2018 seminar talk: Virtual large cardinal principles

Talk held by Victoria Gitman (Graduate Center, City University of New York (CUNY), USA) at the KGRC seminar on 2018-04-12.


Given a set-theoretic property $\mathcal P$ characterized by the existence of elementary embeddings between some first-order structures, we say that $\mathcal P$ holds virtually if the embeddings between structures from $V$ characterizing $\mathcal P$ exist somewhere in the generic multiverse. We showed with Schindler that virtual versions of supercompact, $C^{(n)}$-extendible, $n$-huge and rank-into-rank cardinals form a large cardinal hierarchy consistent with $V=L$. Sitting atop the hierarchy are virtual versions of inconsistent large cardinal principles such as the existence of an elementary embedding $j:V_\lambda\to V_\lambda$ for $\lambda$ much larger than the supremum of the critical sequence. The Silver indiscernibles, under $0^\sharp$, which have a number of large cardinal properties in $L$, are also natural examples of virtual large cardinals. With Bagaria, Hamkins and Schindler, we investigated properties of the virtual version of Vopěnka's Principle, which is consistent with $V=L$, and established some surprising differences from Vopěnka's Principle, stemming from the failure of Kunen's Inconsistency in the virtual setting. A recent new direction in the study of virtual large cardinal principles involves asking that the required embeddings exist in forcing extensions preserving a large segment of the cardinals. In the talk, I will discuss a mixture of results about the virtual large cardinal hierarchy and virtual Vopěnka's Principle. Time permitting, I will give an overview of Woodin's new results on virtual large cardinals in cardinal preserving extensions.

Bottom menu

Kurt Gödel Research Center for Mathematical Logic. Währinger Straße 25, 1090 Wien, Austria. Phone +43-1-4277-50501. Last updated: 2010-12-16, 04:37.