
THE SPECTRUM OF INDEPENDENCE, II

VERA FISCHER AND SAHARON SHELAH

Abstract. We study the set sp(i) = {|A| : A ⊆ [ω]ω is a maximal independent family}, re-
ferred to as the spectrum of independence. We develop a forcing notion, which allows us to

adjoin a maximal independent family of arbitrary cardinality, and so in particular of cardinality

ℵω. Moreover, given an arbitrary set Θ of uncountable cardinals, our techniques allow to ob-

tain a cardinal preserving generic extension in which Θ ⊆ sp(i), thus showing that sp(i) can be

arbitrarily large. For �nite Θ, as well as certain countably in�nite Θ, we can obtain a precise

equality, i.e. models of sp(i) = Θ.

1. Introduction

The study of the spectrum of various extremal, also referred to as combinatorial sets of reals,

has already a comparatively long history. Already in [10], it is shown that given an arbitrary

set of uncountable cardinals Θ one can obtain a cardinal preserving generic extension in which

for each cardinal θ ∈ Θ there is a maximal almost disjoint family of cardinality θ. Thus, if we

denote by sp(a) the set of cardinalities of in�nite maximal almost disjoint families, the results

of [10] show that for Θ as above, consistently Θ ⊆ sp(a). Obtaining precise equality, i.e. realizing

a given set of uncountable values as the spectrum of almost disjointness, has proven to be a more

di�cult task. Imposing a number of restrictions on Θ, Blass shows in [1] that for certain Θ,

Hechler's techniques not only provide a model of Θ ⊆ sp(a), but also Θ = sp(a). The task of

guaranteeing that a certain undesired cardinal does not appear in sp(a) has been achieved via

an isomorphism of names argument. Such arguments, have their precursors, the most simple of

which is probably the proof that in the Cohen extension over a model of GCH, every (in�nite)

maximal almost disjoint family is either of cardinality ℵ1 or of cardinality c (see [2]). Improving

on the restrictions on Θ, Shelah and Spinas show that in fact sp(a) can be quite arbitrary, with

only some exceptional cases remaining open (see [12]). Similar studies, regarding the spectrum of

towers and maximal co�nitary groups can be found in [10, 4] respectively.

We focus our attention on independent families and their spectrum. Recall, that an independent

family is a family A ⊆ [ω]ω such that for all pairwise disjoint non-empty subfamilies A0, A1 of A
the set

⋂
A0\

⋃
A1 is in�nite. An independent family is said to be maximal if it is not properly

included into another independent family. The existence of maximal independent families follows
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from the Axiom of Choice. Classical examples of maximal independent families of cardinality c,

among others, examples due to Hausdor�, as well as Fichtenholz and Kantorovic, can be found

in (see [8]). The consistency of i < c, where i denotes the minimal cardinality of a maximal

independent family, is due to Brendle (see [9]). The study of the spectrum of independence, i.e.

of the set sp(i) of all cardinalities of maximal independent families has been initiated in [6], where

we show that the sp(i) can contain any desired �nite set of uncountable regular cardinals. In the

current paper, we signi�cantly improve the above results.

Hechler's post for adjoining an uncountable maximal almost disjoint family with �nite condi-

tions has played a key role in showing that consistently a = ℵω, see [3]. Note, that while using

Solovay's almost disjoint coding, can produce generic extensions in which there are maixmal al-

most disjoint families of cardinality κ, where κ is of uncountable co�nality, the technique does

not allow to produce extensions with maximal almost disjoint families of cardinality ℵω. One

of the advantages of Hechler's poset is that it allows, arbitrary cardinalities, including ℵω to be

realized as elements of sp(a). The situation with some close relatives of the almost disjointess

number is similar. In [13] Zhang developed a forcing notion, which similarly to Solovay's poset,

allows to adjoin a single new generator to a given co�nitary group and so showed that consistently

there are maximal co�nitary groups of cardinality smaller than c (and moreover, that consistently

ag < c). Cardinalities of countable co�nalities remained beyond the reach of Zhang's technique.

