.1)

= ιΦ,Ψ
α (πΦ,θ

α,i (γ)(p)) (choice of β).

(E) Let θ ∈ dom(Φ). Then, we compute

Ṫ Ψ,θ
α =

⋃
β<α

ιΨβ,α(Ṫ
Ψ,θ
β ) (Definition 4.6)

=
⋃
β<α

ιΨβ,α

ιΦ,Ψ
β (Ṫ Φ,θ

β ) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

ιΨ1,β(T
Ψ,θ
i )

 ((E) inductively)

=
⋃
β<α

ιΨβ,α(ιΦ,Ψ
β (Ṫ Φ,θ

β )) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

ιΨβ,α(ι
Ψ
1,β(T

Ψ,θ
i ))

 (canonical name)

=
⋃
β<α

ιΦ,Ψ
α (ιΦβ,α(Ṫ

Φ,θ
β )) ∪

⋃
i∈Ψ(θ)∖Φ(θ)

ιΨ1,α(T
Ψ,θ
i )

 (A)

= ιΦ,Ψ
α

 ⋃
β<α

ιΦβ,α(Ṫ
Φ,θ
β )

 ∪
⋃

i∈Ψ(θ)∖Φ(θ)

ιΨ1,α(T
Ψ,θ
i ) (canonical name)

= ιΦ,Ψ
α (Ṫ Φ,θ

α ) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

ιΨ1,α(T
Ψ,θ
i ) (Definition 4.6).
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(F) Let θ ∈ dom(Φ), i ∈ Ψ(θ) ∖ Φ(θ), γ ∈ Γ and p ∈ PΦ
α . Choose β < α with

ιΦβ,α(p ↾β) = p. Then, we compute

πΨ,θ
α,i (γ)(ι

Φ,Ψ
α (p)) = πΨ,θ

α,i (γ)(ι
Φ,Ψ
α (ιΦβ,α(p ↾β))) (choice of β)

= πΨ,θ
α,i (γ)(ι

Ψ
β,α(ι

Φ,Ψ
β (p ↾β))) (A)

= ιΨβ,α(π
Ψ,θ
β,i (γ)(ι

Φ,Ψ
β (p ↾β))) (Definition 5.1)

= ιΨβ,α(ι
Φ,Ψ
β (p ↾β)) ((F) inductively)

= ιΦ,Ψ
α (ιΦβ,α(p ↾β)) (A)

= ιΦ,Ψ
α (p) (choice of β).

Finally, consider α+1 > 1. By induction we have that ιΦ,Ψ
α : PΦ

α → PΨ
α is a complete

embedding. Thus, we may naturally define for p ∈ PΦ
α+1

ιΦ,Ψ
α+1(p) := ιΦ,Ψ

α (p ↾α)⌢ ιΦ,Ψ
α (p(α)).

However, we need to verify that

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (p(α)) ∈ Q̇Ψ
α .

Since Φ ⊆ Ψ, by definition of Q̇Ψ
α it suffices to prove that if θ ∈ dom(Φ) and ḟ is a

PΦ
α -name with

p ↾α ⊩ ḟ /∈
⋃

T∈Ṫ Φ,θ
α

[T ],

then also

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (ḟ) /∈
⋃

T∈Ṫ Ψ,θ
α

[T ].

By induction assumption of (E) we may distinguish the following three different

types of trees in Ṫ Ψ,θ
α . First, let i ∈ Φ(θ) and γ ∈ Γ. By assumption on ḟ we have

p ↾α ⊩ ḟ ̸= ιΦ1,α(π
Φ,θ
1,i (γ)(ċ

Φ,θ
i )),

so that

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (ḟ) ̸= ιΦ,Ψ
α (ιΦ1,α(π

Φ,θ
1,i (γ)(ċ

Φ,θ
i ))).

Secondly, let β < α and n < ω. By assumption on ḟ we have

p ↾α ⊩ ḟ /∈ [ιΦβ,α(Ṫ
Φ,θ
β,n )].

Thus, by induction assumption of (A) and (C) we get

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (ḟ) /∈ [ιΦ,Ψ
α (ιΦβ,α(Ṫ

Φ,θ
β,n ))] = [ιΨβ,α(ι

Φ,Ψ
β (ṪΦ,θ

β,n ))] = [ιΨβ,α(Ṫ
Ψ,θ
β,n )].

Finally, for i ∈ Ψ(θ)∖ Φ(θ) by induction assumption of (G) we get

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (ḟ) ̸= ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i )).

Next, given p ∈ PΨ
α+1 we have to find a reduction q ∈ PΦ

α+1 with respect to the

embedding ιΦ,Ψ
α+1. By Lemma 6.1 we may assume p ∈ DΨ

α+1. By induction, pick a
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reduction q ∈ PΦ
α of p ↾α ∈ DΨ

α with respect to ιΦ,Ψ
α . Remember, that for every

θ ∈ Θp
α, i ∈ Ipα,θ and ḟ ∈ F p

α,θ,i we have

p ↾α ⊩ ḟ /∈
⋃

T∈Ṫ Ψ,θ
α

[T ].

Thus, we will need to find a reduction ġ of ḟ which satisfies

q ⊩ ġ /∈
⋃

T∈Ṫ Φ,θ
α

[T ].

Note that the standard canonical projection of a real (cf. [7]) need not satisfy
this requirement. Thus, we introduce the following technical notions. For technical
reasons, we need to enumerate the finite set

⋃
{{θ} × {i} × F p

α,θ,i | θ ∈ Θp
α, i ∈ Ipα,θ}

by ⟨(θk, ik, ḟk) | k ∈ K⟩. In particular, we have θ• : K → Θp
α. For every θ ∈ Θp

α

by assumption on Φ the family Ṫ Φ,θ
α is countable, so we may enumerate it as

⟨Ṡθ
n | n < ω⟩. Next, we will need the following refinement of the definition of a nice

name for a real below p in Definition 6.1.

Definition 7.1. Let P be a forcing, p ∈ P and K a finite set. A nice P-name for
K-many reals below p is a sequence ⟨(An,Kn) | n < ω⟩ such that

• for all n < ω the set An is a maximal antichain below p and Kn : K×An →
2>n,

• for all n < m the antichain Am refines An, i.e. every b ∈ Am there is a ∈ An

with b⩽ a,
• for all n < m, k ∈ K, a ∈ An and b ∈ Am with b⩽ a we have Kn(k, a) ⊴

Km(k, b).

We write name(⟨(An,Kn) | n < ω⟩) for the canonical P-name of ⟨(An,Kn) | n < ω⟩,
i.e.

name(⟨(An,Kn) | n < ω⟩) := {(a, ((k, n),Kn(k, a)(n))) | n < ω, a ∈ An} ∈ K×ω2.

Remark 7.1. Notice that if ⟨(An,Kn) | n < ω⟩ is a nice P-name for K-many reals
below p, then for every k ∈ K the sequence ⟨(An,Kn(k)) | n < ω⟩ is a nice P-name
for a real below p with

name(⟨(An,Kn(k)) | n < ω⟩) = name(⟨(An,Kn) | n < ω⟩) ↾({k} × ω).

However, ⟨(An,Kn) | n < ω⟩ is more than just the product ofK-many nice P-names
for reals below p as all antichains have to coincide.

With respect to the fixed p ∈ DΨ
α+1, θ• : K → Θp

α and sequence ⟨Ṡθ
n | n < ω⟩

above, we define the following notion:

Definition 7.2. Let ⟨(An,Kn) | n < ω⟩ be a nice PΨ
α -name for K-many reals below

p ↾α. Then, we say ⟨(An,Kn) | n < ω⟩ is a nice P-name for K-many reals below

p ↾α with respect to θ• and ⟨⟨Ṡθ
n | n < ω⟩ | θ ∈ Θp

α⟩ iff for all n < ω, k ∈ K and
a ∈ An we have

a ⊩ Kn(k, a) /∈ ιΦ,Ψ
α (Ṡθk

n ).



REALIZING ARBITRARILY LARGE SPECTRA OF aT 27

First, we argue that there is such a nice PΨ
α -name ⟨(An,Kn) | n < ω⟩ of K-many

reals below p ↾α with respect to θ• and ⟨⟨ṠΦ
n | n < ω⟩ | θ ∈ Θp

α⟩, so that for every
k ∈ K we have

p ↾α ⊩ ḟk = name(⟨(An,Kn(k)) | n < ω⟩).

