THE CONSISTENCY OF ARBITRARILY LARGE
SPREAD BETWEEN u AND ?

VERA FISCHER

1. PRELIMINARIES

In this talk we will consider the independence of u and 0, where
u = min{|G| : G generates an ultrafilter}

and

0 = min{|D| : D is a dominating family}.
In particular we will obtain the consistency of arbitrarily large spread
between u and 0.

Theorem 1 (GCH). Let v and § be arbitrary regular uncountable
cardinals. Then, there is a countable chain condition forcing extension
in which u = v and 0 = 9.

As an application of the method used to obtain the result above, we
will obtain the consistency of b = w; < § = Kk where b is the bounding
number, s is the splitting number and « is an arbitrary regular cardinal.

Suppose v > §. Begin with a model of GC'H and adjoin d-many
Cohen reals (r, : a € §) followed by v-many Random reals (s¢ : § €
v). That is, if Vj is the model obtained after the first 6 Cohen reals,
the generic extension in which we are interested is obtained by finite
support iteration of length v of Random real forcing over Vs. Since
random forcing is “w-bounding, the Cohen reals remain a dominating
family in the final generic extension Vj,. Furthermore for any family
of reals of size smaller than ¢ there is a Cohen real which is unbounded
by this family, and so Vj, F 9 = 4. To verify that u = v, recall that if
a is random real over some model M, then neither a, no w — a contains
infinite sets from M. Again since the ground model V' satisfies GCH
and the forcing notions with which we work have the countable chain
condition, any set of reals A in Vj, of size smaller than v is obtained
at some initial stage of the random real forcing iteration V;, for some
o < v. But then neither s, nor w — s, contains an element of A and
so A does not generate an ultrafilter. Therefore u = ¢ = v.
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2. THE CONSISTENCY OF 0 =0 < § =V

In the following we assume that v < §. The model of u=v <0 =9
will be obtained again as a countable chain condition forcing extension
of aa model V' of GCH. First adjoin 6 many Cohen reals )7, : o < 6(
to obtain a model V'(§,0) (the model determined by (r, : @ < ) will
be denoted V'(3,0)) and then for some appropriately chosen ultrafilters
U, a < v we will adjoin v-name Mathias reals over V'(§,0) to obtain
the desired forcing extension V' (§,v). Again for & < v, V(6,€) will
denote the model obtained after adding the first &-name Mathias reals
(sy :m < &) over V(9,0).

For this purpose we will have to fix some terminology and consider
some more basic properties of the required forcing notions.

Definition 1. Let U be an ultrafilter on w. Then the Mathias forcing
associated with U, Q(U) consists of all pairs (a, A) where a is a finite
subset of w, A € U. We say that (a, A) extends (b, B) (and denote this
by (a, A<(b, B))) iff a end-extends b, a\b C B and A C B.

Note that Q(U) is o-centered and so has the countable chain condi-
tion for every ultrafilter u. Let G be Q(U)-generic. Then

s(G)=U{a:3A€U((a,A) € QU))}

is called the Mathias real adjoined by Q(U). For every condition (a, A)
in Q(U) we have

(a, A) IF (s(G) C* A) A (a C s(G)).

Thus (a, A) has the information of the generic real s(G), that a is an
initial segment s(G) and that s(G)\a C* A.

Definition 2. Let f be a name for a function in “w. We say that f
is normalized if there is a countable family of maximal antichains W,
n € w and functions f, : W,, — w such that for every p € W,, we have

fulp) =miff plk f(n) =m.
We denote this by f = (W, fn) : n € w).

In the following we will assume that all names for reals are normal-
ized.

The desired model will bo obtained as a countable chain condition
extension over a model V' of GC'H by adding d-name Cohen reals to ob-
tain a model V' (4, 0) followed by the finite support iteration of Mathias
forcing for appropriately chosen ultrafilters. The family (r, : o < §)
will be witness to 0 = §. The only requirement that we will insist on the
ultrafilters U, to have is that it contains all Mathias reals obtained at
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a previous stage of the iteration. That is (s¢ : & < o) C U,. Therefore
the a’th Mathias real s, is almost contained in the preceding ones. But
then the sequence (s¢ : £ < v) in V(d,v) together with its intersections
with cofinite subsets of w generates an ultrafilter in V' (0, ). Therefore
u < v. We will show that no family of size smaller than v in V(,v)
generates an ultrafilter.