The problem was addressed in [7], where the authors develop a forcing notion which given an

arbitrary uncountable index set I, adjoins a family of co�nitary permutations G = {gi}i∈I , which
generates a maximal co�nitary groups. The technique not only allows to obtain a generic exten-

sion in which there is a maximal co�nitary group of countable co�nality, but also, similarly to the

almost disjointness number case, allows to obtain a model in which ag = ℵω (see [7]).

In the current paper, we show that for every uncountable cardinal κ there is a ccc forcing no-

tion, which adjoins a maximal independent family of cardinality κ, and so in particular, we obtain

a generic extension in which there are maximal independent families of cardinality ℵω (see The-

orem 2.4). Moreover our techniques allow an arbitrarily large set Θ of uncountable cardinals to

be realized as a subset of Θ ⊆ sp(i) (see Theorem 3.1). For Θ �nite, or Θ countably in�nite and

subject to some additional requirements, we obtain precise equality, i.e. a generic extensions, in

which Θ = sp(i) (see Theorem 4.5). Even though the results are signi�cant improvement of [6],

there are interesting remaining open question which we discuss brie�y in the end of the paper.

2. Countable Cofinalities

In this section, we show that consistently there are maximal independent families of any desired

cardinality (including ℵω). To obtain this we improve on the techniques introduced in [6] and in

particular make a heavy use of the notion of a diagonalization �lter.

For a given independent family A we denote by FF(A) the set of all �nite (partial) functions

h : A → {0, 1}. Thus any h ∈ FF(A) denotes in a natural way a Boolean combination associated

to the family A, namely the set
⋂
{A : A ∈ h−1(0)}\

⋃
{A : A ∈ h−1(1)}, which we denote by

Ah. We will use also the following notation: If A ∈ A, then A0 = A and A1 = ω\A. Thus for

h ∈ FF(A) the boolean combination Ah =
⋂
{Ah(A) : A ∈ dom(h)}.
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Recall also that for a given �lter U the Mathias partial order relativized to U , denoted M(U), is

the poset of all pairs (s,A) ∈ [ω]<ω ×U such that max s < minA with extension relation de�ned

as follows: (t, B) ≤ (s,A) provided that t end-extends s, t\s ⊆ A and B ⊆ A. For a condition

p = (s,A) ∈M(U) let p1 = s and p2 = A.

De�nition 2.1. Let A be an independent family. A �lter F is said to be an A-diagonalization
�lter, if F extends the Frechét Filter and is maximal with respect to the following property

∀F ∈ F∀h ∈ FF(A)(|F ∩ Ah| = ω).

Diagonalization �lters are dual to the so called diagonalization ideals, which have been studied

in detail in [5]. In [6] it has been shown that:

Lemma 2.2. Let A be an independent family, let F be a A-diagonalization �lter and let G be

M(F) generic over V and let xG =
⋃
{s : ∃A(s,A) ∈ G}. Then A ∪ {xG} is independent and

∀y ∈ V ∩ ([ω]ω\A) the family A ∪ {xG, y} is not independent.

Thus, in particular (in the above lemma) if y is an in�nite subset of ω from the ground model

extending A to a strictly larger independent family then A∪{xG, y} is not independent in V [G].

We say that xG is a A-diagonalization real over V . Diagonalization �lters can be used to adjoin,

along the length of a �nite support iteration, maximal independent families of regular uncountable

cardinalities.

Here, we obtain the following strengthening of the above Lemma.

Lemma 2.3. Let A be an independent family and U a diagonalization �lter for A. Let I 6= ∅ and
for each i ∈ I, let Ui = U . Let P be the �nite support product

∏
i∈I M(Ui) and let G =

∏
i∈I Gi

be P-generic. Then in V [G] the family A ∪ {xi}i∈I is independent and for each i ∈ I and each

y ∈ V ∩ ([ω]ω\A) the family A ∪ {xi, y} is not independent, where xi = xGi for each i ∈ I.