Proof. We construct the nice name by recursion on n. Set A−1 := {p ↾α}. Now,
assume An is defined. For every a ∈ An choose a maximal antichain B(a) below a
such that for every b ∈ B(a) and k ∈ K there is Kn+1(k, a) ∈ 2>n with Kn(k, b) ⊴
Kn+1(k, b) if n ̸= −1 and such that

b ⊩ Kn+1(k, b) ⊴ ḟk and Kn+1(k, b) /∈ ιΦ,Ψ
α (Ṡθk

n+1).

This is possible as b⩽ a, K is finite and by assumption on ḟk we have for every
k ∈ K

p ↾α ⊩ ḟk /∈ [ιΦ,Ψ
α (Ṡθk

n+1)].

Finally, set An+1 :=
⋃

a∈An
B(a). Clearly, ⟨(An,Kn) | n < ω⟩ then has the desired

properties. □

In [7][Lemma 3.8] the existence of a reduction of a nice name for a real is proven.
We will need an analogous result for nice names of K-many reals:

Lemma 7.1. Let Q be a complete suborder of P, p ∈ P, q ∈ Q a reduction of p
and assume that {(An,Kn) | n < ω} is a nice P-name for K-many reals below p.
Then, there is a nice Q-name {(Bn, Ln) | n < ω} for K-many reals below q such
that for all n < ω and b ∈ Bn there is an a ∈ An such that b is a reduction of a
and Kn(k, a) = Ln(k, b) for all k ∈ K.

Proof. Exactly the same proof as for Lemma 3.8 in [7]. □

Analogously to [7], we will call the nice PΦ
α -name {(Bn, Ln) | n < ω} a canonical

projection of the nice PΨ
α -name {(An,Kn) | n < ω} below q.

Lemma 7.2. Assume ⟨(An,Kn) | n < ω⟩ is a nice PΨ
α -name for K-many reals

below p ↾α with respect to θ• and ⟨⟨Ṡθ
n | n < ω⟩ | θ ∈ Θp

α⟩. Further, assume that
⟨(Bn, Ln) | n < ω⟩ is a canonical projection of {(An,Kn) | n < ω} below q. Then,
for every k ∈ K

q ⊩ name({(Bn, Ln(k)) | n < ω}) /∈
⋃
n<ω

[Ṡθk
n ].

Proof. Assume not, so choose k ∈ K, n < ω and r0 ⩽ q such that

r0 ⊩ name({(Bn, Ln(k)) | n < ω}) ∈ [Ṡθk
n ].

Let b ∈ Bn such that b || r0. Choose r1 ∈ PΦ
α with r1 ⩽ b, r0. Since {(Bn, Ln) | n < ω}

is a canonical projection below q of {(An,Kn) | n < ω} choose a ∈ An such that b is
a reduction of a and Kn(k, a) = Ln(k, b). Thus, ι

Φ,Ψ
α (r1) || a. Then, by assumption

we have
r1 ⊩ Ln(k, b) ∈ Ṡθk

n ,

which implies
ιΦ,Ψ
α (r1) ⊩ Kn(k, a) = Ln(k, b) ∈ ιΦ,Ψ

α (Ṡθk
n ).
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On the other hand, since ⟨(An, fn) | n < ω⟩ is a nice name with respect to θ• and

⟨Ṡn | n < ω⟩
a ⊩ Kn(k, a) /∈ ιΦ,Ψ

α (Ṡθk
n )

contradicting ιΦ,Ψ
α (r1) || a. □

Finally, we define a reduction of p as follows: By the previous discussion choose
a nice PΨ-name ⟨(An,Kn) | n < ω⟩ of K-many reals below p ↾α with respect to θ•
and ⟨⟨Ṡθ

n | n < ω⟩ | θ ∈ Θp
α⟩, so that for every k ∈ K we have

p ↾α ⊩ ḟk = name(⟨(An,Kn(k)) | n < ω⟩).
By Lemma 7.1 choose a canonical projection ⟨(Bn, Ln) | n < ω⟩ of ⟨(An,Kn) | n < ω⟩.
Now, for θ ∈ Θp

α and i ∈ Ipα,θ we define Gα,θ,i as

{name(⟨(Bn, Ln(k)) | n < ω⟩) | k ∈ K with θk = θ and ik = i}.
Let q̇α be the canonical name for the condition in Q̇Φ

α =
∏

θ∈dom(Φ) T(Ṫ Φ,θ
α ) with

supp(q̇α) = Θp
α, for every θ ∈ Θα with supp(q̇α(θ)) = Ipα,θ and for every i ∈ Iα,θ we

have q̇α(θ)(i) = (spα,θ,i, Gα,θ,i). Since ⟨Ṡθk
n | n < ω⟩ enumerates Ṫ Φ,θk

α by Lemma 7.2
for every k ∈ K we have

q ⊩ name(⟨(Bn, Ln(k)) | n < ω⟩) /∈
⋃

T∈Ṫ Φ,θk
α

[T ].

Hence, we obtain

q ⊩ q̇α ∈ Q̇Φ
α =

∏
θ∈dom(Φ)

T(Ṫ Φ,θ
α ),

i.e. q ⌢ q̇α ∈ PΦ
α+1. It remains to show that q ⌢ q̇α is indeed a reduction of p with

respect to ιΦ,Ψ
α+1.

Proof. Let r⩽ q ⌢ q̇α. We need to show that ιΦ,Ψ
α+1(r) || p. By extending r we may

assume r ∈ DΦ
α+1. Further, r ↾α⩽ q. Since r ↾α ⊩ r(α) ⩽ q̇α we have

• Θp
α ⊆ Θr

α,
• Ipα,θ ⊆ Irα,θ for every θ ∈ Θp

α,

• np
α,θ,i ⩽ nr

α,θ,i for every θ ∈ Θp
α and i ∈ Ipα,θ,

• spα,θ,i ⊴ srα,θ,i for every θ ∈ Θp
α and i ∈ Ipα,θ,

• For every k ∈ K there is ḣk ∈ F r
α,θk,ik

such that

r ↾α ⊩ ḣk = name(⟨(Bn, Ln(k)) | n < ω⟩).
Let N := max {nr

α,θ,i | θ ∈ Θp
α, i ∈ Ipα,θ}. Since r ↾α⩽ q and BN is a maximal an-

tichain below q choose b ∈ BN and r̄ ∈ PΦ
α with r̄⩽ r ↾α, b. As ⟨(Bn, Ln) | n < ω⟩ is

a canonical projection of ⟨(An,Kn) | n < ω⟩ choose a ∈ AN , so that b is a reduction
of a and for all k ∈ K we have KN (k, a) = LN (k, b). Hence, ιΦ,Ψ

α (r̄) || a, so choose
p̄ ∈ PΨ

α with p̄⩽ ιΦ,Ψ
α (r̄), a. We define

• Θp̄
α := Θr

α,
• I p̄α,θ := Irα,θ for every θ ∈ Θp̄

α,

• np̄
α,θ,i := nr

α,θ,i and sp̄α,θ,i := srα,θ,i for every θ ∈ Θp̄
α and i ∈ I p̄α,θ,
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• F p̄
α,θ,i := F p

α,θ,i ∪ ιΦ,Ψ
α (F r

α,θ,i) for every θ ∈ Θp̄
α and i ∈ I p̄α,θ,

where every undefined set is to be treated as the empty set. Let ˙̄pα be the canonical
name for the condition in Q̇Φ

α =
∏

θ∈dom(Φ) T(Ṫ Φ,θ
α ) with supp( ˙̄pα) = Θp̄

α and for

every θ ∈ Θp̄
α with supp( ˙̄pα(θ)) = I p̄α,θ and for every i ∈ I p̄α,θ we have ˙̄pα(θ)(i) =

(sp̄α,θ,i, F
p̄
α,θ,i). By definition of p̄⌢ ˙̄pα we have p̄⌢ ˙̄pα ⩽ p, ιΦ,Ψ

α+1(r), so we finish the

proof by showing that p̄⌢ ˙̄pα ∈ PΨ
α . By definition of F p̄

α,θ,i we distinguish the
following two cases. First, let k ∈ K, by Remark 6.3 we have to prove

p̄ ⊩ ḟk ↾n
p̄
α,θk,ik

∈ sp̄α,θk,ik and ḟ /∈
⋃

T∈Ṫ Ψ,θk
α

[T ].