Really. Consider any family G C V(§,v) N [w]* of cardinality smaller
than v. Since we work with forcing notions having the countable chain
condition over a model of GC'H there is an initial stage of the Mathias
iteration over V(9,0), namely V (6, ) for some o < v such that G is
contained in V' (4, ). Let s, be the o’th Mathias real and let

X ={n:|so Nnlis even}.

Then X € V(d,a+ 1) and we will see that no infinite subset of V' (9, «)
is contained in X or in w — X. Suppose not. Then there is an infinite
subset Y of w and a condition (a, A) € Q(U,) which forces that Y is
a subset of X or a subset of w — X. Let m = min A and let y be any
condition in A which is greater than m. Then certainly (a, A — y) and
(aU{m}, A —y) are extensions of (a, A). However
(a,A—y) lFow,) sa Ny =a

and

(aU{m},A—y)lFow,) sa Ny =aU{m}.
Therefore one of these extensions forces that y € X and the other one
y ¢ X which is impossible.

Therefore G does not generate an ultrafilter and since G was arbitrary
of size smaller than v, we obtain that u = v.

To preserve then §-many Cohen reals unbounded it is essential that
we choose the ultrafilters U, very carefully, since for example if U, is
selective then it adds a dominating real. The following Lemma will
allow us to achieve this.

Lemma 1. Let M C M’ be models of ZFC* (sufficiently large portion
of ZFC )Let U € M be an ultrafilter in w and g € M'N“w a real which
15 not dominated by the reals of M. Then

(1) 3U" wltrafilter in M’ such that U C U’
(2) every mazimal anitchain of Q(U) in M is a maximal antichain

for Q(U")
(3) for every Q(U)-name for a real f we have 1 I+ g £* f.

Proof. We will analyze what it means there not to be an ultrafilter
extending U with the desired properties. We will say that an infinite
subset A of w is forbidden by a finite set a and a maximal antichain L
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of Q(U) in M, if (a, A) is incompatible with all elements of L. That
is there is no finite subset e of A such that a U e is the finite part of a
common extension of (a, A) and a member of L.

We will say that A is forbidden by a finite set a and a Q(U)-name
f for a function in “w if for every n € w the condition (a, A) is not
compatible with any condition p € Q(U) such that p I f(n) < g(n).
That is, if f = (W, fn) : n € w) is a normalized name and (a, A) is
compatible with some p € W, then g(n) < f,.(p).

By Zorn’s Lemma it is sufficient to show that no infinite set Z € U is
covered by finitely many forbidden sets in M’. Suppose to the contrary
that there is a set Z € U such that Z is the disjoint union of Ay, ..., A,
By, ..., By such that for every i < k, A; is forbidden by a finite set a;
and a maximal antichain L; in Q(U), and B; is forbidden by a finite
set b; and a Q(U)-name for a real f. Let ng be an integer greater than
a;, b; for every ¢ < k. We can assume that Z C w — ny.

Claim. For every n € w there is h(n) > n such that whenever Z N
[n, h(n)) is partitioned into 2k-pieces at least one of them, say P, has
the following two properties:

(1) Vi < k, there is a finite subset e of P such that a;Ue is permitted
by a member of L;,

(2) Vi <k, there is a finite subset e of P such that a;Ue is permitted
by some p € W, for which f,(p,) < h(n).

Proof. Suppose there is n € w for which this is not true. Then by
Koenig’s Lemma there is a partition of Z into 2k pieces none of which
has the above two properties no matter how large h(n) is. However U
is an ultrafilter and so at least one of those pieces, say P belongs to
U. Let i < k. Then there is a finite subset e of P such that a; Ue is
compatible with an element of L; and so P satisfies condition (i) above.
Similarly there is a finite subset e of P such that b; U e is permitted
by a condition p € W,,. However (ii) holds as long as we choose h(n)
sufficiently large, which is a contradiction since P should not satisfy
both of conditions (i) and (iz). O

Consider any n > ng and partition ZN[n, h(n)] into 2k pieces, namely
Ai=ZnN[n,h(n)), Bi=ZN[n,h(n)). By the above claim at least one
of them, say P has properties (i) and (7).