Proof. The fact that A ∪ {xi, y} is not independent holds, since each xi is a A-diagonalization
real over V . It remains to show that A ∪ {xi}i∈I is independent. Thus, it is su�cient to show

that for each h ∈ FF(A), j : I → {0, 1} with �nite domain and n ∈ ω the set of conditions q̄ ∈ P
such that

q̄  ∃i∗ > n(i∗ ∈
⋂

i∈dom(j)

ẋ
j(i)
i ∩

⋂
Ah)

is dense. Fix h, j, n as above and let p̄ ∈ P be an arbitrary condition. Without loss of generality

dom(p̄) = dom(j). Let I0 = j−1(0), I1 = j−1(1) and p̄ =
∏
i∈dom(j)(si, Fi). Since U is a

diagonalization �lter for A, the set Ah ∩
⋂
i∈dom(j) Fi is unbounded and it contains i∗ such that

i∗ > max{n,maxi∈I0 si}. Then for each i ∈ I0

qi = (si ∪ {i+}, Fi\(i∗ + 1)) ≤ (si, Fi) and qi M(Ui) i
+ ∈ ẋi ∩ Ah,

while for each i ∈ I1

qi = (si, Fi\(i∗ + 1)) ≤ (si, Fi) and qi M(Ui) i
∗ ∈ (ω\ẋi) ∩ Ah.

Thus we can �nd a condition q̄ extending p̄ as desired. �
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The above partial order can be used to adjoin via forcing a maximal independent family of

arbitrary desired size. We will use the following standard terminology on trees, which can be

also found in [11]. For σ and θ given cardinals, <σθ is the set of all τ : α → θ where α < σ.

Then <σθ has a tree structure under end-extensions, i.e. under the relation E, where η E τ i�

dom(η) ≤ dom(τ) and η = τ � dom(η). If S ⊆ <σθ is closed under initial segments, then S is a

tree under E, the set of predecessors of τ ∈ S, denoted τ ↓S (sometimes we just write τ ↓ when S
is clear from context) is the set of all proper initial segments of τ and the set of successors of τ in

S, is the set of all µ ∈ S such that τ E µ. Recall that the height of a node τ of the tree, denoted

heightS(τ), is the order type of the set of its predecessors. Moreover the α-th level of S, denoted

Lα(S) or Sα, is the collection of all nodes of height α in S and the height of S is the least ordinal

α such that Lα(S) = ∅. For η ∈ S, we say that µ ∈ S is an immediate successor of η in S if there

is ε ∈ θ such that µ = τa〈ε〉. We denote by succS(τ) the set of all successor nodes of τ in S. We

say that a tree S is θ-splitting, if for every τ ∈ S, |succS(τ)| = θ. A path through a tree S is a

chain P ⊆ T such that P ∩ Lα(S) 6= ∅ for all α < height(T ).

Theorem 2.4. Let θ be an uncountable cardinal. Then there is a ccc generic extension in which

there is a maximal independent family of cardinality θ.

Proof. Let S = <ω1θ. Thus, in particular, S is a θ-splitting tree of height ω1, each branch

of which is of length ω1. For each α < ω1, let Sα denote the α-th level of the tree (and so

Lα(S) = Sα = S ∩ α+1θ).

Recursively de�ne a �nite support iteration PS = 〈Pα, Q̇β : α ≤ ω1, β < ω1〉 as follows. Let

P0 = {∅}, Q̇0 be a P0-name for the trivial poset. Let A0 be the empty independent family and

let U0 be a A0-diagonalization �lter, i.e. an arbitrary ultra�lter extending the Frechét �lter.