Since p ∈ DΨ
α+1 we have

p ↾α ⊩ ḟ /∈
⋃

T∈Ṫ Ψ,θk
α

[T ],

so also p̄⩽ a⩽ p ↾α forces this. For the other property, choose ḣk ∈ F r
α,θk,ik

such
that

r ↾α ⊩ ḣk = name(⟨(Bn, Ln(k)) | n < ω⟩).
Since r ∈ DΦ

α+1 we have

r ↾α ⊩ ḣk ↾n
r
α,θk,ik

∈ srα,θk,ik .

Furthermore, as N ⩾ nr
α,θk,ik

and b ∈ BN we have

b ⊩ name(⟨(Bn, Ln(k)) | n < ω⟩) ↾nr
α,θk,ik

= ↾LN (k, b) ↾nr
α,θk,ik

.

Hence, r̄⩽ r ↾α, b implies that

r̄ ⊩ LN (k, b) ↾nr
α,θk,ik

= ḣk ↾n
r
α,θk,ik

∈ srα,θk,ik .

Thus, LN (k, a) ↾nr
α,θk,ik

∈ srα,θk,ik . But np̄
α,θk,ik

= nr
α,θk,ik

, sp̄α,θk,ik = srα,θk,ik and

by choice of b we have LN (k, b) = KN (k, a), so that

KN (k, a) ↾np̄
α,θk,ik

∈ sp̄α,θk,ik .

Finally,

a ⊩ ḟk = name(⟨(Bn, Ln(k)) | n < ω⟩)
and p̄⩽ a yield the desired

p̄ ⊩ ḟk ↾n
p̄
α,θk,ik

= KN (k, a) ↾np̄
α,θk,ik

∈ sp̄α,θk,ik .

Secondly, let θ ∈ Θr
α, i ∈ Irα,θ and ḣ ∈ F r

α,θ,i. Then, r̄⩽ r ↾α implies

r̄ ⊩ ḣ ↾nr
α,θ,i ∈ srα,θ,i and ḣ /∈

⋃
T∈Ṫ Φ,θ

α

[T ].

As before, we obtain

ιΦ,Ψ
α (r̄) ⊩ ιΦ,Ψ

α (ḣ) ↾nr
α,θ,i ∈ srα,θ,i and ιΦ,Ψ

α (ḣ) /∈
⋃

T∈Ṫ Ψ,θ
α

[T ].
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Hence, p̄⩽ ιΦ,Ψ
α (r̄) implies that

p̄ ⊩ ιΦ,Ψ
α (ḣ) ↾np̄

α,θ,i ∈ sp̄α,θ,i and ιΦ,Ψ
α (ḣ) /∈

⋃
T∈Ṫ Ψ,θ

α

[T ].

Thus, we finished proving p̄⌢ ˙̄pα ∈ PΨ
α . □

To complete the induction, it remains to prove (A) to (F):

(A) By induction on (A) it suffices to verify the following. Let p ∈ PΦ
α . Then,

we compute

ιΦ,Ψ
α+1(ι

Φ
α,α+1(p)) = ιΦ,Ψ

α+1(p
⌢ 1)

= ιΦ,Ψ
α (p)⌢ 1

= ιΨα,α+1(ι
Φ,Ψ
α (p)).

(B) Let θ ∈ dom(Φ), i ∈ Φ(θ), γ ∈ Γ and p ∈ PΦ
α+1. Then, we compute

πΨ,θ
α+1,i(γ)(ι

Φ,Ψ
α+1(p)) = πΨ,θ

α+1,i(γ)(ι
Φ,Ψ
α (p ↾α)⌢ ιΦ,Ψ

α (p(α))) (definition of ιΦ,Ψ
α+1)

= πΨ,θ
α,i (γ)(ι

Φ,Ψ
α (p ↾α))⌢ πΨ,θ

α,i (γ)(ι
Φ,Ψ
α (p(α))) (Definition 5.2)

= ιΦ,Ψ
α (πΦ,θ

α,i (γ)(p ↾α))
⌢ ιΦ,Ψ

α (πΦ,θ
α,i (γ)(p(α))) ((B) inductively)

= ιΦ,Ψ
α+1(π

Φ,θ
α,i (γ)(p ↾α)

⌢ πΦ,θ
α,i (γ)(p(α))) (definition of ιΦ,Ψ

α+1)

= ιΦ,Ψ
α+1(π

Φ,θ
α+1,i(γ)(p)) (Definition 5.2).

(C) There is nothing to show.

(D) Let θ ∈ dom(Φ) and n < ω. Then, ιΦ,Ψ
α+1(Ṫ

Φ,θ
α,n ) = ṪΨ,θ

α,n immediately follows,

since ιΦ,Ψ
α preserves check-names.

(E) Let θ ∈ dom(Φ). Then, we compute using (E) inductively, (D), (A) and
the fact that every name is chosen as a canonical name:

Ṫ Ψ,θ
α+1 = ιΨα,α+1(Ṫ Ψ,θ

α ) ∪ {ṪΨ,θ
α,n | n ∈ ω}

= ιΨα,α+1

ιΦ,Ψ
α (Ṫ Φ,θ

α ) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

ιΨ1,α(T
Ψ,θ
i )

 ∪ {ιΦ,Ψ
α+1(Ṫ

Φ,θ
α,n ) | n ∈ ω}

= ιΨα,α+1(ι
Φ,Ψ
α (Ṫ Φ,θ

α )) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

ιΨα,α+1(ι
Ψ
1,α(T

Ψ,θ
i )) ∪ ιΦ,Ψ

α+1({ṪΦ,θ
α,n | n ∈ ω})

= ιΦ,Ψ
α+1(ι

Φ
α,α+1(Ṫ Φ,θ

α )) ∪ ιΦ,Ψ
α+1({ṪΦ,θ

α,n | n ∈ ω}) ∪
⋃

i∈Ψ(θ)∖Φ(θ)

(ιΨ1,α+1(T
Ψ,θ
i ))

= ιΦ,Ψ
α+1

[
ιΦα,α+1(Ṫ Φ,θ

α ) ∪ {ṪΦ,θ
α,n | n ∈ ω}

]
∪

⋃
i∈Ψ(θ)∖Φ(θ)

(ιΨ1,α+1(T
Ψ,θ
i ))

= ιΦ,Ψ
α+1(Ṫ

Φ,θ
α+1) ∪

⋃
i∈Ψ(θ)∖Φ(θ)

(ιΨ1,α+1(T
Ψ,θ
i )).
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(F) Let θ ∈ dom(Φ), i ∈ Ψ(θ)∖ Φ(θ), γ ∈ Γ and p ∈ PΦ
α+1. Then, we compute

πΨ,θ
α+1,i(γ)(ι

Φ,Ψ
α+1(p)) = πΨ,θ

α+1,i(γ)(ι
Φ,Ψ
α (p ↾α)⌢ ιΦ,Ψ

α (p(α))) (definition of ιΦ,Ψ
α+1)

= πΨ,θ
α,i (γ)(ι

Φ,Ψ
α (p ↾α))⌢ πΨ,θ

α,i (γ)(ι
Φ,Ψ
α (p(α))) (Definition 5.2)

= ιΦ,Ψ
α (p ↾α)⌢ ιΦ,Ψ

α (p(α)) ((F) inductively)

= ιΦ,Ψ
α+1(p) (definition of ιΦ,Ψ

α+1).

This completes the induction and thus the proof of Theorem 7.1. □

8. Extending Isomorphisms through the iteration

In Section 5 we considered how to extend automorphisms of certain group ac-
tions through the iteration. Similarly, given bijections between the index sets of
the Cohen reals of our iteration we will show how to extend these bijections to
isomorphisms of the full iteration. These extension have a very categorical flavour,
nevertheless we provide a self-contained presentation.

Definition 8.1. Let Φ,Ψ be Θ-indexing functions. Then, we say

x = (g, {hθ | θ ∈ dom(Φ)})

is an isomorphism from Φ to Ψ iff the following properties hold:

(1) g : dom(Φ) → dom(Ψ) is a bijection,
(2) for every θ ∈ dom(Φ) also hθ : Φ(θ) → Ψ(g(θ)) is a bijection.

Definition 8.2. Let Φ be a Θ-indexing function. Then, we define the identity
isomorphism from Φ to Φ by 1Φ := (iddom(Φ), {idΦ(θ) | θ ∈ dom(Φ)}).

Definition 8.3. Let Φ,Ψ,X be Θ-indexing functions, x0 = (g0, {hθ
0 | θ ∈ dom(Φ)})

an isomorphism from Φ to Ψ and x1 = (g1, {hθ
1 | θ ∈ dom(Φ)}) is an isomorphism

from Ψ to X. Then, we define its composition x1 ◦ x0 := (g2, {hθ
2 | θ ∈ dom(Φ)})

by

(1) g2 := g1 ◦ g0,
(2) for every θ ∈ dom(Φ) we define hθ

2 := h
g0(θ)
1 ◦ hθ

0.