If P=A;N[n,h(n)) then there is a finite subset e of A; permitted
by an element of L;, which is a contradiction since A; is forbidden by
a; and L;. Thus it must be the case that P = B; N [n, h(n)) for some
1 < k and so there is a finite subset e of B; such that b; Ue is permitted
by some element p of W, for which f,,(p) < h(n). Since B; is forbidden
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by f it must be the case that g(n) < h(n). However this holds for
every n > ng and so g <* h. Note that h € M which is the desired
contradiction. O

Corollary 1. Let G’ be Q(U')-generic filter over M'. Then
(1) G=G' NQU) is Q(U)-generic over M,
(2) if s(G') is the real added by Q(U’') and s(G) is the real added
by Q(U) then s(G) = s(G'),
(8) for every Q(U)-name for a real f, the evaluations of f with
respect to G and G' coincide.

Proof. Note that if (a, A) € G’ for some Q(U’)-generic filter over M,
then (a,w — a) is also in G’ and so (a,w —a) € G'NQ(U). O

Thus we can proceed with the actual construction of the Mathias ex-
tension over V(4,0). On the ground model V'(0,0) choose an arbitrary
ultrafilter U(0,0). Since r1 is Cohen over V'(0,0), r1 is unbounded by
the reals on V' (0,0) we can apply the Main Lemma to obtain an ul-
tarfilter U(1,0) which extends the given one and has the properties
from the main Lemma. Furthermore, by transfinite induction of length
v we can obtain a sequence U(«,0) of ultrafilters in V' («,0) with the
following properties. For every a < §

(1) VB < a, U(B,0) CU(av,)

(2) VB < « every maximal antichain of Q(Ug) from V' (3, 0) remains
maximal in V(«, 0)

(3) for every Q(U,)-name f for a real in V(«a,0) we have

FoW(at1,0) Ta L5 f.

At successor stages choose U(a + 1,0) applying the Main Lemma. At
stages A of uncountable cofinality define U(X,0) = Uy<rU(a,0) and
at stages A of countable cofinality essentially repeat the proof of the
Main Lemma to obtain an ultrafilter U(),0) extending U, \U(a,0)
such that every maximal antichain of Q(U(«,0)) from V' (e, 0) remains
a maximal antichain of Q(U(X,0)). Let Uy = Uy<sU(a,0). Then is
so is the Mathias real adjoined by Q(Up), be the Corollary above s is
generic over V' (a,0) for every o < ¢ and so

V(8,0)[so0] IF Vv € 6(ro £* s0).

Now for every o« < ¢ let V(a,1) = V(,0)[s9]. We can repeat the
same process to obtain a sequence of ultrafilters U(a, 1) in V(a, 1)
which satisfy the analogous properties of V(«,0) just in the same way.
Certainly we can repeat the same process any finite number of times n
which results in adjoining a finite sequence (s; : i < n) of finitely many
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Mathias reals over V' (4,0) and the model V' (d,n). Again the sequence
(s; 1 < n) is generic over V(a,0) for every o < ¢ and so in particular
we have obtained an extension V(a,n).

All of the above could have been defined as a finite support iteration
of length n of appropriate forcing notions over V' (4,0). For this we will
fix the following notation: T'(§,n) where T'(§,n+ 1) = T(§,n) * Q(U,).
Since this can be done for every n € w we can define the finite support
iteration T'(0,w) of (T'(0,n) : n € w) which adds the sequence (s,, : n €
w) of Mathias reals to V(0,0). Before we can continue the inductive
construction we have to verify that T'(«, w) which is the finite support
iteration of (T'(a,n) : n € w) does not add a real dominating r,,.

Lemma 2. Let o < § and let D € V(a,w) be a dense subset of T'(av, w).
Then D is a pre-dense subset of T(0,w).