For each η ∈ S1, let Uη = U0 and let Q1 =
∏
η∈S1

M(Uη) with �nite supports. In V P1∗Q̇1 for

each η ∈ S1 let aη be the M(Uη)-generic real. Now, suppose α ≥ 2 and for each η ∈ Sα, let

Aη = {aν : ν ∈ succS(η � ξ), ξ < α} be an independent family in V Pα . For each η ∈ Sα let Qα be

the �nite support product
∏
η∈Sα M(Uη). In V Pα∗Q̇α for each η ∈ Sα and each ν ∈ succSα(η), let

aν be the M(Uη)-generic real.
In V PS for each path g of S let Ag = {aν : ν ∈ succ(g � ξ), ξ < ω1}. Then Ag is a maximal

independent family of cardinality θ. Maximality follows from the diagonalization properties and

the fact that the length of the iteration is of uncountable co�nality. �

3. The spectrum can be large

In [6], it is shown that in the Sacks model, or in a model obtained by a large product of Sacks

forcing, every maximal independent family is either of cardinality ℵ1, or of cardinality c. Thus,

in such extensions sp(i) = {ℵ1, c} is naturally small. Below, we show that to the opposite, sp(i)

can be arbitrarily large.

Theorem 3.1. Let Θ be a set of uncountable cardinals. Then there is a ccc generic extension in

which Θ ⊆ sp(i).
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Proof. Let σ = ℵ1. Let S̄ = 〈Sθ : θ ∈ Θ〉 be a family of pairwise disjoint trees such that for each

θ ∈ Θ, Sθ is a θ-splitting tree of height ω1 such that each branch is of length ω1. For example, take

Sθ = <ω1(θ × {θ}). For each α < ω1 let Sθ,α denote the α-th level of Sθ and let S̄α =
⋃
α<θ Sθ,α.

De�ne a �nite support iteration P(Θ) = PS̄ = 〈Pα, Q̇β : α ≤ σ, β < σ〉 recursively as follows:

(1) Let P0 = {∅} and let Q̇0 be a P0-name for the trivial poset.

(2) Let A0 be the empty independent family and let U0 be a A0-diagonalization �lter, i.e.

an arbitrary ultra�lter extending the Frechét �lter. For each η ∈ S̄1 let Uη = U0 and let

Q1 =
∏
η∈S1

M(Uη) with �nite supports. In V P1∗Q̇1 let aη be a M(Uη)-generic real.
(3) Suppose α ≥ 2. For each θ ∈ Θ and each η ∈ Sθ,α let

Aη = {aν : ν ∈ succSθ(η � ξ), ξ < α}

be an independent family in V Pα and let Uη be a diagonalization �lter for Aη also in V Pα .

Now, let Qα be the �nite support product of
∏
η∈S̄α M(Uη) and in V Pα∗Qα for each η ∈ S̄α

let aη be the (Uη)-generic real.
With this the de�nition of P is complete. In V P for each θ ∈ Θ and each path g in Sθ, the family

Ag = {aν : ν ∈ succSθ,α(g � α), α < σ}

is a maximal independent family of cardinality θ. The maximality follows from the diagonalization

properties of the Mathias generics and the fact that the length of the iteration is of uncountable

co�nality. �

The above theorem leads us to the following de�nition:

De�nition 3.2. Let Θ be a set of uncountable cardinals. If

(1) min Θ = σ is regular,

(2) sup Θ = max Θ = λ is of uncountable co�nality,

(3) if Θ is in�nite, then Θ is closed with respect to singular limits of co�nality ℵ0,

then we say that Θ is a pre-independence-spectrum or (σ, λ)-pre-independence spectrum.

Remark 3.3. The requirement that σ is regular uncountable re�ects only our construction. While

c ∈ sp(i) always and so λ representing the continuum in the intended generic extension has to

be of uncountable co�nality, the requirement that σ is regular (or more generally of uncountable

co�nality) is too restrictive. We also do not know if the third requirement is in general necessary.

Theorem 3.4. (GCH) Let Θ be a (σ, λ)-pre-independence-spectrum. Then there is a ccc generic

extension in which Θ ⊆ sp(i), i = min Θ = σ and c = max Θ.