Clearly, x1 ◦ x0 is an isomorphism from Φ to X and it is easy to check, that
composition is associative and the identity isomorphism satisfies left and right unit
laws. In other words, the class of all Θ-indexing functions with isomorphisms as
morphisms is a category.

Definition 8.4. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)})
an isomorphism from Φ to Ψ. Then, we define its inverse

x−1 := (g∗, {hθ
∗ | θ ∈ dom(Ψ)})

by

(1) g∗ := g−1,

(2) for every θ ∈ Θ we define hθ
∗ := (hg−1(θ))−1.
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Clearly, x−1 is an isomorphism from Ψ to Φ and it is easy to check, that it is the
unique isomorphism which satisfies x−1 ◦x = 1Φ and x◦x−1 = 1Ψ. In other words,
we not only have a category but a groupoid.

Definition 8.5. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)})
an isomorphism from Φ to Ψ. Define κx : CΦ → CΨ for p ∈ Cθ, θ ∈ dom(Ψ) and
i ∈ Ψ(θ) by

κx(p)(θ, i) := p(g−1(θ), (hg−1(θ))−1(i)).

In other words, the information of p is swapped around as given by the bijections
g and hθ. Clearly, κx is an isomorphism from the partial order CΦ to CΨ.

Lemma 8.1. Let Φ,Ψ,X be Θ-indexing functions, x0 = (g0, {hθ
0 | θ ∈ dom(Φ)})

an isomorphism from Φ to Ψ and x1 = (g1, {hθ
1 | θ ∈ dom(Ψ)}) is an isomorphism

from Ψ to X. Then, we have

(1) κ1Φ
= idCΦ ,

(2) κx1◦x0
= κx1

◦ κx0
.

In other words, κ• is a functor between the groupoid of Θ-indexing functions with
isomorphisms to the groupoid of pre-orders with isomorphisms.

Proof. For the first statement let p ∈ CΦ, θ ∈ dom(Φ) and i ∈ Φ(θ). Then, we
compute

κ1Φ
(p)(θ, i) = p((id−1

dom(Φ)(θ), (idΦ(θ))
−1(i)) (Definition 8.2 and 8.5)

= p(θ, i).

Secondly, let p ∈ CΦ, θ ∈ dom(X) and i ∈ X(θ). Then, we compute

κx1◦x0(p)(θ, i)

= p((g1 ◦ g0)−1(θ), (h
(g0◦(g1◦g0)−1)(θ)
1 ◦ h(g1◦g0)−1(θ)

0 )−1(i)) (Definition 8.3 and 8.5)

= p(g−1
0 (g−1

1 (θ)), (h
g−1
1 (θ)

1 ◦ hg−1
0 (g−1

1 (θ))
0 )−1(i))

= p(g−1
0 (g−1

1 (θ)), (h
g−1
0 (g−1

1 (θ))
0 )−1((h

g−1
1 (θ)

1 )−1(i)))

= κx0(p)(g
−1
1 (θ), (h

g−1
1 (θ)

1 )−1(i)) (Definition 8.5)

= κx1(κx0(p))(θ, i) (Definition 8.5)

= (κx1 ◦ κx0)(p)(θ, i). □

Next, we need to verify that the canonical CΦ-names Ṫ Φ,θ
i are mapped to Ṫ Ψ,g(θ)

hθ(i)

by κx. To this end, we prove that κx behaves nicely with respect to the Γ-actions.

Lemma 8.2. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)}) is
an isomorphism from Φ to Ψ. Let θ ∈ dom(Φ) and i ∈ Φ(θ). Then, κx : CΦ → CΨ

is a morphism of Γ-sets, i.e. the following diagram commutes for every γ ∈ Γ:

CΦ CΨ

CΦ CΨ

κx

πΦ,θ
i (γ) π

Ψ,g(θ)

hθ(i)
(γ)

κx
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Proof. Let γ ∈ Γ and p ∈ CΦ. Further, let η ∈ dom(Ψ) and j ∈ Ψ(η). In case that

θ = g−1(η) and i = (hg−1(η))−1(j) we compute:

κx(π
Φ,θ
i (γ)(p))(η, j) = πΦ,θ

i (γ)(p)(g−1(η), (hg−1(η))−1(j)) (Definition 8.5)

= πΦ,θ
i (γ)(p)(θ, i) (case property of η, i)

= π(γ)(p(θ, i)) (Definition 4.4)

= π(γ)(p(g−1(η), (hg−1(η))−1(j))) (case property of η, i)

= π(γ)(κx(p)(η, j)) (Definition 8.5)

= πΨ,η
j (γ)(κx(p))(η, j) (Definition 4.4)

= π
Ψ,g(θ)

hθ(i)
(γ)(κx(p))(η, j) (case property of η, i).

Otherwise, we have that πΦ,θ
i acts trivially on the (g−1(η), (hg−1(η))−1(j))-component

of p and π
Ψ,g(θ)

hθ(i)
(γ) acts trivially on the (η, j)-component of κx(p), so we compute

κx(π
Φ,θ
i (γ)(p))(η, j) = πΦ,θ

i (γ)(p)(g−1(η), (hg−1(η))−1(j)) (Definition 8.5)

= p(g−1(η), (hg−1(η))−1(j)) (πΦ,θ
i acts trivially)

= κx(p)(η, j) (Definition 8.5)

= π
Ψ,g(θ)

hθ(i)
(γ)(κx(p))(η, j) (π

Ψ,g(θ)

hθ(i)
acts trivially).□

Lemma 8.3. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)}) is
an isomorphism from Φ to Ψ. Let θ ∈ dom(Φ) and i ∈ Φ(θ). Then, we have

(1) κx(ċ
Φ,θ
i ) = ċ

Ψ,g(θ)

hθ(i)
and thus κx(Ṫ

Φ,θ
i ) = Ṫ

Ψ,g(θ)

hθ(i)
,

(2) κx(Ṫ Φ,θ
i ) = Ṫ Ψ,g(θ)

hθ(i)
,

(3) κx(Ṫ Φ,θ) = Ṫ Ψ,g(θ).

Proof. (1) immediately follows from the definition of κx and the definition of the

canonical name for a Cohen real. For (2) by Definition 4.5 remember Ṫ Φ,θ
i is the

canonical CΦ-name for the set

{πΦ,θ
i (γ)(ṪΦ,θ

i ) | γ ∈ Γ}.

Hence, we compute

κx(Ṫ Φ,θ
i ) = κx({πΦ,θ

i (γ)(ṪΦ,θ
i ) | γ ∈ Γ}) (Definition 4.5)

= {κx(π
Φ,θ
i (γ)(ṪΦ,θ

i )) | γ ∈ Γ} (canonical name)

= {πΨ,g(θ)

hθ(i)
(γ)(κx(Ṫ

Φ,θ
i )) | γ ∈ Γ} (Lemma 8.2)

= {πΨ,g(θ)

hθ(i)
(γ)(Ṫ

Ψ,g(θ)

hθ(i)
) | γ ∈ Γ} (1)

= Ṫ
Ψ,g(θ)

hθ(i)
(Definition 4.5).
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Finally, for (3) we compute

κx(Ṫ Φ,θ) = κx(
⋃

i∈Φ(θ)

Ṫ Φ,θ
i ) (Remark 4.4)

=
⋃

i∈Φ(θ)

κx(Ṫ Φ,θ
i ) (canonical name)

=
⋃

i∈Φ(θ)

Ṫ Ψ,g(θ)

hθ(i)
(2)

=
⋃

i∈Ψ(g(θ))

Ṫ Ψ,g(θ)
i (hθ : Φ(θ) → Ψ(g(θ)) is a bijection)

= Ṫ Ψ,g(θ) (Remark 4.4). □

So far, we have constructed a functor κ• mapping Θ-indexing functions Φ to
posets of the form CΦ. In terms of our iteration this corresponds to a functor
κ1
• mapping Θ-indexing functions to posets of the form PΦ

1 . We will extend these
functors through the iteration to obtain an increasing sequence of functors in the
following sense:

Definition 8.6. Let ϵ ⩽ ℵ1. We say that

⟨κα
• | 0 < α ⩽ ϵ⟩

is an increasing sequence of functors iff every κα
• is a functor mapping Θ-indexing

functions Φ to posets PΦ
α , for all 0 < α ⩽ ϵ, Θ-indexing functions Φ,Ψ, and also

x = (g, {hθ | θ ∈ dom(Φ)}) an isomorphism from Φ to Ψ and θ ∈ dom(Φ) we have

κx(Ṫ Φ,θ) = Ṫ Ψ,g(θ)

and for every 0 < α ⩽ β ⩽ ℵ1, Θ-indexing functions Φ,Ψ and isomorphism x from
Φ to Ψ the following diagram commutes:

PΦ
α PΨ

α

PΦ
β PΨ

β

κα
x

ιΦα,β ιΨα,β

κβ
x

In other words, for every 0 < α ⩽ β ⩽ ℵ1 the maps ι•α,β are a natural transformation

from the functor κα
• to the functor κβ

• .