Proof. Consider arbitrary condition p € T(§,w). By definition of finite
support iteration there is & € w such that p € T'(d, k). Recall also that
T(6,w) =T(6, k) * R for some forcing notion R over V (0, k). Similarly
T(o,w) =T(a, k) * R'. The set

D={reT(ak):3¢ € R((r,qd) € D)}

is dense in T'(«, k) and so by inductive hypothesis (our assumption on
the construction of T'(a,n)) D is pre-dense in T(6, k). Therefore there
is some r € D such that r is compatible with p. But then for some
¢ € R, (r,q) € D and certainly (r,¢') is compatible with p. O

Lemma 3. No real in V(a,w) dominates r,.

Proof. For every av < § and £ < w let V(«, &) be obtained as a finite
support iteration over V' of a forcing notion P(«,§). As we described
the iteration P(a, &) consists of the finite support iteration of length
a of Cohen forcing followed by a finite support iteration of Mathias
forcing of length £. Thus suppose there is a P(«,w)-name for a real f
and a condition p € P(J,w) such that

plEry < f.
There is some k € w such that p € P(d,k). Let G(6,k) be a P(6,k)-

generic filter containing p. Similarly let G(«, k) be the restriction of
G(9,k) to P(a, k). By the observations from above, G(«, k) is P(a, k)-
generic filter. In V(a, k) define g € w as follows:

g9(n) = min{m : 3¢ € W;(f,(¢) = m)}.

Then g is a function defined in V(a, k). Let H be a R(0, k)-generic
filter over V|[G(a, k)] containing some ¢ such that ¢ IF g(n) = f'(n).
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Let H = hN R'(a, k). Again by the observation from above, H’ is
R'(a, k)-generic over V[G(a, k)]. But then

faerya(n) = fa@pym (n) = fi(n) = g(n).

However p € G(0,k) and so r,(n) < g(n). But this can be done
for every n which implies that r, is dominated by g. It remains to
observe that g € V(«, k) N“w which contradicts the construction of
the model. O

Since no real in V (o, w) dominates r, we can repeat the construction
and obtain ultrafilter U, and an associated forcing notion @),. The
same process can be certainly repeated v-many times.

To verify that V(6,v) F 0 = v it remains to see that every set of
reals in V(d,v) of size smaller than v is contained in V' (o, v) for some
a < 9.

Lemma 4. Let £ < v.

(1) Every P(0,£)-condition is P(a, §)-condition for some o < 6.
(2) Every P(0,&)-name for a real f, is P(«,§&)-name for a real for
some o < 9.

Proof. 1t is sufficient to show part (i) since part (i7) follows from it. If
¢ = 0 then this is just a property of the finite support iteration of Cohen
forcing. If ¢ is a limit, then the same argument holds. If £ = a+1 then
p = (t,q) where t € P(6,a) and ¢ € Q(U,). By inductive hypothesis
p € P(n, «) for some n < §. Note that ¢ = (a, A) is a P(J, a)-name for
a real and so again by the inductive hypothesis there is some 7y < o
such that ¢ is P(ny, a)-name for a real. If n = max{n;, 72} then p is a
condition in P(n,«). Since n < ¢ the inductive proof is complete. [

It remains to observe that if G is set of reals of size smaller than
v in V(§,v) then there is aw < v such that G is contained in V(a,v).
But then r, is unbounded by G and so G is not a dominating family.
Therefore V(§,v) Fdo=c=v.

3. THE CONSISTENCY OF b=w; <5 =&k

Note that the same model can be used to obtain the consistency of
b =w; < s = k. Just begin by adding w; Cohen reals followed be a
finite support iteration of length s of Mathias forcing for ultrafilters
chosen just as in the proof of the Main Lemma from the previous
section. Any set of reals in V(wy, k) of size smaller than « is obtained
at some initial stage of the iteration V' (wy, ). We claim that s, is not
split by any infinite subset of w from V (w1, a).
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Let X be an arbitrary infinite set. Then there is some 1 < « such
that s, C€* X or 5, € w— X. But s, C* s, and so s, C* X or
So € w—X. Therefore s, is not split by X and so V(wi, k) F (s = k).
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