Proof. Choosing a sequence S̄ = 〈Sθ : θ ∈ Θ〉 of pairwise disjoint trees where for each θ ∈ Θ, Sθ
is θ-splitting tree of height σ, each branch of length σ (e.g. simply take Sθ = <σ(θ × {θ})) and let

P = P(S̄) be de�ned as in the previous theorem, but σ is not necessarily ℵ1. Then in V P, c = λ.

The Cohen reals adjoined along the length of the iteration imply σ ≤ d and since d ≤ i ≤ σ, we

obtain i = σ. �
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4. Excluding cardinalities

In order to exclude cardinals from sp(i) we have to provide a more careful analysis of the

construction given above. For this, we will introduce some general notation and terminology.

De�nition 4.1.

(1) Given a (σ, λ)-pre-independence-spectrum Θ, let m = m(Θ) be the collection of all se-

quences Sm = 〈Sθ : θ ∈ Θ〉 consisting of pairwise disjoint trees such that each Sθ is a

θ-splitting tree of height σ, each branch of length σ. For α < σ, we let Sθ,α denote the

α-th level of Sθ and let Sθ,<α =
⋃
β<α Sθ,β denote the tree Sθ below level α. Moreover, for

each α < σ we let Sm,α =
⋃
θ∈Θ Sθ,α and Sm,<α =

⋃
θ∈Θ Sθ,<α. We refer to the elements

of m as sp(i)-parameters for Θ.

(2) For a sp(i)-parameter Sm, let Qm be the collection of all forcing notions q = P(Θ) =

P(Sm), de�ned as in Theorem 3.1 using the given σ. For p ∈ P(Θ) we let supt(p) = {α :

Pα(θ) p(α) 6= 1Qα}. We can assume that for each α ∈ supt(p), supt(p(α)) ∈ [Sm,α]<ω.

Moreover, we can assume that for all α ∈ supt(p) and all η ∈ supt(p(α)), the �nite part

of p(α)(η) is an actual �nite subset of ω and the in�nite part of p(α)(η) has the form

B({aηi}i<i(α,η,p)) where i(α, η, p) ≤ ω, B is a Borel function and {ηi}i<i(α,η,p) ⊆ Sm,<α.

We refer to {ηi}i<i(α,η,p) as the actual support of p(α)(η) and denote it asupt(p(α)(η)).

We let

asupt(p(α)) =
⋃
{asupt(p(α)(η)) : η ∈ supt(p(α))}

and refer to it as actual support of p(α). Finally, we let

fsupt(p) =
⋃
{asupt(p(α)) : α ∈ supt(p)}

and refer to it as the full support of p.

(3) Additionally, let dom(p) =
⋃
{supt(p(α)) : α ∈ supt(p)}.

Of particular importance for us is the following.

De�nition 4.2. Let Sm be an sp(i)-parameter. A group of permutations K = K(Sm) of
⋃
Sm

is said to be an Sm-group if for each π ∈ K the following holds:

(1) If η ∈ Sθ,α then π(η) ∈ Sθ,α.
(2) If η, ν ∈ Sθ and η is an initial segment of ν, then π(η) is an initial segment of π(η).

(3) Given π1, π2 in K, if there is α < σ and η ∈ Sm,α such that π1(η) = π2(η) then for each

ν ∈ Sm,<α we have π1(ν) = π2(ν).

For each α ≤ σ = σm, we let Kα = {π � Sm,<α : π ∈ K}.

De�nition 4.3. Given an Sm-group K, we let Qm,K to be the class of all q ∈ Qm such that if

q = 〈Pα,Qβ : α ≤ σ, β < σ〉 then for every α ≤ σ and π ∈ Kα, π induces an automorphism π̂ of

Pα with the property that for each θ ∈ Θ and each η ∈ Sm,θ, π̂ maps Uη to Uπ(η).