Corollary 8.1. ⟨κα
• | 0 < α ⩽ 1⟩ is an increasing sequence of functors.

Proof. By Lemma 8.1 κα
• is a functor, the second property of Definition 8.6 holds

by Lemma 8.3, and the third property is vacuous for a sequence of length 1. □

Note the similarity to Definition 5.1 and Lemma 5.3. In Section 5 we made sure
to preserve some group structure of automorphisms through the iteration. Similarly,
in this section we need to preserve the groupoid structure given by isomorphisms
between Θ-indexing functions.
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Proposition 8.1. Let ϵ ⩽ ℵ1 be a limit. Assume

⟨κα
• | 0 < α < ϵ⟩

is an increasing sequence of functors. Then, there is a unique functor κϵ
• so that

⟨κα
• | 0 < α ⩽ ϵ⟩

is an increasing sequences of functors.

Proof. Define κϵ
• as the pointwise direct limit of ⟨κα

• | 0 < α < ϵ⟩. That is, for given
Θ-indexing functions Φ,Ψ and an isomorphism x = (g, {hθ | θ ∈ Θ}) from Φ to Ψ
we define κϵ

x to be the direct limit of ⟨κα
x | α < ϵ⟩. Then, argue as in Lemma 5.1. □

Analogously to Definition 5.2 the extension at successor steps is not unique.
However, there is a canonical way to extend an increasing sequence of functors.

Definition 8.7. Let ϵ ⩽ ℵ1. Assume ⟨κα
• | 0 < α ⩽ ϵ⟩ is an increasing sequence

of functors. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)}) an
isomorphism from Φ to Ψ. Then, we define κϵ+1

x : PΦ
ϵ+1 → PΨ

ϵ+1 for p ∈ PΦ
ϵ+1 by

κϵ+1
x (p) := κϵ

x(p ↾α)
⌢ κϵ

x(p(ϵ)).

Then, we call κϵ+1
• the canonical extension of ⟨κα

• | 0 < α ⩽ ϵ⟩.

Finally, analogous to Lemma 5.2 and Corollary 5.1 we obtain our desired induced
sequence of with the following lemma.

Lemma 8.4. Let ϵ < ℵ1. Assume ⟨κα
• | 0 < α ⩽ ϵ⟩ is an increasing sequence of

functors and let κϵ+1
• be the canonical extension. Then ⟨κα

• | 0 < α ⩽ ϵ+ 1⟩ is an
increasing sequence of functors.

Corollary 8.2. There is an increasing sequence of functors ⟨κα
• | 0 < α ⩽ ℵ1⟩

such that κϵ+1
• the canonical extension of ⟨κα

• | 0 < α ⩽ ϵ⟩ for every ϵ < ℵ1. We
call this sequence the induced sequence of functors and will reserve the notions
⟨κα

• | 0 < α ⩽ ℵ1⟩ for it.

Proof. We iteratively construct the desired sequence. By Lemma 8.3 we may start
with κα

• as in Definition 8.5, use Lemma 8.4 for the successor step and Lemma 8.1
for the limit step. □

The final ingredient we will need for the proof of Main Theorem 3.1 is a notion
of restriction for isomorphisms between Θ-indexing functions. We also show induc-
tively that our increasing sequence of functors in Corollary 8.2 maps restrictions to
restrictions.

Definition 8.8. Let Φ,Ψ be Θ-indexing functions, x = (g, {hθ | θ ∈ dom(Φ)}) is
an isomorphism from Φ to Ψ and Φ0 ⊆ Φ a Θ-subindexing function. Then, we
define the image of Φ0 under x denoted by x[Φ0] as the Θ-subindexing function of
Ψ defined by dom(x[Φ0]) := g(dom(Φ0)) and for θ ∈ dom(x[Φ0]) by

x[Φ0](θ) := {hg−1(θ)(i) | i ∈ Φ0(g
−1(θ))}.
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The restriction of x to Φ0 denoted by x ↾Φ0 is the isomorphism from Φ0 to x[Φ0]
is defined by

x ↾Φ0 := (g ↾dom(Φ0), {hθ ↾Φ0(θ) | θ ∈ dom(Φ0)}).

Lemma 8.5. Let Φ,Ψ be Θ-indexing functions, x = (g, {hθ | θ ∈ dom(Φ)}) is an
isomorphism from Φ to Ψ and Φ0 ⊆ Φ a Θ-subindexing function. Set Ψ0 := x[Φ0].
Then, the following diagram commutes

CΦ0 CΨ0

CΦ CΨ

κx ↾Φ0

ιΦ0,Φ ιΨ0,Ψ

κx

Proof. Let p ∈ CΦ0 , θ ∈ dom(Ψ) and i ∈ Ψ(θ). If θ ∈ dom(Ψ0) and i ∈ Ψ0(θ), we
compute

ιΨ0,Ψ(κx ↾Φ0(p))(θ, i) = κx ↾Φ0(p)(θ, i) (i ∈ Ψ0(θ))

= p(g−1(θ), (hg−1(θ))−1(i)) (Definition 8.5)

= ιΦ0,Φ(p)(g−1(θ), (hg−1(θ))−1(i)) ((hg−1(θ))−1(i) ∈ Φ0(θ))

= κx(ι
Φ0,Φ(p))(θ, i) (Definition 8.5)

Otherwise, θ ∈ dom(Ψ) ∖ dom(Ψ0) or i ∈ Ψ(θ) ∖ Ψ0(θ). Then, we have g−1(θ) ∈
dom(Φ)∖dom(Φ0) or (h

g−1(θ))−1(i) ∈ Φ(θ)∖Φ0(θ), respectively. Then, we compute

ιΨ0,Ψ(κx ↾Φ0(p))(θ, i) = 1

= ιΦ0,Φ(p)(g−1(θ), (hg−1(θ))−1(i))

= κx(ι
Φ0,Φ(p))(θ, i) (Definition 8.5). □

Inductively, we show that this commutative diagram not only holds for κ1
•, but

for the entire increasing of functors ⟨κα
• | 0 < α ⩽ ℵ1⟩.

Lemma 8.6. Let ϵ < ℵ1. Let Φ,Ψ be Θ-indexing function, x = (g, {hθ | θ ∈ Θ})
is an isomorphism from Φ to Ψ and Φ0 ⊆ Φ a Θ-subindexing function. Also, set
Ψ0 := x[Φ0]. Then, the following diagram commutes

PΦ0
ϵ+1 PΨ0

ϵ+1

PΦ
ϵ+1 PΨ

ϵ+1

κϵ+1
x ↾Φ0

ι
Φ0,Φ
ϵ+1 ι

Ψ0,Ψ
ϵ+1

κϵ+1
x
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Proof. Let p ∈ PΦ0
ϵ+1. Then, we compute

ιΨ0,Ψ
ϵ+1 (κϵ+1

x ↾Φ0
(p)) = ιΨ0,Ψ

ϵ (κϵ+1
x ↾Φ0

(p) ↾ ϵ)⌢ ιΨ0,Ψ
ϵ (κϵ+1

x ↾Φ0
(p)(ϵ)) (see Section 7)

= ιΨ0,Ψ
ϵ (κϵ

x ↾Φ0
(p ↾ ϵ))⌢ ιΨ0,Ψ

ϵ (κϵ
x(p(ϵ))) (Definition 8.7)

= κϵ
x(ι

Φ0,Φ
ϵ (p ↾ ϵ))⌢ κϵ

x(ι
Φ0,Φ
ϵ (p(ϵ))) (induction)

= κϵ
x(ι

Φ0,Φ
ϵ+1 (p) ↾ ϵ)⌢ κϵ

x(ι
Φ0,Φ
ϵ+1 (p)(ϵ)) (see Section 7)