Lemma 4.4. If K is an Sm-group, then Qm,K is non-empty.

Proof. Straightforward. �
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Lemma 4.5. Let Θ be a countable (σ, λ)-pre-independence spectrum, let Sm be a sp(i)-parameter

for Θ, K = K(Sm) and let θ• be a cardinal such that σ < θ• < λ and θ• /∈ Θ. Let q = P(Sm) ∈
Qm,K . A su�cient condition for

P(Sm) “θ• /∈ sp(i)”

is the following:

there is θ∗ ∈ [σ, θ•) with θ∗ ≥ sup(Θ ∩ θ•), θ<σ∗ < θ•.

Proof. Assume towards contradiction that there is p1 ∈ P(Sm) such that p1  θ• ∈ sp(i). Hence

for some 〈a˜α : α < θ•〉

p1  “〈a˜α : α < θ•〉 is a maximal independent family”.

Without loss of generality each a˜α is a canonical P(Sm)-name, i.e. it is

〈pαn,l, tαn,l : n, l < ω〉

where each 〈pαn,l : l < ω〉 is a maximal antichain in P(Sm), each tαn,l is a truth value and

pαn,l  n ∈ aα i� tαn,l is truth.

Moreover, we can �x t̄α = 〈tα,k〉k∈ω ⊆
⋃
Sm with no repetitions and including fsupt(a˜α), where

fsupt(a˜α) =
⋃
n,l∈ω

fsupt(pαn,l).

Claim. There is W1 ∈ [W0]θ
+
∗ such that for all θ ∈ Θ ∩ θ• and all h ∈ ε•, α, β ∈W1

if tα,h ∈ Sθ and tβ,h ∈ Sθ then tα,h = tβ,h.

Proof. Counting argument. �

Furthermore, we have the following:

Claim. There is W2 ∈ [θ•]
θ+∗ such that

(1) for all α, β ∈W2 and all l < ε•, lg(tα,l) = lg(tβ,l),

(2) for all α, β ∈W2, h, l ∈ ε•

(∃θ ∈ Θ)(tα,h ∈ Sθ ∧ tα,l ∈ Sθ ∧ tα,h <Sθ tα,l) i� (∃θ ∈ Θ)(tβ,h ∈ Sθ ∧ tβ,l ∈ Sθ ∧ tβ,h <Sθ tβ,l)

Proof. Counting argument. �

For each ε ∈ ε•, α ∈ W2 let tα,ε ∈ Sθα,ε . We can �nd W3 ∈ [W2]θ
+
∗ such that for each ε ∈ ε•

the sequence 〈θα,ε : α ∈ W3〉 is a constant θε. Indeed, since |W2| = θ+
∗ > |Θ|, at least one tree,

say θε, appears θ
+
∗ many times in {θα,ε}α∈W2 .

Moreover, subject to further thinning out, we can assume that for all α, β ∈W2:

(1) for all k, n, l in ω: tα,k ∈ fsupt(pαn,l) i� tβ,k ∈ fsupt(pβn,l);

(2) tα,k ∈ dom(pαn,l) i� tβ,k ∈ dom(pβn,l);

(3) if tα,k ∈ dom(pαn,l) then trunk(pαn,l(tα,k)) = trunk(pβn,l(tβ,k))
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(4) t̄α, t̄β realize the same quanti�er free type in Sm and so in particular the length lg(tα,l) =

lg(tβ,l), tα,l ∈ Sθ if and only if tβ,l ∈ Sθ, etc.
Now, consider the equivalence relation E on ε• de�ned as follows:

ε1Eε2 i� θε1 = θε2 .

For each ε ∈ ε•, let vε be the equivalence class of ε, i.e. vε = [ε]E . Thus, in particular, ε• =⋃
ε∈ε• vε. Let {vl}l<σ• be an enumeration of all equivalence classes, where σ• ≤ ε• < σ and for each

l < σ•, let θl be θα,ε where ε ∈ vl. Moreover, we can arranged that the sequence 〈t̄+α � vl : α ∈W3〉
forms a ∆-system and that for each vl, the elements of the sequence 〈t̄+α � vl : α ∈W3〉 realize the
same type in Sθl . Now, for each equivalence class vl, let

Aθl =
⋂
{Range(t̄+α � vl) : α ∈W3} = 〈tlε : ε ∈ wl〉,

where wl = {ε ∈ vl : tα,ε ∈ Aθl} and tlε = tα,ε for some α ∈W3.

Let p2 ≤ p1, let t̄ ∈ ω(
⋃
Sm) with no repetitions, be such that fsupt(p2) is contained in t̄ and

let t̄+ be the downwards closure of t̄. Thus, t̄+ is a sequence of length < σ. There is a sequence

t̄� = 〈tε : ε < ε•〉 such that for each l < σ•:

(1) t̄� � vl is a subtree of Sθl and realizes in Sθl the same q. f. type as t̄+α � vl for each α ∈W3,

(2) t̄� � wl = 〈tlε : ε ∈ wl〉 = Aθl ;

(3) if ε ∈ vl\wl then tε /∈
⋃
{Range(t̄+α ) : α < θ•} ∪ Range(t̄+).

Consider the set

badt̄ = {α ∈W3 : ∃l < ε•〈tβ,l : β ∈W3〉 has no repetitions and tα,l ∈ Range(t̄+)}.

Since |Range(t̄+)| < σ, for each l there are strictly less than σ many α-s such that tα,l ∈ Range(t̄+)

and since ε• < σ, we obtain |badt̄| < σ.

Note that for each α ∈W3\badt̄ , there is an automorphism πα of
⋃
Sm such that πα(t̄+) = t̄+

and πα(t̄+α ) = t�. Fix any α ∈W3\badt̄ and let a˜� = π̂(a˜α).

Take an arbitrary �nite subfamily {a˜αl : l ∈ k}. We will show that

p2  “{a˜αl : l ∈ k} ∪ {a˜�} is independent”,
thus reaching a contradiction to the choice of p1. Note that there are {αl}l∈k ⊆ W3, γ ∈
W3\{αl}l∈k and π ∈ K such that {a˜αl}l∈k are pairwise distinct and

(1) π is the identity on t̄+ and so π̂(p2) = p2,

(2) π̂ maps a˜αl to a˜αl for each l ∈ k,(3) π̂ maps a˜γ to a˜�.
Now, since

p2  “{a˜αl : l ∈ k} ∪ {a˜γ} is independent”,
we have

π̂(p2)  “{π̂(a˜αl) : l ∈ k} ∪ {π̂(a˜γ)} is independent”,
and so

p2  “{a˜αl : l ∈ k} ∪ {a˜�} is independent”,
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which is a contradiction. �

Theorem 4.6. (GCH) Let C be a countable set of uncountable cardinals which is closed with

respect to singular limits, minC = σ is regular uncountable and maxC = supC = λ is of

uncountable co�nality. Then there is a cardinal preserving generic extension in which sp(i) = C.

Proof. Let Sm be a (σ, λ)-independence parameter, K = K(Sm) and q = P(Sm) ∈ Qm,K .

Then by Theorem 3.1 V P(Sm) � C ⊆ sp(i), while by Lemma 4.5 in fact we have equality, i.e.

V P(Sm) � C = sp(i). �

5. Questions

Even though the techniques developed in the above article show that the spectrum of maximal

independent families can be quite arbitrary and that consistently there are maximal independent

families of arbitrary uncountable cardinalities. Of interest however remains the following question:

Question 1. Is it consistent that i is of countable co�nality?

Since d ≤ i, a model of i < a is necessarily a model of d < a. However, in all known models of

d < a (templates, ultrapowers), we have a = i and the following question, known as Vaughan's

problem is still open:

Question 2. Is it consistent that i < a?
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