= κϵ+1
x (ιΦ0,Φ

ϵ+1 (p)) (Definition 8.7). □

Lemma 8.7. Let ϵ ⩽ ℵ1 be a limit. Let Φ,Ψ be Θ-indexing function, x =
(g, {hθ | θ ∈ Θ}) is an isomorphism from Φ to Ψ and Φ0 ⊆ Φ a Θ-subindexing
function. Set Ψ0 := x[Φ0]. Then, the following diagram commutes

PΦ0
ϵ PΨ0

ϵ

PΦ
ϵ PΨ

ϵ

κϵ
x ↾Φ0

ιΦ0,Φ
ϵ ιΨ0,Ψ

ϵ

κϵ
x

Proof. Let p ∈ PΦ0
ϵ . Choose α < ϵ such that ιΦ0

α,ϵ(p ↾α) = p. Then, we compute

ιΨ0,Ψ
ϵ (κϵ

x ↾Φ0
(p)) = ιΨ0,Ψ

ϵ (κϵ
x ↾Φ0

(ιΦ0
α,ϵ(p ↾α))) (choice of α)

= ιΨ0,Ψ
ϵ (ιΨ0

α,ϵ(κ
α
x ↾Φ0

(p ↾α))) (Definition 8.6)

= ιΨα,ϵ(ι
Ψ0,Ψ
α (κα

x ↾Φ0
(p ↾α))) ((A) in Section 7)

= ιΨα,ϵ(κ
α
x(ι

Φ0,Φ
α (p ↾α))) (induction)

= κϵ
x(ι

Φ
α,ϵ(ι

Φ0,Φ
α (p ↾α))) (Definition 8.6)

= κϵ
x(ι

Φ0,Φ
ϵ (ιΦ0

α,ϵ(p ↾α))) ((A) in Section 7)

= κϵ
x(ι

Φ0,Φ
ϵ (p)) (choice of α). □

9. Proof of the Main Theorem

Finally, we prove the our Main Theorem 3.1. The main part of the proof is
an isomorphism-of-names argument to exclude values from spec(aT). For similar
arguments, also see [4], [10].

Main Theorem 3.1. Assume GCH and let Θ be a set of uncountable cardinals
such that

(I) max(Θ) exists and has uncountable cofinality,
(II) Θ is closed under singular limits,
(III) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ,
(IV) ℵ1 ∈ Θ.

Then, there is a c.c.c. forcing extension in which spec(aT) = Θ holds.

Proof. For technical reasons we assume that max(Θ) appears max(Θ) many times
in Θ, so that Θ has size max(Θ) and we add max(Θ) many partitions of ω2 into
Fσ-sets of size max(Θ). Let Ψ be the Θ-indexing function defined by Ψ(θ) := θ
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for every θ ∈ Θ. We show that PΨ
ℵ1

⊩ spec(aT) = Θ. Since PΨ
ℵ1

is c.c.c. no

cardinals are collapsed and since
∣∣PΨ

ℵ1

∣∣ = max(Θ) and max(Θ)ℵ0 = max(Θ) we

have PΨ
ℵ1

⊩ c = max(Θ). Further, as in Lemma 2.1 we have

PΨ
ℵ1

⊩ Θ ⊆ spec(aT),

so we only have to prove the reverse inclusion. Let λ /∈ Θ, p ∈ PΨ
ℵ1

and ⟨Ṫα | α < λ⟩
be a family of PΨ

ℵ1
-names such that

p ⊩ ⟨Ṫα | α < λ⟩ is an almost disjoint family trees.

Since trees can be coded by reals we may assume that Ṫα is a nice PΨ
ℵ1
-name as

in Definition 6.1. By assumption on Θ and GCH there is a regular uncountable
cardinal σ ⩽ λ with [σ, λ] ∩ Θ = ∅ and such that for all µ < σ we have µℵ0 < σ.

Now, fix α < λ. We define Θα := hsuppΘ(Ṫα), Dα := hsupp(Ṫα) and for every
θ ∈ Θ let Dα(θ) := Dα∩({θ}×V ) (see Definition 6.3). Then, ⟨Θα | α < σ⟩ satisfies
the assumptions of the generalized ∆-system lemma:

• ⟨Θα | α < σ⟩ is a family of size σ,
• |Θα| < ℵ1 for all α < σ,
• ℵ1 < σ and for all µ < σ we have µ<ℵ1 = µℵ0 < σ.

Choose I0 ∈ [σ]σ and ΘR such that {Θα | α ∈ I0} is a ∆-system lemma with root
ΘR. Since |Θ| = max(Θ) > σ, we may assume that we extended every Θα for
α ∈ I0 such that

(1) Θα is still countable and {Θα | α ∈ I0} is still a ∆-system with root ΘR,
(2) For every α ∈ I0 we have |Θα ∖ΘR| = ℵ0.

Next, also {Dα | α ∈ I0} satisfies the assumptions of the generalized ∆-system
lemma:

• {Dα | α ∈ I0} is a family of size σ,
• |Dα| < ℵ1 for all α ∈ I0,
• ℵ1 < σ and for all µ < σ we have µ<ℵ1 = µℵ0 < σ.

Choose I1 ∈ [I0]
σ and R such that {Dα | α ∈ I1} is a ∆-system lemma with root

R. For every θ ∈ Θ let R(θ) := R∩ ({θ}×V ). For every θ > σ we have |Ψ(θ)| > σ,
so we may assume that we extended every Dα for α ∈ I1 such that

(3) Dα is still countable and {Dα | α ∈ I1} is still a ∆-system with root R,
(4) For every α ∈ I1 and θ ∈ ΘR with θ > σ we have |Dα(θ)∖R(θ)| = ℵ0,
(5) For every α ∈ I1 and θ ∈ Θα ∖ΘR we have |Dα(θ)| = ℵ0.

Now, set I2 := {α ∈ I1 | For all θ ∈ ΘR with θ < σ we have Dα(θ) ⊆ R(θ)}. Then,
I2 ∈ [I1]

σ as for every θ ∈ ΘR with θ < σ there are only <σ-many α ∈ I1 with
Dα(θ)∖R(θ) ̸= ∅, since |Ψ(θ)| = θ and {Dα | α ∈ I1} is a ∆-system of size σ > θ.
Thus, we obtain

(6) For every α ∈ I2 and θ ∈ ΘR with θ < σ we have Dα(θ) = R(θ).

We extend our ∆-system by one more element as follows. Choose Θλ ⊆ Θ countable
such that ΘR ⊆ Θλ, |Θλ ∖ΘR| = ℵ0 and for all α < λ we have Θλ ∩ Θα = ΘR.
This is possible since |Θ| = max(Θ) > λ. Now, for θ ∈ Θ we define Dλ(θ) as
follows:



REALIZING ARBITRARILY LARGE SPECTRA OF aT 39

• If θ ∈ ΘR and θ < σ define Dλ(θ) := R(θ),
• If θ ∈ ΘR and θ > σ we have |Ψ(θ)| = θ > λ, so chooseDλ(θ) ⊆ ({θ}×Ψ(θ))
countable with R(θ) ⊆ Dλ(θ), |Dλ(θ)∖R(θ)| = ℵ0 and for all α < λ we
have Dλ(θ) ∩Dα(θ) = R(θ),

• If θ ∈ Θλ ∖ΘR choose any countable subset Dλ(θ) ⊆ ({θ} ×Ψ(θ)),
• If θ ∈ Θ∖Θλ set Dλ(θ) := ∅.

Finally, we define Dλ :=
⋃

θ∈Θ Dλ(θ). By choice of Θλ we have {Θα | α ∈ I2 ∪ {λ}}
is a ∆-system with root ΘR and similarly by choice of Dλ also {Dα | α ∈ I2 ∪ {λ}}
is a ∆-system with root R and properties (1) to (6) still hold for every α ∈ I2∪{λ}.
Next, we define a Θ-subindexing function ΦR of Ψ by dom(ΦR) := ΘR and for
θ ∈ ΘR by

ΦR(θ) := {i ∈ Ψ(θ) | (θ, i) ∈ R(θ)}.
Analogously, for every α ∈ λ ∪ {λ} define a Θ-subindexing function Φα of Ψ by
dom(Φα) := Θα and for θ ∈ Θα by

Φα(θ) := {i ∈ Ψ(θ) | (θ, i) ∈ Dα(θ)}.
As ΘR and R are roots of their respective ∆-system we obtain ΦR ⊆ Φα for
every α ∈ I2 ∪ {λ}. Since, hsupp(Ṫα) ⊆ Dα we may pick a nice PΦα

ℵ1
-name Ṫ ∗

α with

ιΦα,Ψ
ℵ1

(Ṫ ∗
α) = Ṫα. Further, by (2) we may fix bijections ⟨gα : Θα → ω | α ∈ I2 ∪ {λ}⟩

such that gα ↾ΘR = gβ ↾ΘR for all α, β ∈ I2 ∪ {λ}. Then, for α, β ∈ I2 ∪ {λ} we
define gα,β : Θα → Θβ by

gα,β(θ) := g−1
β (gα(θ)).

Note that Θα ∩Θβ = ΘR and gα ↾ΘR = gβ ↾ΘR implies that

gα,β(θ) = g−1
β (gα(θ)) = θ

for all θ ∈ ΘR and α, β ∈ I2∪{λ}. Hence, it is easy to verify that we obtain a system
of bijections {gα,β : Θα → Θβ | α, β ∈ I2 ∪ {λ}} with the following properties for all
α, β, γ ∈ I2 ∪ {λ}:
(G1) gα,α = idΘα and g−1

α,β = gβ,α,

(G2) for all θ ∈ ΘR we have gα,β(θ) = θ,
(G3) gα,γ = gβ,γ ◦ gα,β .

Next, for every α ∈ I2 ∪ {λ} and θ ∈ Θα we may fix a bijection hθ
α : Φα(θ) → ω

such that for all α, β ∈ I2 ∪ {λ}, θ ∈ ΘR and i ∈ R(θ) we have hθ
α(i) = hθ

β(i). This

is possible, since by (4) and (6) we have |Dα(θ)∖R(θ)| = |Dβ(θ)∖R(θ)| for every
θ ∈ ΘR. Then, for α, β ∈ I2 ∪ {λ} and θ ∈ Θα we define a map hθ

α,β : Φα(θ) →
Φβ(gα,β(θ)) for i ∈ Φα(θ) by

hθ
α,β(i) := ((h

gα,β(θ)
β )−1 ◦ hθ

α)(i).

We verify the following properties for all α, β, γ ∈ I2 ∪ {λ} and θ ∈ Θα:

(H1) hθ
α,α = idΦα(θ) and the map hθ

α,β : Φα(θ) → Φβ(gα,β(θ)) is a bijection with

inverse h
gα,β(θ)
β,α ,

(H2) for all i ∈ R(θ) we have hθ
α,β(i) = i,

(H3) hθ
α,γ = h

gα,β(θ)
β,γ ◦ hθ

α,β .
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Proof.

(H1) Let i ∈ Φα(θ). Then, gα,α(θ) = θ by (G3), so that

hθ
α,α(i) = ((hgα,α(θ)

α )−1 ◦ hθ
α)(i) = ((hθ

α)
−1 ◦ hθ

α)(i) = i.

Next, by definition we have h
gα,β(θ)
β,α : Φβ(gα,β(θ)) → Φα(gβ,α(gα,β(θ))).

Further, by (G1) gβ,α(gα,β(θ)) = θ, so that h
gα,β(θ)
β,α : Φβ(gα,β(θ)) → Φα(θ),

so the domains are correct. Now, let i ∈ Φα(θ). Then, we compute

(h
gα,β(θ)
β,α ◦ hθ

α,β)(i) = ((h
gβ,α(gα,β(θ))
α )−1 ◦ hgα,β(θ)

β ◦ (hgα,β(θ)
β )−1 ◦ hθ

α)(i)

= ((hθ
α)

−1 ◦ hθ
α)(i) = i.

Analogously, for i ∈ Φβ(gα,β(θ)) we compute

(hθ
α,β ◦ hgα,β(θ)

β,α )(i) = ((h
gα,β(θ)
β )−1 ◦ hθ

α ◦ (hgβ,α(gα,β(θ))
α )−1 ◦ hgα,β(θ)

β )(i)

= ((h
gα,β(θ)
β )−1 ◦ hθ

α ◦ (hθ
α)

−1 ◦ hgα,β(θ)
β )(i)

= ((h
gα,β(θ)
β )−1 ◦ hgα,β(θ)

β )(i) = i.

(H2) Let i ∈ R(θ). Then, θ ∈ ΘR and gα,β(θ) = θ by (G2). Hence, by choice of
the bijections

hθ
α,β(i) = ((h

gα,β(θ)
β )−1 ◦ hθ

α)(i)

= ((hθ
β)

−1 ◦ hθ
α)(i)

= ((hθ
β)

−1 ◦ hθ
β)(i)

= i.

(H3) Finally, let θ ∈ Θα and i ∈ Φα(θ). Then, gα,γ = gβ,γ ◦ gα,β by (G3), so we
compute

(h
gα,β(θ)
β,γ ◦ hθ

α,β)(i) = ((h
gβ,γ(gα,β(θ))
γ )−1 ◦ hgα,β(θ)

β ◦ (hgα,β(θ)
β )−1 ◦ hθ

α)(i)

= ((hgα,γ(θ)
γ )−1 ◦ hθ

α)(i)

= hθ
α,γ(i). □

Now, if for every α, β, γ ∈ I2 ∪ {λ} we define xα,β := (gα,β , {hθ
α,β | θ ∈ Θα})

(G1) to (G3) and (H1) to (H3) may be rephrased as a system of isomorphisms of
Θ-indexing functions ⟨xα,β | α, β ∈ I2 ∪ {λ}⟩ which satisfies

(K1’) xα,α = 1Φα and x−1
α,β = xβ,α,

(K2’) xα,α ↾ΦR = 1ΦR
,

(K3’) xα,γ = xβ,γ ◦ xα,β .

Applying the functor κℵ1
• from Corollary 8.2 to the system ⟨xα,β | α, β ∈ I2 ∪ {λ}⟩,

we obtain a system of isomorphisms ⟨κxα,β
: PΦα

ℵ1
→ PΦβ

ℵ1
| α, β ∈ I2 ∪ {λ}⟩ which

satisfies

(K1) κxα,α = idPΦα
ℵ1

and κ−1
xα,β

= κxβ,α
,

(K2) κxα,β
◦ ιΦR,Φα

ℵ1
= ι

ΦR,Φβ

ℵ1
,
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(K3) κxα,γ
= κxβ,γ

◦ κxα,β
.

Fix β0 ∈ I2. For every α ∈ I2 we have that Ṫ ∗
α is a nice PΦα

ℵ1
-name for a tree.

Thus, κxα,β0
(Ṫ ∗

α) is a nice PΦβ0

ℵ1
-name for a tree. However, Φβ0 is countable, so by

Lemma 6.2 there are only ℵ1-many nice PΦβ0

ℵ1
-names for such trees. Thus, choose

I3 ∈ [I2]
σ such that κxα,β0

(Ṫ ∗
α) = κxα′,β0

(Ṫ ∗
α′) for all α, α′ ∈ I3.

Finally, choose any α0 ∈ I3 and define Ṫ ∗
λ to be κxα0,λ

(Ṫ ∗
α0
). Then, Ṫ ∗

λ is a nice

PΦλ

ℵ1
-name for a tree. We show that this definition is independent of the choice of

α0 ∈ I3, so let α ∈ I3. Then, we compute

Ṫ ∗
λ = κxα0,λ

(Ṫ ∗
α0
) (definition of Ṫ ∗

λ )

= κxβ0,λ
(κxα0,β0

(Ṫ ∗
α0
)) (K3)

= κxβ0,λ
(κxα,β0

(Ṫ ∗
α)) (α ∈ I3)

= κxα,λ
(Ṫ ∗

α) (K3).

Finally, let β < λ. Since {Θα | α ∈ I3} is a ∆-system with root ΘR and Θβ is
countable, there can only be countably many α ∈ I3 with Θα ∩Θβ ̸⊆ ΘR. Further,
since {Dα | α ∈ I3} is a ∆-system with root R and for every θ ∈ ΘR the set Φβ(θ)
is countable, there can only be countable many α ∈ I3 with Φα(θ)∩Φβ(θ) ̸⊆ R(θ).
Thus, we may choose α ∈ I3 ∖ {β} such that Θα ∩Θβ ⊆ ΘR and for all θ ∈ ΘR we
have Φα(θ) ∩ Φβ(θ) ⊆ R(θ). By definition of Θλ we also have Θλ ∩Θβ ⊆ ΘR and
for all θ ∈ ΘR also Φλ(θ)∩Φβ(θ) ⊆ R(θ). For ν ∈ {α, λ} we define a Θ-subindexing
function Φ∗

ν of Ψ by dom(Φ∗
ν) := Θν ∪Θβ and for θ ∈ Θ∗

ν by

Φ∗
ν(θ) := Φν(θ) ∪ Φβ(θ),

where every undefined set is treated as the empty set. We define a bijection g∗α,λ :
Θ∗

α → Θ∗
λ for θ ∈ Θ∗

α by

g∗α,λ(θ) :=

{
gα,λ(θ) if θ ∈ Θα,

θ if θ ∈ Θβ .

This is well-defined by (G2) and Θα ∩Θβ ⊆ ΘR. Further, for every θ ∈ Θ∗
α define

a bijection hθ,∗
α,β : Φ∗

α(θ) → Φ∗
β(g

∗
α,λ(θ)) as follows:

• If θ ∈ ΘR we have Φ∗
α(θ)∖ Φα(θ) = Φ∗

λ(θ)∖ Φλ(θ) and g∗α,λ(θ) = θ, so we

may extend the bijection hθ
α,λ : Φα(θ) → Φλ(θ) to hθ,∗

α,β : Φ∗
α(θ) → Φ∗

β(θ)
by

hθ,∗
α,λ(i) =

{
hθ
α,λ(i) if i ∈ Φα(θ),

i otherwise.

This is well-defined by (H2) and Φα(θ) ∩ Φβ(θ) ⊆ R(θ).
• If θ ∈ Θα ∖ ΘR, then we have Φ∗

α(θ) = Φα(θ), Φ
∗
λ(θ) = Φλ(θ), so we may

define hθ,∗
α,λ = hθ

α,λ.

• If θ ∈ Θβ ∖ΘR, then we have Φ∗
α(θ) = Φβ(θ) = Φ∗

λ(θ) and g∗α,λ(θ) = θ, so

we may define hθ,∗
α,λ = idΦ∗

α(θ).
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Then, the tuple x∗
α,λ = (g∗α,λ, {h

θ,∗
α,λ | θ ∈ Θ∗

α}) is an isomorphism from Φ∗
α to Φ∗

λ.
Further, we have Φα,Φβ ⊆ Φ∗

α and Φλ,Φβ ⊆ Φ∗
λ as well as

(L1’) x∗
α,λ ↾Φα = xα,λ,

(L2’) x∗
α,λ ↾Φβ = 1Φβ

.

By Lemma 8.7 applying κℵ1
• from Corollary 8.2 yields an automorphism κx∗

α,λ
:

PΦ∗
α

ℵ1
→ PΦ∗

λ

ℵ1
with the following properties:

(L1) κx∗
α,λ

◦ ιΦα,Φ∗
α

ℵ1
= ι

Φλ,Φ
∗
λ

ℵ1
◦ κxα,λ

,

(L2) κx∗
α,λ

◦ ιΦβ ,Φ
∗
α

ℵ1
= ι

Φβ ,Φ
∗
λ

ℵ1
.

Choose p∗ ∈ PΦR

ℵ1
with ιΦR,Ψ

ℵ1
(p∗) = p. Then, we compute

κx∗
α,λ

(ι
ΦR,Φ∗

α

ℵ1
(p∗)) = κx∗

α,λ
(ι

Φβ ,Φ
∗
α

ℵ1
(ι

ΦR,Φβ

ℵ1
(p∗))) (ΦR ⊆ Φβ ⊆ Φ∗

α)

= ι
Φβ ,Φ

∗
λ

ℵ1
(ι

ΦR,Φβ

ℵ1
(p∗)) (L2)

= ι
ΦR,Φ∗

λ

ℵ1
(p∗) (ΦR ⊆ Φβ ⊆ Φ∗

λ).

Similarly, by (L2) we have κx∗
α,λ

(ι
Φβ ,Φ

∗
α

ℵ1
(Ṫ ∗

β )) = ι
Φβ ,Φ

∗
λ

ℵ1
(Ṫ ∗

β ). We also compute

κx∗
α,λ

(ι
Φα,Φ∗

α

ℵ1
(Ṫ ∗

α)) = ι
Φλ,Φ

∗
λ

ℵ1
(κxα,λ

(Ṫ ∗
α)) (L1)

= ι
Φλ,Φ

∗
λ

ℵ1
(Ṫ ∗

λ ) (α ∈ I3).

We may now finish the argument. Since

p ⊩ PΨ
ℵ1

[Ṫα] ∩ [Ṫβ ] = ∅,

we have

ι
Φ∗

α,Ψ
ℵ1

(ι
ΦR,Φ∗

α

ℵ1
(p∗)) ⊩ PΨ

ℵ1

[ι
Φ∗

α,Ψ
ℵ1

(ι
Φα,Φ∗

α

ℵ1
(Ṫ ∗

α))] ∩ [ι
Φ∗

α,Ψ
ℵ1

(ι
Φβ ,Φ

∗
α

ℵ1
(Ṫ ∗

β ))] = ∅.

By Theorem 7.1 we may use downwards absoluteness to obtain

ι
ΦR,Φ∗

α

ℵ1
(p∗) ⊩ PΦ∗

α
ℵ1

[ι
Φα,Φ∗

α

ℵ1
(Ṫ ∗

α)] ∩ [ι
Φβ ,Φ

∗
α

ℵ1
(Ṫ ∗

β )] = ∅.

Applying the isomorphism κx∗
α,λ

: PΦ∗
α

ℵ1
→ PΦ∗

λ

ℵ1
and the computation above yields

ι
ΦR,Φ∗

λ

ℵ1
(p∗) ⊩

P
Φ∗
λ

ℵ1

[ι
Φλ,Φ

∗
λ

ℵ1
(Ṫ ∗

λ )] ∩ [ι
Φβ ,Φ

∗
λ

ℵ1
(Ṫ ∗

β )] = ∅.

By Theorem 7.1 we may use Π1
1-absoluteness to obtain

p ⊩ PΨ
ℵ1

[Ṫλ] ∩ [Ṫβ ] = ∅,

so that

p ⊩ PΨ
ℵ1

⟨Ṫα | α < λ⟩ is not maximal. □

As a closing remark, remember that by the discussion in the introduction the
assumptions (I), (II) and (III) are really necessary for realizing spectra of aT relative
to ZFC. Also, note that assumptions (II) and (III) are only needed for the choice
of σ in the beginning of the previous proof. However, assumption (IV) is certainly



REALIZING ARBITRARILY LARGE SPECTRA OF aT 43

not necessary and is a limitation of our proof method, as we only know how to
work with an iteration of length ℵ1. The isomorphism-of-names argument can also
be carried out for longer iterations, so the issue really is that we do not know
how to prove an analogue of Theorem 7.1 for longer iterations. The assumption
on the length of the iteration is crucial in our proof of Theorem 7.1 in order to
find suitable reductions of names for reals as in Definition 7.2 relative to only a
countable sequence of trees, so likely a different proof is needed to verify complete
embeddability for longer iterations. Thus, a positive answer to the following would
give a complete classification of the spectra of aT realizable relative to ZFC as it
implies that assumption (IV) may be dropped from Main Theorem 3.1.

Question. Let Φ ⊆ Ψ be a Θ-subindexing function, assume Φ is countable and κ
is regular. Is it true that PΦ

α ⩽◦PΨ
α for all α ⩽ κ?

It would also be interesting to know if the assumption of countability of Φ can be
dropped in the previous question. Remember, that this is indeed true for Hechler’s
forcing for adding a mad family as mentioned in Fact 3.1.

10. Appendix

The following is a reference for all symbols fixed for important objects throughout
the paper:

Γ Definition 4.3 10

πΦ,θ
i Definition 4.4 11

ιΦ,θ
i Definition 4.4 11
ιΦ,Ψ Remark 4.3 11

ċΦ,θ
i Definition 4.5 11

ṪΦ,θ
i Definition 4.5 11

Ṫ Φ,θ
i Definition 4.5 11

Ṫ Φ,θ Definition 4.5 11
PΦ
α Definition 4.6 11

ṪΦ,θ
α,n Definition 4.6 11

Ṫ Φ,θ
α Definition 4.6 11

ιΦα,β Definition 5.1 12

πΘ,θ
α,i Corollary 5.1 16

DΦ
α Definition 6.2 17

Θp
β Definition 6.2 17

Ipβ,θ Definition 6.2 17

np
β,θ,i Definition 6.2 17

spβ,θ,i Definition 6.2 17

F p
β,θ,i Definition 6.2 17

ιΦ,Ψ Theorem 7.1 21
κ• Definition 8.5 32
κα
• Corollary 8.2 35
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